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Abstract

The translation of emerging genomic knowledge into public health and clinical care is one of the
major challenges for the coming decades. At the moment, genome-based prediction of common
diseases, such as type 2 diabetes, coronary heart disease and cancer, is still not informative. Our
understanding of the genetic basis of multifactorial diseases is improving, but the currently
identified susceptibility variants contribute only marginally to the development of disease. At the
same time, an increasing number of companies are offering personalized lifestyle and health
recommendations on the basis of individual genetic profiles. This discrepancy between the limited
predictive value and the commercial availability of genetic profiles highlights the need for a critical
appraisal of the usefulness of genome-based applications in clinical and public health care.
Anticipating the discovery of a large number of genetic variants in the near future, we need to
prepare a framework for the design and analysis of studies aiming to evaluate the clinical validity
and utility of genetic tests. In this article, we review recent studies on the predictive value of
genetic profiling from a methodological perspective and address issues around the choice of the
study population, the construction of genetic profiles, the measurement of the predictive value,
calibration and validation of prediction models, and assessment of clinical utility. Careful
consideration of these issues will contribute to the knowledge base that is needed to identify
useful genome-based applications for implementation in clinical and public health practice.

Introduction

The past decade has seen rapid developments in our under-
standing of the genetic etiology of various common multi-
factorial diseases, such as age-related macular degeneration
(AMD), type 1 and type 2 diabetes, cardiovascular diseases,
Crohn’s disease and various cancers [1]. Further develop-
ments in genomic research, such as the growing number of
genome-wide association studies, the large-scale consortia
that are pooling data from various studies, and the advances
in statistical genomics and genotype technology, are dras-
tically improving the chances of identifying common low risk
variants and rare high risk variants. It is beyond doubt that

many more genetic susceptibility variants will be discovered
in the next few years.

Expectations are high that increasing knowledge of the
genetic bases of disease will eventually lead to personalized
medicine, that is, to preventive and therapeutic inter-
ventions for complex diseases that are tailored to individuals
on the basis of their genetic profiles [2,3]. Genome-based
personalized medicine already exists for monogenic
disorders. For example, female carriers of BRCA1 or BRCA2
mutations are offered biannual mammography screening or
provided the opportunity of preventive surgery. Potential
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AUC and effect estimates of susceptibility variants for the prediction of three diseases

Janssens and van Duijn 20.2

Disease Coronary heart disease Systemic lupus erythematosus Hypertriglyceridemia
AUC* 0.55 0.67 0.80
Reference [35] [28] [12]
Genes and effect estimates
AGT 1.28 (1.02, 1.61) HLA 236 (2.11, 2.64)% APOA5 7.36 (3.98, 13.6)
ACE 1.18 (0.97, 1.44) ITGAM 1.62 (1.47,1.78)* APOA5 5.57 (3.13, 9.90)
AGTRI 1.21 (1.00, 1.45) IRF5/TNPO3 1.54 (1.40, 1.70)* TBL2 2.81 (1.46,5.24)
CYPI1B2 1.22 (1.01, 1.48) KIAA1542  0.78 (0.73, 0.85) APOE 2.14 (1.31, 3.49)
ADDI 1.22 (1.01, 1.47) PXK 1.25 (1.16, 1.35) GCKR 2,11 (1.21, 3.67)
GNB3 0.72 (0.52, 1.01) rs10798269 0.82 (0.76, 0.88) GALNT2 2.10 (1.15, 3.81)
TRIBI 2.02 (1.24, 3.30)

*AUC, area under the receiver operating characteristic curve. Values are hazard ratios [35] or odds ratios with 95% confidence intervals. The original
paper mentions several polymorphisms per gene and that one for each gene was included to assess the combined predictive value of six variants. The

polymorphisms that had the highest odds ratios are reported here.

applications of genetic profiling in multifactorial diseases
include tailoring of prevention programs to at-risk individ-
uals, determining the starting age of participation in screen-
ing programs [4] and, when profiles predict treatment
success, tailoring treatment modalities and starting doses.

As we have reviewed recently [5], the predictive value of
genetic profiling is still limited at present, with a few promis-
ing exceptions. The area under the receiver operating
characteristic curve (AUC) gives an assessment of the
discriminative accuracy of a prediction model, that is, the
degree to which the test results can discriminate between
persons who will develop the disease and those who will not.
AUC ranges from 0.50 (equal to tossing a coin) to 1.00
(perfect prediction). We found that the AUC was low for the
genetic prediction of type 2 diabetes and coronary heart
disease and high for the prediction of hypertriglyceridemia
and AMD [5]. Table 1 illustrates that the high AUC of 0.80
for hypertriglyceridemia resulted from very strong
individual genetic factors, with odds ratios ranging from 2.0
to 7.4, and the low AUC of 0.55 for coronary heart disease
from genetic variants with low odds ratios. Note that the
strongest genetic predictor by far for coronary heart disease
had a weaker effect than the weakest predictor for hypertri-
glyceridemia. In order to achieve appreciable predictive
value, genetic profiles need to include a few strong genetic risk
factors or a large number of weak susceptibility variants [6].

Although the predictive value of genetic profiling is still
limited, an increasing number of companies already offer
personalized lifestyle health recommendations and nutritional
supplements on the basis of clients’ genetic profiles [7].
Despite the limited predictive value of genetic testing in
multifactorial diseases, these commercial developments will

yield ongoing interest from consumers, from health care
professionals confronted with questions from patients who
underwent testing, and from policy makers who search for
novel strategies to improve health care and population health.
These developments ask for a solid evidence base for genomics
applications. One of the major challenges for the coming
decades will be to investigate the translation of this emerging
genomic knowledge into public health and medical care [8,9].

In this article, we review recent studies on the predictive
value of genetic profiling from a methodological perspective.
We address five issues: the choice of the study population,
the construction of genetic profiles, the measurement of the
predictive value, calibration and validation of the predictive
value, and finally assessment of the clinical utility of genetic
profiles. These issues are illustrated using examples from
recent studies on the predictive value of genetic profiling in
common diseases. Methodological characteristics of these
studies are listed in Table 2.

From gene discovery samples to the target populations
In the gene discovery phase, researchers often make use of
highly selected series of patients and controls. Patients are
selected for severe pathology, early onset and familial clus-
tering of disease, and controls for the absence of pathology.
This procedure substantially improves the statistical power
of gene discovery research without creating any bias. But
hyperselection of cases and controls can be a problem for
evaluating the usefulness of genetic testing, as it typically
leads to an overestimation of the effect sizes and, thus, to an
overestimation of the predictive value. Effect sizes are
inflated because frequencies of the risk genotypes are
particularly increased in enriched patient populations and
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Effect estimates of 18 established susceptibility variants on type 2 diabetes risk in two studies

Odds ratio (95% confidence interval)*

Gene Locus GoDARTS study [11] Rotterdam study [14]
TCF7L2 rs7903146 1.36 (1.24, 1.48) 1.31 (1.19, 1.44)
KCNJI'1 rs5219 1.25 (1.15, 1.36) 1.03 (0.93, 1.13)
CDKN2A/2B rs10811661 1.21 (1.08, 1.35) 1.10 (0.98, 1.24)
PPARG rs1801282 1.21 (1.07, 1.36) 1.09 (0.95, 1.24)
ADAM30/NOTCH?2 rs2641348t 1.15 (1.01, 1.30) 1.01 (0.88, 1.17)
CDKN2A/2B rs564398% 1.13 (1.04, 1.22) 1.04 (0.95, 1.14)
IGF2BP2 rs4402960 1.12 (1.03, 1.22) .11 (1.01, 1.22)
FTO rs8050136 1.11 (1.02, 1.20) 1.09 (0.99, 1.19)
CDKALI rs10946398% .11 (1.02, 1.21) .11 (1.02, 1.22)
SLC30A8 rs13266634 1.10 (1.01, 1.20) 1.13 (1.02, 1.24)
TSPANS/LGR5 rs79615811 1.09 (1.00, 1.19) 1.09 (0.99, 1.20)
CDCI123 rs12779790¥ 1.10 (0.99, 1.21) 0.95 (0.84, 1.06)
WEFSI rs1001013 1%+ 1.07 (0.99, 1.16) 1.12 (1.05, 1.27)
TCF2 rs757210tt 1.07 (0.99, 1.16) 0.93 (0.85, 1.02)
ADAMTS9 rs4607103# 1.05 (0.96, 1.16) 1.14 (1.03, 1.28)
HHEX-IDE rs| 111875 1.02 (0.94, I.11) 1.06 (0.97, 1.15)
THADA rs7578597 1.04 (0.90, 1.19) 1.10 (0.96, 1.27)
JAZFI rs8647458§ 1.00 (0.93, 1.09) 1.09 (1.00, 1.19)

Janssens and van Duijn  20.5

*AUC (area under the receiver operating characteristic curve) was 0.60 for both studies. Values were obtained using logistic regression analyses. For
several genes, the Rotterdam study [14] uses different single nucleotide polymorphisms from those listed: ¥rs441 1878, r2 = 0.95; ¥rs11257622;

r2 =0.83; #rs1412829, r2 = 0.97; ¥rs1635852, r2 = 0.97; Trs1493694; Trs1353362, r2 = 0.96; T1rs4430796, r2 = 0.61; **rs10012946, r2 = 1.00;
$rs7754840, r2 = 1.00. Statistically significant associations are presented in bold and r2 is a measure of linkage disequilibrium.

particularly decreased in controls that have no pathology
related to the disease of interest.

Table 2 shows that many studies on the predictive value of
genetic profiling were conducted in hyperselected case-control
series, comparing, for example, type 2 diabetes patients with
normoglycemic individuals [10,11], patients with severe
hypertriglyceridemia with normolipidemic controls [12], or
patients with end-stage AMD with individuals who have no
eye pathology [13]. By excluding individuals with modestly
elevated glucose or lipid levels, these case-control series
largely lose their relevance for investigating predictive
potential in clinical practice, where persons with such levels
are part of the population. Predicting progression to disease
is most difficult in individuals with early symptoms or mild
pathology, but prediction in this population is clinically
highly relevant. One could argue that if the predictive value
of genetic profiling is low in the samples used in these
studies [10-13], it will be even poorer in unselected cohorts.
Thus, hyperselected case-control studies can be useful to
demonstrate that predictive genetic testing is not informative

and, given the commercial interest in genome-based
applications, this is an important message to get across.

Another consideration is the use of case-control studies in
general, as illustrated by the recent findings on type 2
diabetes. Lango et al. [11] investigated the predictive value of
18 polymorphisms in a case-control study, comparing
patients with normoglycemic controls, and van Hoek et al.
[14] looked at the same polymorphisms in a prospective
cohort of individuals aged 55 years and older. In both studies
[11,14], the AUC of the 18 polymorphisms was 0.60 and the
improvement in AUC beyond prediction from age, sex and
body mass index (BMI) was limited (AAUC = 0.02). But a
more detailed analysis of the results reveals that even though
the AUC was 0.60 in both studies, it was mainly contributed
by different genetic variants in the two studies (Table 3).
Moreover, the 0.02 improvement increased the AUC to 0.80
in the case-control study but to only 0.68 in the prospective
cohort study. This difference is mostly explained by the
difference in BMI. Mean BMI in the case-control study was
31.5 kg/m2 in patients and 26.9 kg/m2 in controls compared

Genome Medicine 2009, 1:20
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with 28.0 kg/m? and 26.0 kg/m? in the prospective cohort
study, indicating that BMI was a stronger predictor of type 2
diabetes in the case-control study.

Case-control studies tend to overestimate odds ratios and
this may be related to selection bias (most likely the case in
the example above) or information bias (patients may attri-
bute a disease to a known risk factor and they over-report
this exposure). An issue that is often ignored in gene
discovery studies but that is extremely relevant in studies
evaluating the predictive value is that of survival bias. If
genes increase the risk of disease, they may also increase the
risk of (early) mortality. Therefore, there are strong argu-
ments that show the necessity that predictive testing in
preventive medicine should be investigated in cohort studies
consisting of individuals who do not have the disease of
interest, and predictive testing for prognosis and therapy
response should be evaluated prospectively in clinically
relevant patient series.

There is no single golden standard by which study population
and study design should be selected, other than that predictive
genetic tests need to be evaluated in populations represen-
tative for their intended use. The choice of the target popu-
lation is not arbitrary, but rather is a trade-off of the effective-
ness, costs and harmful side effects of available interventions,
among other factors. Table 2 shows three prospective cohort
studies evaluating the prediction of coronary heart disease,
one in Caucasian men of European ancestry aged 50-64 years
[15], one in a general population of 45-64 years [16] and one
in patients with familial hypercholesterolemia [17]. These
different study populations assume different target
populations for genetic profiling, and the predictive value will
differ between these populations when disease risks, genotype
frequencies and effect sizes are different.

Moving from risk variants to genomic profiles

When the predictive value of a limited number of variants is
investigated in a large population-based study, disease risks
can be calculated as the percentage of patients for each
combination of genotypes. However, the number of geno-
type combinations increases exponentially with the number
of variants tested. For example, combining 18 variants that
have three possible genotypes, as did two studies of type 2
diabetes, theoretically yields 387,420,489 (3'®) unique
profiles. To deal with such a large number, researchers adopt
one of two approaches for the calculation of disease risks.
First, they may calculate risk allele scores or genotype scores
obtained by counting the number of risk alleles across all
variants [10,11,14-23]. This approach assumes that the
differences between the effects of the individual variants can
be ignored, which may be a realistic assumption for
multifactorial disorders given that the effect sizes are
generally small [24]. Second, researchers may use logistic or
Cox proportional hazards regression analyses for risk

Genome Medicine 2009,
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prediction, which do account for differences in effects sizes
between individual variants. Risk predictions from regression
analysis can be regarded as weighted risk scores. Table 2
shows that all studies applied either logistic or Cox pro-
portional hazards regression analyses, some in addition to
the simpler risk allele scores.

In addition to the question of how to combine genetic
variants into profiles, the question arises as to which of the
variants to include. Several studies include variants that
were already established risk factors (Table 2) [11,12,14,19,
21-23,25]. Others include polymorphisms from candidate
genes or regions that have been associated with disease risk
in at least one other study or that are likely to be functionally
implicated (for example, [13,15,17,18,20,26,27]). And again
others include polymorphisms identified in their own
genome-wide association study [10,28]. Although the
distinction between candidate and established variants is
not crystal clear and findings from genome-wide association
studies may be robust, we can expect that the predictive
value of variants that are less convincingly established is less
likely to be replicated in independent populations.

Another important issue in obtaining accurate estimates of
the genetic predisposition at the individual level is how to
handle gene-gene and gene-environment interaction in the
prediction of common diseases. It is frequently argued that
strong effects can be seen from the interaction of a gene with
other genetic variants or environmental factors. Several
studies reported in Table 2 investigated the presence of
gene-gene interaction [19,23,26], but none included inter-
action effects in the regression models. The reported effect
sizes for interaction terms were very modest, implying that
the influence on the predictive value of risk profiles would
have been limited [19]. When future studies give robust
evidence for interaction, these interaction effects should be
taken into account in the risk prediction.

Last but not least, we can anticipate improvement in the
predictive value when we can identify the exact causal
variants. Most variants that are included in the genetic profiles
shown in Table 2 are derived directly from genome-wide
association studies. There is a growing awareness that these
might not be the causal variants and that the causal variants
may have a very different allele distribution in patients and
controls. It is anticipated that the causal variants will have
stronger effects on disease risk. The large deep-sequencing
efforts that are ongoing may shed light on this question.

Evaluation of the predictive value

The question of how well genetic profiles can predict disease
can be answered by many different performance measures,
which all are related but which highlight different features.
Which measure is of interest depends on the question
addressed. Individuals who undergo genetic testing will be

Genome Medicine 2009, 1:20
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most interested in their absolute risks of disease conditional
on their genetic profile. Only a few empirical studies have
presented absolute risks [14,17,18], most likely because
these cannot be calculated from case-control data without
assumptions on the incidence of disease. Many other
studies have reported used risk ratios (odds ratios, relative
risks or hazard ratios), which each compare the risks of
disease with a reference risk, namely that of individuals
who carry no risk alleles. Here, also, evaluation studies
diverge from gene discovery studies. Although the
comparison with those with the lowest number of risk
alleles is a valid approach and the recommended strategy in
gene-discovery studies, it is less relevant in translational
studies. Individuals who undergo genetic testing and
receive their results are not interested in learning their risk
compared with individuals who have an extremely low risk
of disease [29] but rather compared with the average risk of
disease, that is, the risk before testing, which for a common
disease such as type 2 diabetes may be as high as 10%.
Thus, comparing the risk or odds of disease with those with
the average risk is more appropriate [29].

When deciding about whether or not to perform a test from a
clinical perspective, physicians need to know to what extent
a test can make a difference. This makes them more inter-
ested in the distribution of risk allele scores and, related to
that, the distribution of risks and risk ratios. Many empirical
studies do present distributions of risk allele scores [10,11,
16,18-22], and several others do present risks associated
with the risk allele scores but do not show their distribution
(Table 2) [13,14,17,23,25,27,30]. These distributions are all
different presentations of the discriminative accuracy of a
test, generally measured as the AUC (see earlier). All but two
[23,30] of the studies shown in Table 2 evaluated the AUC of
genetic profiling. Despite reported shortcomings [31-33],
AUC is very suitable as a first screening indication of
predictive value. Further evaluation of clinical validity and
utility is warranted only if a reasonable AUC is demonstrated
at first. This further evaluation can include evaluation of
absolute risks, reclassification [31], net reclassification
improvement and integrated discrimination improvement
[32]. The value of reclassification should not be over-
estimated, as illustrated by the study of Kathiresan and
colleagues [18], who studied the addition of genetic factors
to traditional risk factors for cardiovascular disease. In this
study, adding genetic variants did not improve the AUC, but
26% of the individuals in the intermediate risk group
(absolute risks 10-20%) were reclassified into the lower and
higher risk groups. A closer look at the findings shows that
the observed risk of those who were reclassified to the lower
risk group was 8.2%, only slightly lower than the cut-off
value of 10%, and the observed risk of those reclassified to
the highest risk category was 14.7%, which was similar to the
observed risk among those who remained in the inter-
mediate category (14.5%). Reclassification may thus not lead
to better classification when no improvement in AUC is seen.
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Moving towards the calibration and validation of the
predictive value

Prediction of complex diseases from risk allele scores or on
regression models makes several assumptions. As discussed
earlier, risk allele scores assume that the differences in effect
sizes between the individual variants can be ignored and that
there is no gene-gene interaction. Regression methods
generally do not consider gene-gene or gene-environment
interaction effects either. One way to test whether these
assumptions are reasonable is to evaluate the concordance
between observed and expected disease risks, a method that
is called calibration. Although calibration is an essential step
in the development of clinical prediction models, it was
examined only in two of the studies reported in Table 2
[12,22]. Wang et al. [12] found that the prediction of hyper-
triglyceridemia from traditional and genetic factors showed
good calibration, indicating that observed risks were
reasonably predicted by a regression model that did not
include interaction effects.

All prediction models perform best in the dataset from
which they were obtained. Therefore, it is crucial to replicate
the predictive value of genetic profiling in independent
datasets. Validation investigates the extent to which genetic
profiles have similar predictive value in independent data-
sets. In large-scale studies, prediction models usually are
developed using part of the data and applied to predict the
outcome of interest in the rest (internal validation). In
addition, the prediction needs to be evaluated in an indepen-
dent dataset (external validation) to demonstrate its value.

Table 2 shows that only one study performed internal
validation for the selection of the markers [16], and none
performed external validation. One might think that the two
studies investigating the same 18 polymorphisms in type 2
diabetes are replication studies [11,14], but this is not true.
Because the studies were published at the same time, they
each developed their own prediction model. Given that these
prediction models had only four variants in common, it is
reasonable to expect that the AUC would be lower if the two
research groups had validated their models on each others
data. The lack of replication studies is, however, not so much
a problem for studies that already show poor predictive
value in the original population, as the predictive value
typically becomes worse in the replication study. It is,
however, important for studies that potentially show useful
predictive value, such as the study on myocardial infarction
following surgery (AUC 0.76) [26] and the studies in AMD
and hypertriglyceridemia (both AUC 0.80) [12,13].

Moving from clinical validity to personalized medicine

Whether genetic testing is useful for public health or clinical
practice depends on what the implications of the test results
are. The usefulness depends on the availability of alternative
strategies for disease prediction and the availability of
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preventive or therapeutic interventions that can be targeted
to genetic profiles, among other factors, such as effectiveness
and cost-effectiveness of interventions, and patient
preferences and attitudes.

An important consideration is whether genetic profiles yield
substantially better predictive value than traditional risk
factors. For instance, genes associated with cardiovascular
disease may also be involved in intermediate outcomes, such
as dyslipidemia or hypertension [18,34]. From a theoretical
perspective, genetic factors will not remain significant when
considering both genetic factors and intermediate outcomes
in the prediction analysis [5]. Overall, genetic factors will not
be better predictors of disease risk than intermediate factors,
but their greater ease of assessment may be worth a slight
reduction in the predictive value. However, it should be
realized that even when genetic profiles predict disease
equally as well as intermediate biomarkers, this does not
mean that they are equally useful. Typical intermediate out-
comes suggest the existence of early pathology and point to
clear targets for intervention, such as weight loss or medica-
tion for lowering blood pressure or cholesterol, whereas
targeted interventions are often not clear for genetic risks. An
exception is intensive surveillance, which is useful to broader
populations at risk, independent of the underlying pathology.

Another issue is the availability of specific interventions for
specific genetic profiles. Very often the number of alternative
therapeutic interventions is quite limited. Also, from a
public health perspective it can be argued that most
preventive strategies, such as weight control and smoking
cessation, will have effects on multiple disease outcomes,
making it unreasonable - and unethical - to specifically
target these strategies to people on the basis of a genetic
profile that increases their risk for a single disorder and to
withhold it from others. That is, not only persons at
increased genetic risk for diabetes should be advised to
control their weight, but also persons at increased risk for
other disorders such as arthritis, cardiovascular disease and
cancer. Thus, a key question to answer is how we can justify
personalization of preventive and therapeutic interventions.

Conclusions

Prediction studies so far have been rather simplistic in the
sense that most were based on a small number of variants
that by themselves explain only a fraction of the genetic
variability, were conducted in non-representative cohorts,
were neither calibrated nor validated and hardly investi-
gated clinical utility. This should not be interpreted as short-
comings of these studies; questions concerning calibration,
validation and clinical utility are relevant only for genetic
profiles with promising discriminative values. On the basis
of AUC, further evaluations could be worthwhile for AMD
and hypertriglyceridemia [12,13], if only to find out whether
their very high discriminative accuracy (AUC = 0.80) was
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due to the hyperselected case-control design or to true
strong genetic effects. Replication is warranted in indepen-
dent population-based prospective cohort studies that
include the whole range of the clinical spectrum.

Another important question is the level of predictive value
that is to be targeted before implementing a genomic profile.
The level aimed for depends on the intended application,
particularly on the goal of testing, the medical, psychological
and financial burden of the disease, the availability of
(preventive) treatment and the adverse effects of false-
positive and false-negative test results. The aim of genetic
screening is often to select high-risk subjects for preventive
treatment or intensified surveillance programs. High predic-
tive value is needed for interventions that are invasive and
irreversible, whereas lower predictive value may be
sufficient for interventions such as adopting a healthy diet or
increasing physical activity, which are beneficial and not
harmful for a broader population.

A legitimate question is whether we should evaluate predic-
tive genetic testing for common diseases at the moment. It is
clear that our current knowledge of their genetic basis is
insufficient, and will probably remain so for the next five
years. However, the current interest from biotechnology
companies that offer genetic profiling on the internet, and
from customers who want to learn about their risks of
disease, currently asks for empirical evidence. Whether
future genetic profiles should only be offered commercially if
the clinical utility has been proven beyond reasonable doubt
(as is the case for medical tests and treatments) or can enter
the market if proven not harmful (as expected for health
products such as vitamins and anti-aging cosmetics)
remains an open question. From a clinical and public health
perspective, we need to build the knowledge base that is
needed to identify useful genome-based applications for
implementation in a clinical setting.

Abbreviations

AMD, age-related macular degeneration; AUC, area under
the receiver operating characteristic curve; BMI, body mass
index.
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