
Introduction
Deep within the brain ticks a 24-hour clock that imparts 
circadian control over virtually every aspect of human 
physio logy. �is clock is located in the suprachiasmatic 
nucleus (SCN), which is a tiny region of the ventral hypo-
thalamus that contains approximately 20,000 neurons 
[1,2]. �e inherent timing capacity of the SCN is derived 

from autonomous neuronal oscillators, which form a 
coherent and precisely phased pattern of rhythmic 
neuronal activity and hormonal output that serves as a 
phasing cue to ancillary oscillators found throughout the 
brain and peripheral organs [3,4]. �e need for a circa-
dian control center likely evolved as an adaptive response 
to the daily changes in the light-dark cycle resulting from 
the axial rotation of the earth. As such, the inherent clock 
timing process is tightly regulated by changes in the daily 
lighting cycle.

As discussed in detail below, dysregulation of the clock 
appears to play a central role in the genesis and progres-
sion of a broad range of disorders, and therapeutic 
approaches designed to target clock physiology (that is, 
chronotherapeutics) have been effective in treating a 
range of ailments, including seasonal affective disorder, 
asthma, hypertension and cancer [5-9]. Many of these 
treatment strategies are based on the integration of clock 
phase into the drug delivery schedule. However, if we are 
to develop novel chronotherapeutic approaches, then a 
deeper understanding of clock physiology (from cellular 
clock communication to mechanisms of molecular timing 
and organ-specific clock gene expression patterns) will be 
required. To this end, recent work by a number of groups 
has revealed a role for microRNAs in clock physiology. 
MicroRNAs are small (approximately 22 nucleotides), 
single-stranded, non-coding RNA species that act as 
potent gene silencers and are important to a diverse array 
of physiological and pathophysiological processes [10-13]. 
As we will discuss in detail below, microRNAs appear to 
play distinct roles in clock physiology, and dysregulation 
of microRNA expression can lead to marked alterations 
in circadian timing and output. Hence, microRNAs 
present novel therapeutic targets for disorders of the 
circadian clock. In this review, we will provide an over-
view of circadian biology, and highlight genome-scale 
and integrated approaches designed to reveal the role of 
microRNAs in clock physiology. Finally, we will provide 
some perspective on microRNAs as potential therapeutic 
targets for circadian disorders. By understanding the role 
of microRNAs in circadian biology on molecular, cellular 
and organ-systems levels, a cohesive and integrated 
approach to chronotherapeutics can be developed.

Abstract
The biochemical activity of a stunning diversity of 
cell types and organ systems is shaped by a 24-hour 
(circadian) clock. This rhythmic drive to a good deal 
of the transcriptome (up to 15% of all coding genes) 
imparts circadian modulation over a wide range 
of physiological and behavioral processes (from 
cell division to cognition). Further, dysregulation of 
the clock has been implicated in the pathogenesis 
of a large and diverse array of disorders, such as 
hypertension, cancer and depression. Indeed, the 
possibility of utilizing therapeutic approaches that 
target clock physiology (that is, chronotherapy) 
has gained broad interest. However, a deeper 
understanding of the underlying molecular 
mechanisms that modulate the clock, and give rise to 
organ-speci�c clock transcriptomes, will be required 
to fully realize the power of chronotherapies. Recently, 
microRNAs have emerged as signi�cant players in 
circadian clock timing, thus raising the possibility 
that clock-controlled microRNAs could contribute 
to disorders of the human circadian timing system. 
Here, we highlight recent work revealing a key role for 
microRNAs in clock physiology, and discuss potential 
approaches to unlocking their utility as e�ectors of 
circadian physiology and pathophysiology.
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Circadian timing
At a molecular level, the inherent 24-hour time-keeping 
capacity of the SCN stems from a well-characterized 
transcriptional/post-translation feedback loop (Figure 
1). Central to this molecular clock is the rhythmic 
expression of the period (per1 and per2) and 
cryptochrome (cry1 and cry2) families of genes. 
Circadian transcription of per and cry genes is mediated 
by an E-box-binding basic helix-loop-helix transcription 
factor consisting of CLOCK (or NPAS2) and BMAL1. 
The gene products of per and cry accumulate in the 
cytoplasm, dimerize, enter the nucleus, and repress 
transactivation of the CLOCK-BMAL1 complex [14,15].

If this negative feedback loop were the entire story, 
one would anticipate only a single robust round of per/
cry gene expression would occur, and then a steady, 
basal level of gene expression would persist. Rather, 
rhythmic relief of per/cry repression is achieved in part 
via pro gressive phosphorylation of PER by casein kinase 
1 delta and epsilon, which targets the proteins for poly-
ubiquity lation and degradation via the 26S proteosomal 
pathway [16,17].

Here, it should also be pointed out that this core 
molecular feedback loop is influenced by multiple clock-
influenced feedback regulators, including kinases such 
as protein kinase A and the extracellular signal-related 
kinase (ERK)/mitogen-activated protein kinase (MAPK) 
cascade. Likewise, oscillations in transcriptional path-
ways mediated by the nuclear hormone receptor Rev-
erb, the bZIP transcription factor E4BP4 [18] and the 
basic helix-loop-helix transcription factors Dec1 and 
Dec2 [19] modulate the amplitude and phasing of the 
clock and also serve as output pathways that impart 
circadian control over an array of biochemical and 
physiological processes [20,21].

Entrainment of the biological clock to external time 
cues appears to be mediated in part by rapid changes in 
the expression of per1 and per2. Along these lines, photic 
input drives a rapid increase in clock gene expression via 
an ERK/MAPK-cAMP response-element-binding protein 
(CREB) signaling cassette in the SCN [22] (Figure 1). 
Conversely, non-photic entrainment cues have been 
shown to trigger a rapid degradation of per1 and per2 
expression [23]. As state variables of the clock, changes in 
the expression of per1 and per2 would lead to resetting of 
the molecular oscillator, and in turn re-entrainment of 
the circadian rhythm.

A deeper understanding of the functional significance 
of the circadian timing process was realized through 
gene-array-based analysis, which showed that large and 
diverse functional classes of genes within the SCN are 
under the control of the core-clock timing processes 
[24,25]. Likewise, robust rhythmicity in the periphery has 
been demonstrated for tissues, including the liver and 

heart [26-28]. A truly remarkable finding was the organ-
specific nature of circadian gene expression profile. 
Hence, beyond the canonical core clock genes, only small 
subsets of genes have been found to oscillate in multiple 
organ systems; along these lines, Panda et al. [25] 
reported that 28 genes (out of approximately 650) were 
found to oscillate in both the SCN and the liver. These 
findings reveal that clock-controlled gene expression is 
tailored to match the physiological role of the tissue.

Circadian modulation of disease
The finding that circadian timing mechanisms are 
distributed through the body raises important questions 
about the relevance of the clock to human health and 
disease. Some of the most interesting work on this 
subject has utilized animal models to assess the physio-
logical effects that disruption of timing has on disease 
progression. Along these lines, work by Filipski et al. [29] 
showed that destruction of the SCN accelerated malig-
nant tumor growth by up to threefold. Likewise, experi-
mental models that lead to a marked disruption of clock 
synchrony, such as constant light, and repetitive shifting 
of the light-dark cycle, have been shown to accelerate 
tumor growth and, relatedly, increase mortality rates 
[30-32]. In a telling parallel to these studies, a number of 
epidemiological studies have found that shift workers are 
at an elevated risk for several types of cancer, including 
breast, colorectal and prostate cancer [33-35]. Given 
work showing that the circadian clock modulates hor-
mone output, immune cell function and cell division, the 
postulation that disruption of the circadian clock occurs 
as part of the disease progress may not be surprising. 
However, many of these studies have also hinted at the 
possibility that disruption of the clock may be a key factor 
in the initiation of a disease state. In this regard, work in 
mouse models in which components of the core clock 
timing process are disrupted via genetic-based approaches 
have been particularly enlightening. Along these lines, 
Clock mutant mice are obese and hyperphagic, exhibiting 
hyperleptinemia, hepatic steatosis hyperglycemia and 
hypoinsulinemia [36]. In an interest ing affirmation of the 
connection between the clock and metabolic disorders, 
SNP analysis of lean and obese humans has revealed an 
association between CLOCK polymorphisms and suscep-
tibility to obesity [37]. In addition, haplotype analysis has 
identified CLOCK gene variants that may be protective 
against the development of obesity or that contribute to 
the development of metabolic syndrome, type 2 diabetes 
and cardiovascular disease [38]. It also appears that key 
components of the molecular clock are affected by 
alterations in metabolic activity. Along these lines, mice 
maintained on a high-fat diet, thus leading to obesity and 
metabolic syndromes, exhibited a marked alteration in 
core Clock gene expression within the liver and kidneys 
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[39]. Hence, one could envision an intertwining of genetic 
and lifestyle factors that impact metabolic fitness via 
alterations in circadian clock function.

Disruption of clock timing has also been shown to 
contribute to an array of nervous system disorders. Along 
these lines, familial advanced sleep phase syndrome 
(FASPS) is an autosomal dominant disorder characterized 
by a 3- to 4-hour advance in sleep onset and awakening 
[40]. Hence, an individual with FASPS may fall asleep at 
7 pm rather than 11 pm, and with arousal at 3 am instead 
of 7 am. Linkage analysis revealed that FASPS was 
localized to a point mutation in the PER2 gene [41]. At a 
mechanistic level, this mutation is thought to eliminate a 
phosphorylation motif for casein kinase 1 epsilon, thus 
leading to excessive accumulations of PER2 and, in turn, 
an altered/advanced circadian cycle, initiating premature 
drive for sleep onset. Interestingly, dysregulation of the 
clock also appears to contribute to disturbances of the 
sleep-wake cycles in individuals with Alzheimer’s disease. 
These spontaneous night-time awakenings in patients 
with Alzheimer’s disease are one of the most challenging 
issues for caregivers [42]. Likewise, individuals suffering 
from Huntington’s disease exhibit clock-regulated dis rup-
tion of neuroendocrine output, and of the sleep-wake 
cycles [43-45]. These examples are a mere shortlist of the 
profound functional roles that the clock plays in organ-
ismal physiology. The role of the clock in such diverse 
processes as cell division and xenobiotic responses, and 
its roles in regulation of behavior, cognition, arousal and 
aging are reviewed elsewhere [46-48].

Molecular control through microRNA
To further our understanding of the molecular under-
pinnings of the circadian clock, researchers have begun 
to explore the potential role of the non-coding class of 
small RNA species known as microRNAs. MicroRNAs 
are potent negative regulators of mRNA translation and, 
as such, play a central role in sculpting gene expression 
patterns. MicroRNAs are principally coded within 
introns and exons of non-coding RNA (that is, intergenic 
microRNA), and from introns of protein encoding genes 
(that is, introgenic microRNA) [49,50]. MicroRNAs are 

Figure 1. Schematic overview of molecular circadian clock 
timing. (a) Suprachiasmatic nucleus (SCN; red circles) located 
within the ventral hypothalamus. The two nuclei serve as the master 
circadian clocks, orchestrating rhythmicity and phasing of ancillary 
clocks found in peripheral organ systems (c1) and throughout the 
brain (c2). Entrainment of the SCN clock to light is mediated by a 
direct projection from the retina. (b) The molecular clock feedback 
loop is centered on the rhythmic expression of the period (per1/2) 
and cryptochrome (cry1/2) gene families. PERIOD and CRY dimers 
translocate to the nucleus and negatively regulate their own 
production via suppression of CLOCK (CLK)- and BMAL1-mediated 
transcription. Casein kinase 1 (CK1)-mediated phosphorylation 
triggers degradation of PER proteins, thus relieving transcriptional 
repression and, in turn, allowing for robust 24-hour clock gene 
cycling. In addition to the core clock genes, a large fraction of 
the transcriptome is under the direct or indirect influence of the 
circadian clock. The clock-controlled transcriptome (CCT) within 
the SCN includes hormones, kinases, transcription factors and 

E-box

E-box

CRE per1/per2

cry1/cry2

CCT

BMAL1CLKCREB

BMAL1CLK

BMAL1CLK

SCN circadian
clock neuron 

Sympathetic and
humoral signals

Mature microRNA

Pri-microRNAs

Pre-microRNAs

Modulation of:
-Clock timing
-Clock entrainment
  -CCT expression
     profile

Hormonal signals
neurotransmitters

Light
Input

Retina

CK1

Clock-controlled transcriptome:
Hormones
Kinases
Transcription factors

microRNAs

SCN neuronal oscillators

SCN

(a)

(b)

Peripheral clocks

Rhythmic physiology Rhythmic behavior

CNS clocks

Cortex

Hippocampus

Striatum

Cerebellum

Kidney

Lung Heart

Liver
Circadian microRNA expression:

miR181d-clock
miR191-bmal1

miR192/194-period
miR122-clock controlled genes:
cholesterol and lipid metabolism

(c1) (c2)

Clock-influenced
Feedback regulators

Light-evoked
clock resetting ERK/

MAPK

E-box

microRNAs. Many of these gene products serve as phasing cues to 
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molecular clock. (c1) Clock-regulated microRNA expression in the 
liver: denotation of several rhythmically expressed microRNAs that 
are either predicted (that is, miR181d and miR191 [69]) or have 
been shown (that is, miR192/194 [71]) to target components of 
the core molecular clock. MiR122 has been shown to modulate 
clock-controlled gene expression involved in hepatic cholesterol 
and lipid metabolism [72,74]. In total, these data strongly indicate 
that microRNAs play a central role in sculpting the circadian gene 
expression profile and, in turn, regulate associated physiological and 
behavioral processes.
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frequently coded close to other microRNAs and trans-
cribed as long RNA that contains multiple microRNAs in 
a cluster (polycistronic microRNAs) [50,51]. The bio-
genesis of microRNAs occurs via a multistep process, 
which is described in detail elsewhere [52-54]. In short, 
microRNAs are transcribed by RNA polymerase II as 
long single-stranded RNA, forming stem-loop (hairpin) 
structures, referred to as primary microRNAs. Primary 
microRNAs are processed to precursor microRNAs (55 
to 70 nucleotides) by a protein complex of RNAase III 
enzyme Drosha and the double-stranded RNA-binding 
domain protein DGCR8/Pasha in the nucleus [55-57]. 
Precursor microRNAs are then exported to the cyto-
plasm where they are further processed to approximately 
22 bp microRNA/microRNA* double-stranded species 
by a protein complex of RNAase III enzyme, Dicer, and 
double-stranded RNA-binding domain proteins TRBP/
PACT/loquacious [58,59]. Finally, microRNAs are loaded 
into the RNA-induced silencing complex, through which 
the gene silencing function of microRNAs occurs via a 
reduction in mRNA translation efficiency or mRNA 
stability [60-62].

MicroRNA and clock timing
Rhythmic control of microRNA expression appears to be 
conserved from plants to mammals, and has significant 
consequences for circadian timing. Along these lines, 
genome-wide tiling arrays have been used to profile the 
transcriptome of Arabidopsis thaliana as a function of 
the circadian cycle. Beyond the observation that approxi-
mately 25% of the coding genes exhibited circadian 
rhythms of expression, several rhythmically regulated 
micro RNAs (that is, miR160B and miR167D) were identi-
fied [63]. This experiment was not designed to detect 
microRNA, and thus it is likely that the results under-
estimate the total number of oscillating microRNAs.

In addition to circadian control mechanisms, bio-
logically relevant time cues, such as the daily light cycle, 
also drive rhythmic microRNA expression. Along these 
lines, Arabidopsis miR167, miR168, miR171 and miR398 
have recently been shown to oscillate, with higher levels 
during the daytime than during the night [64] (Table 1). 
Interestingly, rhythmicity of these microRNAs was not 
governed by an internal circadian clock, suggesting 
photic control of some microRNAs. Within humans, it 
would not be surprising to observe a similar pattern of 
microRNA expression driven by the clock, exogenous 
time cues or both.

Circadian-regulated microRNA expression has also 
been described in Drosophila melanogaster. Array analy-
sis of wild-type flies revealed that miR263a and miR263b 
showed robust circadian oscillations, which were absent 
in clock mutant flies [65] (Table 1). In a later study, 
Kadener et al. [66] found that abrogation of microRNA 

biogenesis led to both a marked rise in circadian-
regulated gene expression and a disruption of circadian-
regulated behavioral rhythms, thus indicating a role for 
microRNA in clock timing. AGO1 pull-down assays 
revealed that gene products involved in clock timing 
were targeted for microRNA-mediated degradation [64], 
indicating that core clock molecular feedback is not only 
regulated at a transcriptional and post-translational level, 
but also through post-transcriptional/microRNA-medi-
ated control mechanisms.

In the mammalian SCN, microRNAs play a role in 
clock timing and entrainment. Cheng et al. [12] demon-
strated that both miR132 and miR219 show oscillatory 
expression in wild-type mice, but not in circadian mutant 
mice. Both microRNAs have CRE-enhancer sequences 
allowing for CREB-dependent regulation [67], but only 
miR132 was shown to be inducible by light [12]. Impor-
tantly, miR219 appears to be under direct control of the 
molecular clock via the binding of CLOCK and BMAL1 
to an E-box within its promoter region. In contrast, 
miR132 does not contain an E-box motif, and thus its 
rhythmicity is likely driven by an ancillary CREB-
actuated transcriptional oscillator [12]. In vivo antisense 
silencing studies demonstrated that miR219 shortens the 
circadian period and that miR132 negatively regulates 
light-dependent resetting of the clock [12]. Both miR132 
and miR219 affect per1 expression, and thus influence 
the core circadian transcriptional loop [12,68]. However, 
neither miR132 nor miR219 appears to directly target 
per1; thus, the precise mechanisms by which these 
microRNAs affect the clock are not known.

MicroRNA and peripheral circadian oscillators
In addition to rhythmic microRNA expression in the 
SCN clock, peripheral oscillators also exert circadian 
control over microRNA expression. A microarray-based 
study of mouse liver revealed that over 13% of the probed 
microRNAs (85 out of 640) exhibited circadian expres-
sion patterns [69]. Target prediction analysis indicated 
that a number of cycling microRNAs were capable of 
binding to components of the core clock timing process 
and, for a subset of these microRNAs, there was an 
inverse expression pattern with their predicted clock 
gene targets. For example, expression of miR181d and its 
putative target CLOCK, and miR191 and its putative 
target BMAL1, were inversely correlated [69]. Conversely, 
miR328 and miR383 were positively correlated with the 
expression of their corresponding targets, per1 and cry. 
This unexpected relationship may be the result of a 
phase-lag in downregulation, or it may represent an 
example of positive microRNA regulation that has been 
uncovered in recent years [70].

In another study, a forward genetic screen was used to 
identify the miR192/194 gene cluster as inhibitors of the 
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per (per1 to 3) gene family [71]. Significantly, the 
miR192/194 cluster is highly expressed in the liver and 
kidneys (two oscillating organs) [72] and overexpression 
studies found that miR192/194 shortens the length of the 
circadian rhythm via a decrease in per gene expression.

The expression of miR122, a known regulator of liver 
metabolism [73], is also subject to circadian control. 
Although the mature strand microRNA does not osci l-
late, both primary and precursor miR122 show robust 
daily changes in expression, suggesting that 
transcription is under circadian control [74]. 
Knockdown of miR122 revealed a marked alteration in 
the expression of clock-controlled genes, many of which 
are involved in chol esterol and lipid metabolism. In an 
additional study, Kojima et al. [75] found that the 
rhythmic expression of the mRNA deadenylase 
Nocturnin is modulated by miR122 in the liver, 
suggesting that miR122 is a key intermediate in 
circadian regulation of hepatic metabolic activity.

Intestine physiology is also governed by the circadian 
oscillator, which synchronizes enterocyte proliferation 
and, in turn, nutrient absorbance. Within this context, it 
is interesting that miR16, miR20a and miR141 all 
oscillate in the intestine, and that miR16 regulates the 
rate of proliferation in jejunal crypts by suppressing 
essential G1/S cell cycle regulators [76]. Hence, 
microRNA may serve as a link in the circadian control 
of intestinal physiology.

Finally, several microRNAs have been found to exhibit 
diurnal oscillations in the mouse retina, including miR96, 
miR124a, miR103, miR182, miR106b, miR422a and 
miR422b [77]. Of these, both miR96 and miR182 show 
potential targeting and downregulation of the clock-
regulated gene adenylyl cyclase 6. In a separate study, 
miR26a, which is regulated by both CLOCK and CREB, 
was found to drive circadian rhythms in the production 
of the L-type voltage-gated calcium channel α1C subunit 
in cone photoreceptors [78]. This observation is of func-
tional significance, given the central role that L-type 
calcium channels play in rhythmic melatonin synthesis 

and, in turn, circadian retinal physiology [79,80]. Finally, 
in humans, a polymorphism in pre-miR182 (which exhi-
bits diurnal rhythmicity in the retina [77]) is significantly 
associated with major depression [81]. Relative to wild-
type miR182, mutant miR182 was found to trigger a 
marked reduction in the expression of the circadian gene 
Clock. These data raise the possibility that mutant miR182 
contributes to circadian clock ailments associated with 
major depression [82].

Chronotherapeutic approaches and future outlook
The finding that microRNA affects key clock timing 
processes (that is, the core molecular oscillator, clock 
entrain ment and clock output) raises the prospect that 
chronotherapeutic approaches designed to affect micro-
RNA physiology might prove efficacious.

Along these lines, some of the most tractable ailments 
associated with clock physiology may result from a 
damped SCN oscillator, which is observed as part of the 
aging process [83-85]. Hence, approaches to increase the 
robustness of the clock timing process may offset frag men-
tation of the sleep-wake cycle, which is often ob served as a 
function of aging. This approach could also prove 
beneficial to individuals suffering from age-regulated 
neurodegenerative disorders, such as Alz heimer’s disease. 
Therapeutic approaches could take the form of microRNA 
antisense or ‘sponge’ constructs [86], designed to target 
particular microRNAs, and in turn limit their ability to 
suppress components of the core clock timing process, or 
clock output genes. Of note, in mouse models, microRNA 
knockdown using cholesterol-conjugated 2-O-methyl 
RNA antisense (that is, antago mirs [87]) has already been 
used to assess the functional roles of miR132 and miR219 
in SCN clock physiology [12]. Conversely, transgenic RNA 
interference-based approaches designed to harness the 
endogenous micro RNA processing machinery could be 
used to selectively uncouple an aberrant clock-timing gene 
or clock-output gene from a specific physiological process. 
This approach could prove particularly useful as part of a 
cancer treatment strategy.

Table 1. Light and clock-controlled microRNAs

Model Organ MicroRNAs Reference(s) 

Cell culture  miR328, miR383 [70]

Arabidopsis  miR160, miR167, miR168, miR171, miR398 [63,64]

Drosophila  miR263 [65]

Chicken Photoreceptors miR26a [78]

Rat Intestine miR16, miR20a, miR141 [76]

Mouse Liver miR122, miR181, miR191 [69,73-75]

 Retina miR96, miR103, miR106, miR124, miR182, miR422 [77]

 Suprachiasmatic nucleus miR219, miR132 [12]

Human  miR182 [81]
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Obviously, there are numerous challenges that will 
need to be addressed for these types of approaches to be 
implemented. For example, the inability of RNA con-
structs (for example, antagomirs and sponges) to cross 
the blood-brain barrier is a significant impediment to 
minimally invasive therapeutic strategies. Further, issues 
related to the timing of antisense administration and 
organ-specific therapeutic targeting will need to be 
addressed. At the least, the practical application of these 
methods will require a deeper understanding of micro-
RNA biology, the clock, and its role in the regulation of a 
myriad of gene networks that contribute to human 
physiology and pathology.
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