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Abstract

Background: Colorectal cancer (CRC) is a heterogeneous disease that, on the molecular level, can be characterized
by inherent genomic instabilities; chromosome instability and microsatellite instability. In the present study we
analyze genome-wide disruption of pre-mRNA splicing, and propose transcriptome instability as a characteristic
that is analogous to genomic instability on the transcriptome level.

Methods: Exon microarray profiles from two independent series including a total of 160 CRCs were investigated for their
relative amounts of exon usage differences. Each exon in each sample was assigned an alternative splicing score
calculated by the FIRMA algorithm. Amounts of deviating exon usage per sample were derived from exons with extreme
splicing scores.

Results: There was great heterogeneity within both series in terms of sample-wise amounts of deviating exon
usage. This was strongly associated with the expression levels of approximately half of 280 splicing factors (54%
and 48% of splicing factors were significantly correlated to deviating exon usage amounts in the two series).
Samples with high or low amounts of deviating exon usage, associated with overall transcriptome instability, were
almost completely separated into their respective groups by hierarchical clustering analysis of splicing factor
expression levels in both sample series. Samples showing a preferential tendency towards deviating exon skipping
or inclusion were associated with skewed transcriptome instability. There were significant associations between
transcriptome instability and reduced patient survival in both sample series. In the test series, patients with skewed
transcriptome instability showed the strongest prognostic association (P = 0.001), while a combination of the two
characteristics showed the strongest association with poor survival in the validation series (P = 0.03).

Conclusions: We have described transcriptome instability as a characteristic of CRC. This transcriptome instability
has associations with splicing factor expression levels and poor patient survival.

Background
Colorectal cancer (CRC) is a prevalent disease with a
world-wide incidence of more than one million new
cases each year, making it the third most commonly diag-
nosed cancer among men and women [1]. Colorectal

tumors are heterogeneous and evolve through multiple
pathways. Malignant transformation is dependent on the
accumulation of numerous genetic changes over years.
Such genetic instability provides a way of classifying
tumors into different molecular subtypes [2]. CRCs with
the microsatellite instability (MSI) phenotype have a
defective mismatch repair system, which results in a high
proportion of mutations in nucleotide repeats (microsa-
tellites) throughout the genome. Mismatch mutations of
microsatellites located in coding-regions may exert
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tumorigenic effects - for example, by inactivating tumor
suppressor genes [3,4]. Cancers with MSI generally have
few numeric changes or rearrangements at the chromo-
somal level. In contrast, CRCs with chromosomal
instability (CIN) exhibit frequent chromosomal rearran-
gements and aneuploidy [5]. MSI and CIN tumors repre-
sent two different types of virtually mutually exclusive
genetic instabilities, and also two separate mechanistic
mutational pathways for CRC development [2]. A third
subgroup, comprising both MSI and CIN tumors, is
denoted as having a CpG island methylator phenotype
(CIMP). Although these tumors often harbor BRAF
mutations, CIMP is considered an epigenetically rather
than genetically acting phenotype, and is characterized by
extensive DNA methylation at promoter regions and
associated gene silencing [6,7]. Despite the fact that the
above described refinements to CRC classification take
into account molecular characteristics, it is evident that
the total genetic definition of this heterogeneous disease
is yet to be described [6].
Tumor staging remains the most important factor for

determining the prognosis of CRC patients [8]. Colorectal
tumors are divided into four stages by the tumor-node-
metastasis (TNM) system, taking into account depth of
infiltration of the tumors, the extent of lymph node invol-
vement, and the presence of distant metastases [9]. During
the past few years, molecular markers with potential prog-
nostic value have been identified, several with relationships
to the genetic and epigenetic types of instabilities men-
tioned above [10]. However, no such markers are currently
recommended for clinical use, and the need for discovery
of novel biomarkers to aid the determination of prognosis
in CRC patients remains great.
Alternative pre-mRNA splicing is an important source

of functional diversity in the majority of mammalian genes
[11]. Nearly all multi-exon genes are expressed in multiple
isoforms [12]. Alternative splicing may occur as cassette
alternative exons, mutually exclusive exons, intron reten-
tions, or alternative 3’ or 5’ splice sites. Additionally, tran-
script variation may be caused by alternative promoter
usage, resulting in alternative first exons, or alternative
polyadenylation sites, presented as alternative terminal
exons [13]. Three consensus sequence elements are
required for splicing to occur, two at each border of the
intron, as well as the intronic branch site. Additionally,
splicing is regulated by other cis-acting elements (exonic
and intronic splicing silencers and enhancers) as well as
the numerous trans-acting factors constituting the splicing
machinery [14,15]. The integrity of this wide range of ele-
ments is crucial for splicing fidelity and the maintenance
of a stable and properly functioning transcriptome.
Aberrant splicing patterns have been associated with

cancer [16]. One example is the shift in expression
towards the anti-apoptotic isoform (BCL-XL) of the

apoptosis regulator BCL-X [17]. Cancer-specific tran-
script variation has also been found in CRC [18,19].
Recently, it has been shown that global splicing patterns
are likely to be distorted in several cancers [20], and
preferential utilization of alternative splice sites is found
to be a property of tumors [21,22]. Moreover, differen-
tial expression of splicing factors is reported in cancer
tissues compared to normal tissue [23]. For some can-
cers - for example, CRC - this is, for the most part, seen
as up-regulated expression [24]. Despite previous publi-
cations on general changes in expression levels of spli-
cing factors in cancer, it is yet to be determined what
implications this imposes on the cancer phenotype.
In this study, we describe the disruption of alternative

splicing as a global event in CRC tissue using exon
microarray analysis. We show a great extent of variation
in the amount of deviating exon usage among the sam-
ples. This transcriptome instability is found to be asso-
ciated with prognosis in CRC patients, and also has
clear associations with the expression levels of approxi-
mately half of all splicing factors.

Methods
Material
Two independent series comprising a total of 160 stage II
and III CRC tissue samples were included in this study.
The two series are referred to as test and validation series
(Table 1). The test series consisted of 83 stage II and III
CRC tissue samples collected from patients treated surgi-
cally for CRC in hospitals in the Oslo-region from 1987 to
1989. To ensure adequate group sizes for survival analyses,
the patients were selected to have a 10-year overall survi-
val of approximately 50%, as well as approximately equal
amounts of recurrences within the two stages. The MSI
status of the tumors had previously been determined [25].
The independent validation series of 77 stage II and III
CRC tissue samples were consecutively collected from
patients undergoing complete resection at Aker University
Hospital, Oslo, in the period 2005 to 2007. These patients
were subjected to the current treatment regime, with rou-
tine administration of postoperative chemotherapy in an
adjuvant setting when presenting with stage III tumors.
The patients received no radiation therapy prior to sur-
gery. MSI status of the tumors in the validation series was
determined in the same manner as for the test series.
Additionally, normal colonic mucosa taken from disease-
free areas distant to the primary tumors of each of 13
patients in the validation series was included in the analy-
sis (six and seven stage II and III tumors, respectively, and
six tumors with MSI). The research conformed to the Hel-
sinki Declaration and the research biobanks have been
registered according to national legislation (numbers 2781
and 236-2005-16141). The study (amendment number
2010/1805) is part of a project approved by the Regional
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Committee for Medical and Health Research Ethics (num-
bers 1.2005.1629 and S-09282c 2009/4958), which requires
that informed consent is obtained from patients being
enrolled to the study. RNA was extracted from the CRC
samples using the Qiagen AllPrep DNA/RNA Mini Kit
(Qiagen GmbH, Hilden, Germany), and the Ambion Ribo-
Pure™ kit (Life Technologies, Carlsbad, CA, USA) was
used for the normal colonic mucosa samples. Both proce-
dures were performed according to the manufacturers’
protocols.

Exon microarray analysis
RNA (1 μg) from each sample was individually ampli-
fied, reverse transcribed, fragmented, and labeled using
the Affymetrix GeneChip® Whole Transcript (WT)
Sense Target Labeling Assay [26]. Labeled sense strand
DNA was hybridized onto the Affymetrix GeneChip
Human Exon 1.0 ST Array for 16 to 18 hours [27]. Each
array contains 1.4 million probe sets, of which 289,961
target well annotated full-length human mRNAs (’core’
probe sets), and the remaining probe sets are derived
from annotations of lower confidence levels, as well as
computer predictions [28]. A probe set corresponds
approximately to one exon, and will be referred to as
such herein. The arrays were finally washed, stained and
scanned according to the manufacturer’s protocol.

Data analysis
Scanning of the microarrays and preprocessing of raw
image intensity data were controlled by the Affymetrix
GeneChip Command Console software (version 1.0). For
each microarray, the software generated cell intensity
(CEL) files storing probe-level intensity data calculated
from scanned image files containing pixel intensity values.
CEL data files were used as input for preprocessing and
alternative splicing detection with the Finding Isoforms
using Robust Multichip Analysis (FIRMA) method [29]

(Additional file 1). As part of the FIRMA method, the first
two preprocessing steps of the microarrays were per-
formed according to the robust multi-array average
(RMA) approach, involving background correction of per-
fect match probes and inter-chip quantile normalization
[30]. The summarization step estimating gene expression
levels was slightly modified from standard RMA, not tak-
ing into account the chip-exon effect, that is, ruling out
the relative change for the sample in a particular exon. For
this purpose, a custom made chip definition file containing
284,258 probe sets targeting exons belonging to the ‘core’
set of well annotated exons was downloaded from aroma.
affymetrix [31]. Applying this annotation file, the collective
set of exons made up 18,708 transcript clusters, or genes.
Alternative splicing scores, FIRMA scores, were calculated
for each individual exon in each individual sample to
represent a measure for whether differential exon usage
has occurred. These scores were calculated as exon-level
intensities deviating from the corresponding gene level,
assessed indirectly as the residual after fitting the gene-
level model to the actual data. Large residuals indicated
differential expression of the particular exon compared to
the corresponding gene level [29]. The FIRMA scores
were log-2 transformed. The microarray data can be
accessed from NCBI’s Gene Expression Omnibus (GEO)
with the accession number [GEO:GSE24551].
To provide a global estimate of the relative amount of

differential exon usage per sample, we counted the sam-
ple-wise numbers of probe set level FIRMA scores
belonging to the upper and lower 1st percentiles of all
FIRMA scores in the data sets.
For further statistical analyses, the software SPSS 15.0

(SPSS Inc., Chicago, IL, USA) was used. This includes t-
statistics, multinomial logistic regression, generation of
Kaplan-Meier plots, Cox regression analyses for calculation
of hazard ratios (HR) and corresponding 95% confidence
intervals (CI), Fisher’s exact test, and Mantel-Cox test for

Table 1 Clinicopathological and molecular characteristics of the two independent colorectal cancer study populations

Test series (n = 83) Validation series (n = 77)

Age at diagnosis (mean ± SD) 66.0 ± 11.7 72.7 ± 13.5

Sex (male; female) 40; 43 33; 44

Stage (II; III) 46; 37 44; 33

Location (right; left; rectum) 26; 25; 32 46; 20; 11

Mean follow-up, years (minimum; maximum) 6.7 (0.7; 10.0) 3.5 (0.2; 5.0)

Number of events (deaths from CRC) 41 10

MSI 13 24

sTINa 12 (15%) 24 (31%)

oTINb 14 (17%) 30 (39%)

Either sTIN, oTIN, or both 24 (29%) 43 (56%)

Both TIN phenotypes 2 (2%) 11 (14%)
asTIN, skewed transcriptome instability; preferential exon inclusion or skipping (difference in relative amounts of aberrant exon skipping and inclusion greater
than ± 0.7). boTIN, overall transcriptome instability; total relative amounts of aberrant splicing greater than ± 1.0. SD, standard deviation; TIN, transcriptome
instability.
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equality of survival distributions. P-values < 0.05 were con-
sidered significant. Hierarchical clustering analysis was
done using J-Express 2011 (MolMine AS, Bergen, Norway).

Splicing factors
A list of 280 human splicing factors (Table S1 in Addi-
tional file 2) was created by combining results from the
Gene Ontology project [32] and Swiss-Prot at the UniProt
Knowledgebase [33] in July 2009. Using the AmiGO web
application [34], the Gene Ontology database was searched
for the terms ‘nuclear mRNA splicing, via spliceosome’
(GO:0000398) and ‘spliceosomal complex’ (GO:0005681).
The ExPASy proteomics server [35] was used to search
Swiss-Prot for human proteins with the terms ‘splicing’
and ‘spliceosome’. Thirty-one additional genes were added
to the list based on their splicing-related descriptions, as
found using the GeneCards Human Gene Database [36].
Gene level expression data for these splicing factor genes
were independently obtained from the CEL files of the
CRC samples in the two series. The expression data were
summarized on background-corrected and quantile-nor-
malized data using the RMA algorithm implemented in
the Affymetrix Expression Console 1.1 software.
For comparison, 100 gene sets with 280 genes each

were created by random sampling using the R statistical
software (Additional file 1). Expression levels for these
genes were obtained from the test series of CRC samples,
in the same manner as for the splicing factor genes.

Results
Variation in the amounts of aberrant alternative exon
usage among colorectal cancer tissue samples
Exon microarray profiles from a test series of 83 CRC tis-
sue samples were investigated for global differences in
alternative exon usage. To indicate to what extent the
expression level of an exon deviated from the overall
expression level of the gene in which it is encoded, we cal-
culated an alternative splicing score based on the FIRMA
algorithm [29]. A total of 284,258 exons were scored in
each of the 83 CRC samples. The log-2 transformed scores
followed a normal distribution (Figure S1 in Additional file
2). Strong negative and positive scores are indications of,
respectively, alternative exon skipping (exclusion) and
inclusion that deviate from the general pattern among the
cancer samples. The lower and upper 1st percentiles
across all samples were -2.2 and 1.9, and these values were
used as thresholds for scoring deviating exon skipping and
inclusion. For each sample in the test series, a count was
made of the number of exons with values exceeding these
thresholds. The average combined number of deviating
exon skipping and inclusion per sample was 5,685 (range
1,666 to 13,638). The average amount of exon skipping
was 2,843 (range 974 to 7,171), the same as for exon inclu-
sion (range 668 to 7,437). In the following, we report the

sample-wise log-2 transformed amounts of deviating exon
usage relative to average values in the dataset. These
values are referred to as relative amounts of deviating skip-
ping, inclusion or exon usage, the latter representing the
combination of the two former, that is, the total sample-
wise amounts of differential exon usage (Figure 1).
We consider tumors with large amounts of deviating

exon usage as tumors with transcriptome instability
(TIN). Tumors showing preferential exon skipping or
inclusion - that is, having a skewed distribution in the
amounts of deviating skipping and inclusion events (dif-
ference in relative amounts of deviating skipping and
inclusion greater than ± 0.7; n = 12) - are considered to
have a skewed TIN (sTIN) subtype. Tumors where the
overall amounts of deviating exon usage differ from the
average (total relative amounts of deviating exon usage
greater than ± 1.0; n = 14) are considered to have an
overall TIN (oTIN) subtype. The patients showed no
significant associations between sTIN or oTIN and MSI
status, tumor stage, patient age and gender, or tumor
location (by multinomial logistic regression).
To investigate whether this large sample-to-sample varia-

tion in deviating exon usage amounts was cancer specific,
comparisons were made between 13 paired CRC and nor-
mal colonic mucosa samples from the validation series.
This comparison was conducted in a manner that explored
differential exon usage in each sample pair individually,
normalized against the background level of differential
exon usage occurring in normal colonic mucosa (Addi-
tional file 1). The total relative amounts of deviating exon
usage were significantly higher in the cancer samples com-
pared to their normal counterparts (P = 0.003 by paired
samples t-test; Figure S2A in Additional file 2). To ensure
that the scores given by the FIRMA algorithm truly are sen-
sitive to differential exon usage between CRC and normal
colonic mucosa, we investigated the alternative splicing
scores of splicing events that have previously been pre-
dicted and validated in exon microarray analyses [18,19].
Of 13 exons known to be alternatively spliced between
CRC and normal colonic mucosa (indicated with exon
array probe set IDs in Table S2 in Additional file 2), 11
showed a mean difference in alternative splicing scores
between the paired samples according to expectation (Fig-
ure S2B in Additional file 2). Moreover, across the 13 CRC
samples, 36% of the probe sets targeting these alternatively
spliced exons were assigned a score exceeding the upper or
lower 1st percentile thresholds, and have accordingly been
accounted for in the total relative amounts of deviating
exon usage in CRC compared to normal colonic mucosa.

Correlation between oTIN and expression levels of
splicing factors
Within the test series, the expression levels of 54% of
splicing factors (151 of 280) showed a significant
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correlation to the total relative amounts of deviating
exon usage (Pearson correlation, P < 0.05; Figure 2A).
To test whether this correlation is stronger than
expected by chance, 100 random sets of 280 genes were
constructed and analyzed for correlation to sample-wise
deviating exon usage amounts in the same manner

(Additional file 1). The amounts of significantly corre-
lated genes among these random gene sets were signifi-
cantly lower than for the splicing factor gene set (range
30 to 44%; P < 0.01; Figure 2B). Also, considering only
genes with significant correlation to deviating exon
usage amounts, the mean r among the splicing factor
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(exon skipping and inclusion, log-2 transformed)
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Figure 1 Distribution of relative amounts of deviating exon usage in the CRC test series. The axes represent the log-2 amounts of
deviating exon usage relative to the average amount per sample. (a) Sample-wise comparison of deviating exon skipping and inclusion events
for the 83 CRCs in the test series. (b) A combination of exon skipping and inclusion events constitutes the total relative amounts of deviating
exon usage. Blue bars mark samples with the overall transcriptome instability (oTIN) subtype. TIN, transcriptome instability.
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genes was -0.33. This was significantly stronger in the
direction of negative correlation compared to the ran-
dom gene sets (P < 0.0001 by independent samples t-
test for equality of means; Table S3 in Additional file 2).
Notably, the majority of significantly correlated splicing

factor genes (144 of 151) was negatively correlated to
the amounts of deviating exon usage, that is, 21 times
more than the amount of positively correlated splicing
factor genes. This ratio was significantly higher than the
corresponding ratios among the 100 individual random
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Figure 2 Correlation between the oTIN subtype and expression levels of splicing factors. (a) Pearson correlation coefficients (r) for the 151
splicing factors with expression levels significantly correlated to the total relative amounts of deviating exon usage (P < 0.05). Shown with grey
bars are significantly correlated genes representing the median from 100 randomly selected gene sets of equal size (n = 102). Plotted below is
the expression level versus deviating exon usage amounts per sample for the splicing factor gene with the strongest correlation (HNRNPUL1, r =
-0.63, both axes are median-centered and log-2 transformed). (b) The splicing factor gene set has more genes (n = 151) significantly correlated
to the total relative amounts of deviating exon usage than each of 100 random gene sets (range 84 to 124). (c) The splicing factor gene set has
more genes with significant negative correlation to deviating exon usage amounts, and fewer genes with significant positive correlation,
compared to 100 random gene sets.
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gene sets (range 2.1 to 7.8; P < 0.01; Figure 2C). To
further explore the significance of these strong correla-
tions, the corresponding correlations were calculated for
1,000 permutations of the amounts of deviating exon
usage across the samples (Additional file 1). The median
Pearson correlation coefficient for all splicing factor
genes (n = 280) in each permutation ranged from -0.17
to 0.18 (Figure S3A in Additional file 2), all weaker than
for the observed amounts of deviating exon usage (r =
-0.23, hence P < 0.001). Also, the increase in amounts of
negatively compared to positively correlated splicing fac-
tor genes was higher for the observed deviating exon
usage amounts than for 99% of the permutations (Figure
S3B in Additional file 2).
To investigate whether the expression levels of spli-

cing factors could separate CRC samples according to
the oTIN subtype, samples in the test series were hier-
archically clustered based on the expression levels of
the total set of 280 splicing factor genes (Euclidean dis-
tance metrics, complete linkage). Groups of samples
with high and low total relative amounts of deviating
exon usage were mainly separated into different clusters
(Figure 3A). Restricting the hierarchical clustering to
the oTIN samples resulted in an almost complete
separation into the two respective groups (Figure 3B).
This sample clustering was independent of tumor stage
and MSI status. Also, the cancers did not cluster based
on the sTIN subtype.

Associations between TIN and poor patient survival
Patients with sTIN tumors (Figure 4A) had significantly
reduced survival compared to the patients not character-
ized with preferential exon inclusion or exclusion. The
10-year disease-specific survival rates were 17 and 56%,
respectively (P = 0.001 by log rank test for equality of
survival distributions; Figure 4B; HR = 3.2; 95% CI, 1.5
to 6.5). Either variant of sTIN, preferential exon inclu-
sion or exclusion, was associated with poor patient sur-
vival (non-significant association for exon inclusion;
Table S4 in Additional file 2). Similar results were found
when applying different stratification thresholds for pre-
ferential exon inclusion and/or skipping (Table S4 in
Additional file 2). Also when analyzing for disease-free
survival, patients with sTIN cancers had a significantly
reduced survival rate (HR = 2.9; 95% CI, 1.4 to 6.0;
P = 0.002).
In a multivariate model including tumor stage, MSI

status, patient age and gender, as well as tumor location,
sTIN was the strongest independent prognostic predic-
tor (HR = 3.5; 95% CI, 1.5 to 8.3; P = 0.004). Among
the other variables, only tumor stage showed significant
associations with patient prognosis in this model.
Patients whose tumors were characterized by oTIN

had a slightly poorer survival rate than patients with
average amounts of deviating exon usage, although this
finding was not significant (Table S5A in Additional file
2). However, patients with either sTIN or oTIN cancers

(a)

(b)

Total relative amounts of 

deviating exon usage

Stage II CRC / MSS tumors / no sTIN / no oTIN

Stage III CRC / MSI tumors / sTIN / oTINSplicing

Stage

MSI-status

sTIN

oTIN -1 0 1

Splicing

Stage
MSI-status

sTIN

oTIN

Figure 3 Hierarchical clustering analyses of CRC test samples by expression levels of all splicing factors. (a) Unsupervised hierarchical
clustering analysis of all 83 CRC samples based on the expression levels of all 280 splicing factor genes separates the samples into clusters with
predominantly lower (blue boxes) and higher (red boxes) relative amounts of deviating exon usage than the average sample (black boxes),
according to the oTIN subtype. (b) Samples considered to have the oTIN subtype were almost completely separated into two groups with low
and high relative amounts of deviating exon usage after hierarchical clustering based on the expression levels of the total set of splicing factors.
Both clusters were created using Euclidean distance metrics and complete linkage. MSS, microsatellite stability.
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(n = 24) had significantly poorer survival than patients
with TIN-negative cancers (HR = 2.1; 95% CI 1.1 to 3.9;
P = 0.02). This difference was significant also in a multi-
variate model including tumor stage, MSI status, patient
age and gender, as well as tumor location (HR = 3.2;
95% CI, 1.5 to 6.7; P = 0.002). Two patients had tumors
with overlapping subtypes of TIN, that is, characterized
by both sTIN and oTIN. These patients died from meta-
static disease 0.8 and 4.3 years after surgical removal of
their primary tumor.

Validation of TIN in an independent series of stage II and
III colorectal cancers
Transcriptome instability was tested also in an indepen-
dent validation series of 77 stage II and III CRCs.
Applying the same thresholds for characterizing tumors
with TIN as in the test series, there were 30 samples in
the validation series with oTIN, and 24 samples with
sTIN (Additional file 2). Eleven of the samples had over-
lapping phenotypes, that is, assigned to both the sTIN
and oTIN subtype groups (Figure 5A).
As in the test series, there were no significant associa-

tions between either of the two TIN subtypes and MSI

status, tumor stage, patient age or gender, or tumor
location (by multinomial logistic regression).
Also in the validation series, there was a strong asso-

ciation between oTIN and expression levels of splicing
factors. Here, the sample-wise expression levels of 48%
of splicing factors (133 of 280) were significantly corre-
lated to the total relative amounts of deviating exon
usage (compared to 54% in the test sample series; Pear-
son correlation, P < 0.05; Figure S4A in Additional file
2). Furthermore, the significant shift towards stronger
negative correlation among splicing factor genes com-
pared to random gene sets was also indicated in the
validation series. In fact, 129 of 133 (97%) significantly
correlated splicing factor genes were negatively
correlated.
As in the test series, samples in the validation series

were separated according to the oTIN subtype by hier-
archical clustering analysis of expression levels of spli-
cing factor genes (Euclidean distance metrics, complete
linkage; Figure S4B in Additional file 2). Although the
amount of oTIN samples was higher than in the test
sample series (n = 30 compared to n = 14), the oTIN
samples were almost completely separated into the two

(a)

           skewed TIN (sTIN)

  No sTIN (no preferential exon inclusion or

  skipping, n = 71)

  sTIN (preferential exon inclusion or

  skipping, n = 12)

  Censored samples (n = 42)

Disease specific survival (test series, n = 83)
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Figure 4 Association between the sTIN subtype and patient survival in the CRC test series. (a) Differences between the amounts of deviating
exon inclusion and skipping per sample were used to identify patients with sTIN tumors (threshold at ± 0.7 on the log-ratio scale). (b) Disease-specific
survival among patients in the test series stratified by the sTIN subtype. In this analysis, deaths from CRC were considered events (n = 41). Patients who
survived throughout the 10 years of follow-up were censored (n = 42). Recurrences (n = 2 among patients who survived) were ignored.
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respective groups (Figure S4C in Additional file 2). Also
in the validation series, the clustering was independent
of tumor stage and MSI status.
The strong associations between TIN and disease-spe-

cific survival among the patients in the test series were
not as clearly indicated in the validation series (Table
S5B in Additional file 2). Notably, the mean follow-up

period of the patients was considerably shorter (3.5
years) than in the test series (6.7 years). However, using
the same stratification thresholds as in the test series,
patients whose tumors were characterized with both of
the TIN subtypes (n = 11) had a significantly poorer 5-
year survival rate (64%) than patients whose tumors
were characterized with neither or only one of the TIN

Disease specific survival (validation series, n = 77)

Survival (years)

P = 0.03

TIN:

       Neither or only one of the TIN subtypes

              (n = 66)

       Both sTIN and oTIN subtypes

              (n = 11)

       Censored samples (n = 67)

91 %

64 %

1 2 3 4 5

1.0

0.8

0.6

0.4

0.2

-2

-1

1

2

211-2-3-

Average amounts of deviating 

exon usage

skewed TIN (sTIN):

Preferential exon skipping or inclusion

Relative amounts of

deviating skipping

Relative amounts of 

deviating inclusion

overall TIN (oTIN):

High or low total amounts of deviating 

exon usage

Both sTIN and oTIN subtypes

(a)

(b)

Figure 5 Transcriptome instability in the colorectal cancer validation series. (a) Sample-wise comparison of deviating exon skipping and
inclusion events for the 77 CRCs in the validation series. (b) Patients in the validation series whose tumors where characterized with both sTIN
and oTIN had a significantly lower 5-year disease-specific survival rate than patients whose tumors were characterized with none or only one of
the two TIN subtypes. Deaths from CRC were considered events (n = 10). Censoring occurred at 5 years for survivors (n = 61), and at time of
incidence for causes of death other than CRC (n = 6). Recurrences among survivors (n = 9) were ignored.
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subtypes (n = 66, 91% survival rate, P = 0.03; Figure 5B;
HR = 3.7; 95% CI, 1.1 to 13.6). In a multivariate model
including tumor stage, MSI status, patient age and gen-
der, as well as tumor location, TIN was close to being
an independent predictor of poor prognosis (multivari-
ate HR = 3.1; 95% CI 0.9 to 11.2; P = 0.08).

Discussion
In this study we have described TIN, characterized by
deviating mRNA splice variant patterns, in CRC. Two
main subtypes of this characteristic are described, oTIN
and sTIN. The oTIN subtype was demonstrated through
great variation in the total amounts of deviating exon
usage among CRC tissue samples. This characteristic
was found to be associated with the expression levels of
approximately half of all splicing factors in two indepen-
dent sample series. The sTIN subtype separated the
samples by the preferred usage of alternative exon skip-
ping or inclusion. TIN was shown to be associated with
poor patient survival in two independent sample series,
although prognostic stratification was achieved by differ-
ent TIN subtypes in the two series. In the test series,
sTIN was shown to have the strongest prognostic value,
while a combination of the two subtypes was the most
strongly associated with poor patient survival in the vali-
dation series.
Genomic instability is an important classifier of colorec-

tal tumors because of its associations with certain risk fac-
tors and clinical features [6]. Such genomic instability
includes the virtually non-redundant differentiation
between CIN and MSI. More recently, a classifier of the
epigenetic state of the genome, CIMP, has also been intro-
duced as an important phenotype describing the molecular
nature of CRC [37,38]. In analogy to these molecular clas-
sifiers of the CRC genome, TIN is here proposed as a
potential classifier of the CRC transcriptome.
Transcriptome instability has potential clinical value.

From our analyses it is not evident which of the two TIN
subtypes is more closely related to patient survival, as the
results differed between the test and validation series. It
is not clear whether this may be due to the different clini-
copathological constitution of the two patient series.
Notably, the mean follow-up period of the patients was
considerably shorter in the validation series (3.5 years,
compared to 6.7 years in the test series). These patients
received adjuvant chemotherapy according to the current
standard, whereas patients in the historical test series
received no other treatment than surgery. The mean age
at diagnosis was also different between the two patient
series (66 versus 73 years). These factors may have con-
tributed to the observed different associations between
TIN and patient survival. Although we found no associa-
tions between MSI and TIN, the different amounts of
patients with MSI tumors in the two series (16% versus

31%) may also have influence in this regard. However,
both series showed significantly reduced survival for
patients stratified according to TIN, suggesting that high
amounts of inter-tumor deviations in exon usage patterns
may indeed be associated with poor patient survival. We
would welcome additional effort to verify the prognostic
value of this molecular characteristic.
The amounts of samples assigned to either or both of

the TIN subtypes varied between the two sample series.
In the test series, 29% (24 of 83) of the tumors were char-
acterized by TIN, compared to 56% in the validation ser-
ies (43 of 77). Although resulting in an increased amount
of TIN-positive samples, we chose to keep a fixed scoring
threshold for TIN to avoid introducing subjective bias
into the validation. Despite the different frequencies, the
reproducibility of the strong associations between oTIN
and expression levels of splicing factor genes provides
strong evidence for a biological explanation of the
observed variability in deviating exon usage amounts.
However, it is not certain to what extent this has influ-
enced the associations between TIN and patient survival
in the two series.
The amounts of deviating exon usage were significantly

higher in the cancer samples compared to paired normal
colonic mucosa. A possible bias may have been intro-
duced to these comparisons by the use of different RNA
extraction protocols for the two sample groups. However,
when analyzing known splicing events, 11 of 13 exons
were found to have a mean difference in alternative spli-
cing scores between the paired samples according to
expectation. Also, 36% of the probe sets across the 13
CRC samples included in this analysis of known splicing
events were designated as differentially spliced (exceeding
the upper and lower 1st percentiles of alternative splicing
scores). Accordingly, it seems evident that alternative
exon usage is indeed reflected in the analytical approach,
where individual exons in individual samples are scored
according to the likelihood of differential splicing. For
the majority of the known splicing events tested, the
recurrence rate in CRC tissue is uncertain, due to limited
sample numbers used for discovery [18]. The cancer-spe-
cific splicing event of SLC39A14, however, is reported to
have high cancer sensitivity [19]. In accordance with this,
exon 4A in this gene was designated as differentially
excluded in all CRC samples relative to normal mucosa
(<1st percentile of alternative splicing scores). In con-
trast, in the inter-tumor comparisons that are the main
focus here, the majority of the cancer samples showed no
signs of differential splicing for this exon, reflecting the
nature of the current study, investigating exon usage var-
iation among tumor samples and not between tumor and
normal samples. Since the amounts of aberrant splicing
were found to be higher in the cancer samples than their
normal counterparts, we find it likely that TIN is most
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relevant to studies of cancer tissues. It remains uncertain
whether this is specific for CRC or may be a common
characteristic for cancers in other tissues as well.
It is striking that the expression levels of the majority

of splicing factors negatively correlated to the numbers
of deviating exon usage. Irrespective of the role of the
splicing factor, whether it is predominantly a splicing
enhancer or silencer, and irrespective of the type of
exon usage event (exon skipping or inclusion), this was
true for more than 95% of the significantly correlated
splicing factor genes in two independent sample series.
In fact, the correlations among splicing factor genes
were significantly stronger in the direction of negative
correlation than among random gene sets of equal size.
This strong correlation is further supported by unsuper-
vised hierarchical clustering analyses, which were based
on the expression levels of the total set of splicing fac-
tors and separated the samples according to the oTIN
phenotype in both series. Therefore, the association
between low expression levels of splicing factors and
increased variability in exon usage seems to be indica-
tive of a critical role of splicing factor activity for the
maintenance of a stable transcriptome. This suggests a
biological rationale for the differences in exon usage
observed in this study.
Consistent with this great variation in exon usage

among CRC samples, other recent studies have also
shown that the extent of alternative splicing far exceeds
previous estimates. On average, individual multi-exon
genes are suggested to undergo at least seven alternative
splicing events across various human tissues and cell
lines [12,39]. This provides the possibility for tremen-
dous variation in transcriptome composition. Several
studies have reported genome-wide distortion of alterna-
tive splicing in cancer tissues [21,22]. It has also been
shown that alternative splicing in cancer exhibits both
tissue dependency and dependency upon the type of
splicing event considered [21]. Intron retention and cas-
sette alternative exons have been suggested to be more
prevalent in normal tissues, and alternative 3’ and 5’
splice sites to occur more often in cancers. Various spli-
cing events are also believed to occur at different levels
in different cancer types. This indicates a complex dis-
tortion of exon splicing in cancer. Due to the composi-
tion of the exon microarrays and the nature of the
splicing detection algorithm, the current study describes
primarily the alternative skipping and inclusion of indi-
vidual exons. In terms of splicing events, this essentially
represents intron retention and cassette alternative
exons. Patterns of mutual exclusion among exons are
not considered. Transcript variation not attributed to
alternative splicing, but rather to alternative promoter
usage or polyadenylation sites, is also represented in the

analysis, as all flanking exons are treated similarly to
exons contained internally within transcripts. A detailed
analysis of alternative usage of promoters and polyade-
nylation sites requires a detailed description of tran-
script structure and abundance, which is beyond the
scope of this study.
Although the approach taken here to analyze sample-

wise amounts of deviating exon usage was shown to cor-
rectly classify known splicing events, the main purpose of
the study was to describe splicing on a genome-wide
scale and does not allow for detailed analysis of indivi-
dual transcript structures and individual splicing events.
Furthermore, the current analyses did not intend to pro-
vide insights into the functional consequences of indivi-
dual splicing events, that is, whether the predicted
splicing events yield functionally different protein iso-
forms. There is increasing evidence that a great amount
of expressed transcripts result from splicing noise
[11,40,41]. This is true especially for the large number of
non-specific, non-conserved, and non-abundant tran-
scripts that are frequently subjected to degradation by
the regulatory mechanism nonsense-mediated decay [20].

Conclusions
This study provides evidence for a high degree of varia-
tion among CRC samples with regards to amounts of
differential exon usage. Based on this, we suggest TIN
as a characteristic of CRC, which can be further dis-
sected into the oTIN and sTIN subclasses. The oTIN
subtype, reflecting sample-wise total relative amounts of
deviating exon usage, is negatively correlated to the
expression level of the majority of splicing factor encod-
ing genes. Furthermore, analyses of corresponding clini-
cal data demonstrate that TIN is associated with poor
patient survival.

Additional material
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