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Abstract

High-throughput prioritization of cancer-causing mutations (drivers) is a key challenge of cancer genome projects,
due to the number of somatic variants detected in tumors. One important step in this task is to assess the
functional impact of tumor somatic mutations. A number of computational methods have been employed for that
purpose, although most were originally developed to distinguish disease-related nonsynonymous single nucleotide
variants (nsSNVs) from polymorphisms. Our new method, transformed Functional Impact score for Cancer
(transFIC), improves the assessment of the functional impact of tumor nsSNVs by taking into account the baseline
tolerance of genes to functional variants.

Background
With the advent of high-throughput sequencing, our abil-
ity to identify single nucleotide variants (SNVs) in the gen-
ome or exome of individuals has far exceeded our capacity
to experimentally validate their impact on disease pheno-
types. Therefore, computational methods that predict the
impact of non-synonymous SNVs (nsSNVs) on protein
function have become very important and of wide interest.
Bioinformatics methods have been developed and tested
over the past decade that distinguish disease-related
nsSNVs from neutral polymorphisms [1-11]. A different,
although related, problem is assessing the relevance of
nonsynonymous somatic variants in cancer emergence. In
principle, functional somatic mutations can only be causa-
tive of cancer if they affect cancer driver genes, which
upon mutation confer a distinct selective advantage or a
newly acquired capability to the cell [12,13].
The need for computational methods to predict the

functional impact of cancer-causing somatic variants con-
trasts with the low number of methods that have been

designed or tested specifically for this purpose [4,14]. One
likely explanation is the absence of curated sets of true dri-
ver and passenger cancer mutations. Many recently pub-
lished cancer resequencing projects use methods like SIFT
[15,16], and PolyPhen2 (PPH2) [17-19] to predict the
functional impact of cancer somatic mutations, although
these methods were not developed or tested for this pur-
pose and the quality of their performance in this context
is not clear.
Existing methods provide a predictive functional impact

score (FIS) for each mutation [3]. The FIS calculated for
nsSNVs relies mainly on the conservation of single resi-
dues across multiple sequence alignments. In other words,
these methods employ evolutionary information to assess
the likely impact of an amino acid change on the structure
or function of the altered protein. Nevertheless, the ulti-
mate effect of this amino acid change on the functioning
of a cell depends on other factors as well, such as the par-
ticular role played by the altered protein in the cellular
machinery. The criticality of that role will determine the
protein’s tolerance to amino acid changes. Our view is
that a score purporting to assess the likelihood of indivi-
dual mutations to provide a somatic cell with an acquired
advantage - and possibly give origin to a tumoral clone -
must take this feature into consideration.
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The present study has two interrelated goals: first, to
determine the tolerance of different proteins to functional
variants, and second, using this information to develop a
method that improves the capacity of existing bioinfor-
matics tools to assess the likelihood that a specific somatic
mutation is a cancer driver. We have called it transFIC
(transformed Functional Impact Scores in Cancer) and we
distribute it as a PERL script that users can download for
local use. We also provide a web server [20] that can be
queried using an internet browser or programmatically to
obtain the transFIC of somatic cancer nsSNVs.

Materials and methods
Obtaining and processing nsSNVs from 1000 Genomes
We downloaded all SNVs (approximately 30 million)
detected by the 1000 Genomes Project [21] within the
genomic sequences of 1,197 individuals (May 2011
release). We then used the Ensembl Variant Effect Predic-
tor [22,23] (VEP v.62) to detect nsSNVs and to retrieve
their SIFT [1,24] and PPH2 [2] FISs. We retrieved the cor-
responding MutationAssessor (MA) FISs through the MA
webAPI service (release 1.0) [3]. At the end of this process
we obtained 168,803 distinct SNVs, of which 155,453 were
successfully scored by at least one method and 110,397
were scored by all three methods.

Computing the FIS distribution of groups of functionally
related genes
We obtained Gene Ontology Biological Process (GOBP)
and Molecular Function (GOMF) categories [25], canoni-
cal pathways (CP) [26] and Pfam domain (Dom) [27]
annotations for all protein-coding genes included in
Ensembl v.62 from the Ensembl Biomart service [28],
MsigDB (a database that maintains several collections of
gene signatures) [26] and the Pfam database (which
included the information on domain borders) [27].
Finally, we grouped together the nsSNVs that occur in
the genes assigned to each category of these four annota-
tion systems. (The distribution of FISs of the nsSNVs in
different functional categories are shown as candlesticks
in Figure 1 and Additional files 1 to 3.)
We then built one FIS distribution for each human pro-

tein-coding gene following this simple pipeline (see the
section ‘Using baseline tolerance to functional variants to
transform original scores’ in the Results and discussion for
an example).
Step 1
We obtained all the functional terms assigned to the gene
under analysis by each of the four functional annotation
systems. If an annotation system contained no annotation
for a particular gene, the pipeline was stopped at this
stage and the mean and standard deviation of FISs of the
germline nsSNVs tolerated by the gene were taken from

the values corresponding to the distribution of the entire
dataset of nsSNVs.
Step 2
From the list retrieved for the gene of interest in step 1, we
culled the SNVs that occur in genes annotated to the most
specific functional term (that is, the term containing the
fewest genes).
Step 3
If we culled fewer than 20 SNVs, step 2 was repeated
including the SNVs occurring in the genes annotated to
the second functional term in ascending order of gene
content, then SNVs of genes in the third category with
the fewest genes, reiterating the process until at least 20
nsSNVs scored by the three methods were pooled. The
aim was to obtain for each gene a pool of nsSNVs large
enough to compute the FIS distribution, but as small as
possible to permit a better grasp of the gene’s baseline
tolerance of mutations related to its specific function.
Step 4
The SIFT and PPH2 FISs underwent a logit transforma-
tion to approximate them to a normal distribution.
Step 5
The mean and standard deviation of the FISs provided by
each method were calculated within the pooled set.
This process yielded four output files, each containing

the mean and standard deviation of the three FIS distribu-
tions (one for each method) assigned to each human
protein-coding gene that completed this pipeline. These
values can be easily used to transform the scores of
somatic mutations as described in the equation in the
Results and discussion section. The PERL script simply
reads the SIFT, PPH2 and MA FISs that assess the func-
tional impact of the somatic mutation under analysis,
searches the distributions that have been assigned to the
gene where that somatic mutation occurs and automati-
cally transforms the original FIS.

Assembling proxy datasets to test the performance of
transFIC
From version 57b of the Catalog of Somatic Mutations in
Cancer (COSMIC), we downloaded all somatic nSNVs.
We then counted the number of samples containing each
mutation. We obtained SIFT and PPH2 FISs from the
Ensembl VEP v.62 and MA FISs by querying the MA
webAPI, as described above.
We assembled the whole genome (WG) dataset by

downloading the coordinates of somatic mutations from
the International Cancer Genome Consortium (ICGC)
Data Coordination Center [29] or from the data provided
with the software implementing the MEMo algorithm
[30] (Table 1) of 12 cancer exome (or selected genes)
sequencing projects. (The MEMo algorithm is designed
to find highly interconnected mutually exclusive cancer
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driver genes.) Mutations in hg18 coordinates were trans-
formed to hg19 using the Liftover program obtained
from the UCSC genome browser [31]. The SIFT, PPH2
and MA FISs were then obtained as described above.
We obtained a list of driver cancer genes from the Can-

cer Gene Census (CGC) [13]. Somatic mutations from
COSMIC and from the WG dataset that appeared in any
of the genes in the CGC constituted the positive subsets of
two proxy datasets. The negative subsets were composed
of COSMIC or WG somatic mutations occurring in other
genes and are not recurrent in the corresponding dataset
(Table 2).
In summary, recurrent COSMIC or WG mutations,

manually curated driver mutations within COSMIC or

mutations within COSMIC or WG occurring in CGC
genes formed the positive subsets of the nine proxy data-
sets employed (Table 2), whereas the negative subsets
were formed by non-recurrent COSMIC or WG muta-
tions, COSMIC mutations outside the manually curated
drivers list, non-recurrent COSMIC or WG mutations in
non-CGC genes, or known polymorphisms.
Finally, we downloaded and ran the CHASM program

[5,14,32]. Following the recommendation by the develo-
pers in their wiki pages, we used the ovarian classifier to
classify mutations within these two datasets. Next we
computed the transFIC (GOMF) of CHASM using the
procedure described above. To evaluate the performance
of the original and transFIC score we used WG2+/1 and
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Figure 1 The distribution of MutationAssessor functional impact scores of nonsynonymous single nucleotide variants differs
significantly in proteins belonging to different functional groups. (a) Candlestick representation of the distributions of MutationAssessor
(MA) scores of germline single nucleotide variants (SNVs) in genes in all Gene Ontology Molecular Function (GOMF) categories, ordered from
higher to lower mean. (b,c) Thirty least-tolerant and 30 most-tolerant GOMF groups of nsSNVs ordered by their mean MA scores. Groups in the
lower end of the tolerance scale (less tolerant) correspond to essential GOMF categories, involved in signal transduction, transcription, and
translation. On the other hand, the most tolerant molecular functions correspond mainly to metabolic-related activities.
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Table 1 Number of somatic mutations contributed by 12 cancer genome-sequencing projects to conform some of the
proxy datasets

Tumor datasets Samples
analyzed

Genes with non-synonymous
mutations

Non-synonymous
mutations

Center Source

breast(JHU) 39 483 649 Johns Hopkins University ICGC
DCC

breast(WTSI) 100 3644 5,189 Sanger Center (ICGC) ICGC
DCC

ovary(TCGA) 316 7082 12,819 TCGA MEMo

CLL(MICINN) 109 944 1,160 MICINN (ICGC) ICGC
DCC

colorectal(JHU) 34 415 600 Johns Hopkins University ICGC
DCC

pediatricbrain
(DKFZ)

109 604 730 DKFZ (ICGC) ICGC
DCC

glioblastoma
(TCGA)

139 400 740 TCGA MEMo

glioblastoma
(JHU)

77 1,269 1,536 Johns Hopkins University ICGC
DCC

lung(TSP) 153 320 755 Washington University School of
Medicine

ICGC
DCC

pancreatic(JHU) 112 737 962 Johns Hopkins University ICGC
DCC

pancreatic(OICR) 34 1,361 1,792 OICR (ICGC) ICGC
DCC

pancreatic
(QCMG)

67 847 1,033 QCMG (ICGC) ICGC
DCC

Only mutations successfully scored by at least one method were included. Original sources: breast(JHU) [40,41], breast(WTSI) [42], ovary(The Cancer Gene Atlas)
[43], CLL(MICINN) [44,45], colorectal(JHU) [40,46], pediatricbrain(DKFZ) [47,48], glioblastoma(TCGA) [49], glioblastoma(JHU) [50], lung(TSP) [51], pancreatic(JHU)
[52];, pancreatic(OICR) and pancreatic(QCMG) are unpublished lists of mutations downloaded through the ICGC data coordination centre [29]. DKFZ, German
Cancer Res Center; ICGC, Data Coordination Center [29]; MEMo, datasets of mutations packed with the software implementing the MEMo algorithm [30]; MICINN,
Spanish Ministry of Science and Innovation; OICR, Ontario Institute for Cancer Research; QCMG, Queensland Centre for Medical Genomics.

Table 2 Composition of the datasets used as proxies to compare the performance of transformed and original scores
at assessing the functional impact of cancer somatic mutations

Name Source Positives Negatives N
positives

N
negatives

COSMIC2+/1 COSMIC Mutations that appear in 2 or more samples Mutations that appear in 1 sample 4,012 39,854

COSMIC5+/1 COSMIC Mutations that appear in 5 or more samples Mutations that appear in 1 sample 1,480 39,854

COSMIC2
+/Pol

COSMIC/
HumVar [2]

Mutations that appear in 2 or more samples Known polymorphisms 4,012 8,257

COSMIC5
+/Pol

COSMIC/
HumVar

Mutations that appear in 5 or more samples Known polymorphisms 1,480 8,257

COSMICD/O COSMIC COSMIC mutations included in the manually
curated list of drivers used to train CHASM [5]

COSMIC mutations without the positive
subset

2,185 41,681

COSMICD/Pol COSMIC/
HumVar

Mutations included in the manually curated
list of drivers used to train CHASM

Known polymorphisms 2,185 8,257

COSMICCGC/
nonCGC

COSMIC COSMIC mutations in genes included in the
Cancer Gene Census [13]

Non-recurrent COSMIC mutations in genes
not included in the Cancer Gene Census

4,685 35,907

WG2+/1 Pooled cancer
somatic
mutations

Mutations that appear in 2 or more samples Mutations that appear in 1 sample 1,031 26,025

WGCGC/
nonCGC

Pooled cancer
somatic
mutations

Mutations in genes included in the Cancer
Gene Census [13]

Non-recurrent mutations in genes not
included in the Cancer Gene Census

1,412 24,837

HumVar is a dataset of disease-related SNVs and neutral polymorphisms [2]. WG (whole genome) is a dataset of somatic mutations pooled from different tumor
exome-sequencing projects (Table 1).
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WGCGC/nonCGC datasets, and a modification of them
in which we removed the mutations that appear within
the training set of CHASM (WG2+/1* and WGCGC/
nonCGC*). Manually curated driver mutations used
to train CHASM were identified within COSMIC to
serve as the positive subset in two of the proxy datasets
(COSMICD/O and COSMICD/Pol).

Results and discussion
Hypothesis
We hypothesized that we could use the pool of nsSNVs
that occur naturally in human populations to assess gene
tolerance to perturbing nsSNVs. Since in principle all
nsSNVs that interfere with the natural development of a
human organism or with its ability to produce offspring
have been eliminated from this pool by negative selection,
the range of nsSNVs that remain in a gene would reflect
the ‘baseline tolerance’ of the cell or organism to perturba-
tions to the function of that gene. We propose that this
baseline tolerance can complement the evaluation of viola-
tions of evolutionary constraints imposed on individual
amino acid residues by protein structure and function.
Therefore, we propose to use it as a means to transform
the FISs of nsSNVs provided by bioinformatics tools.
One way to visualize the score transformation that we

propose is that mutations with the same FIS should affect
the cell differently if they occur in genes encoding essential
proteins rather than in genes with numerous backup and
redundancy mechanisms - for instance, those with a
higher degree of paralogy. Our assumption is that genes
within the former class will mainly possess germline SNVs
with relatively low FISs, while those within the latter will
accumulate more functional SNVs. To accomplish this
transformation we devised two interrelated objectives:
first, to measure whether this baseline tolerance to
nsSNVs actually differs for distinct genes, and second, to
evaluate whether a differential baseline tolerance to SNVs
could be used to improve the scoring of functional somatic
mutations in cancer. To carry out the study, we selected
the nsSNV FISs provided by SIFT [1,24], PPH2 [2] and
MA [3] because they can be readily obtained for high-
throughput analysis of large datasets of mutations, a criti-
cal feature for somatic mutation analysis in the context of
cancer genome resequencing projects.
Although cancer-related genes are better conserved than

average human genes [33,34], which has aided in the dis-
covery of new cancer genes [35], to our best knowledge
this is the first attempt to evaluate whether baseline toler-
ance to germline SNVs can improve the FIS of somatic
mutations.

Detecting differences in baseline tolerance across genes
To detect differences in baseline tolerance across genes,
we first needed a pool of nsSNVs that occur naturally

across human populations. We decided to use the catalog
of SNVs detected by the 1000 Genomes Project [21]
because of its unbiased nature. However, the number of
nsSNVs deposited in this catalog does not allow compu-
tation of each individual gene’s baseline tolerance,
because the catalog still lacks the necessary coverage.
Therefore, we clustered the genes according to functional
criteria (as described in Materials and methods) and then
computed the baseline tolerance of these groups of func-
tionally related genes. This approach must be seen only
as an imperfect effort to compensate for the low resolu-
tion of our current catalogs of SNVs, which prevents
gene-by-gene calculation of baseline tolerance to SNVs.
Nevertheless, as the genomes of more individuals are
sequenced and the catalog of human germline nsSNVs
progresses toward completion, eventually this assessment
will become possible.
The four systems of functional annotation we used to

partition the dataset of SNVs and form these pools of
functionally related genes were (as introduced in Materials
and methods) the GOBP and GOMF categories, the CP
annotations and Doms. Let us illustrate this process with
the GOMF terms represented in Figure 1. Each of these
terms contains a group of functionally related human
protein-coding genes. The nsSNVs that occur in these
genes are pooled together to build the distribution of the
three FIS values (one for each bioinformatics tool assayed)
in each category. Then, the distribution of, for instance,
MA scores for the nsSNVs that occur in the genes of each
GOMF group may be represented as a candlestick
centered at the mean of the distribution, and whose whis-
kers extend outward in proportion to the standard error
of the mean of the distribution. If the groups are ordered
in ascension by their MA score means, we obtain the plot
shown in Figure 1a. The group located at the extreme left
of the graph (interleukin-3 receptor) possesses nsSNVs
with lower MA scores, on average, than its counterpart at
the extreme right of the graph (immunoglobulin receptor).
Genes in GOMF groups at the extreme left of Figure 1a
have lower tolerance to perturbing nsSNVs (they have, on
average, lower mean MA scores) than those at the extreme
right, which tend to bear more deleterious nsSNVs.
We have observed that this same segregation between

genes with low baseline tolerance and genes with high
baseline tolerance holds if the genes and the nsSNVs
they bear are grouped following other functional classifi-
cation systems (Additional files 1 to 3). For example,
canonical pathways (Additional file 1) that group genes
related to biological processes such as cell cycle, central
signal transduction pathways, or DNA damage repair are
located at the lower end of the MA score spectrum,
which means that only germline SNVs with relatively low
functional impact are tolerated in these genes. On the
other hand, most metabolic pathways appear to tolerate
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germline SNVs with higher functional impact, as they are
primarily located at the upper end of the MA score spec-
trum. This finding may be related with the fact that
many known inherited metabolic disorders are known to
be recessive [36] (see below).
The distributions of MA scores of nsSNVs across all

GOBP and Dom groups, which follow this same general
structure, are presented in Additional files 2 and 3. A
comparison of the MA baseline tolerance of genes - the
mean MA score of SNVs - assigned according to the
GOBP and the GOMF pooling (Additional file 4) shows
some weak correlation between the two. Even weaker cor-
relations are observed when the other classification
schemes are compared to the baseline tolerance according
to GOBP. These differences in baseline tolerance measure-
ments are probably the reason why dissimilar classification
schemes perform differently when separating the proxy
datasets (see below).
In an effort to understand the reasons for these observed

differences in baseline tolerance between diverse groups of
genes and especially whether they could be the product of
artifacts in the data, we analyzed their correlation with
several variables. We found that differences in baseline tol-
erance between groups of proteins cannot be explained by
differences in the height of multiple sequence alignments
used to produce the MA scores. Baseline tolerance also
does not correlate with nsSNVs or allelic frequency. How-
ever, genes in the least tolerant groups are significantly
more conserved, on average, than genes of the most toler-
ant groups. This is in agreement with our hypothesis that
genes with low baseline tolerance are more critical to the
cell - and therefore tend to evolve at a slower rate - than
those exhibiting high baseline tolerance to nsSNVs. On
the other hand, we found that dominant disease genes are
significantly overrepresented among least tolerant genes
and recessive disease genes are overrepresented among
the most tolerant genes. In addition, known cancer genes
are overrepresented in the least tolerant groups with
respect to most tolerant groups. However, tumor suppres-
sor genes and oncogenes are not significantly enriched for
amongst lowly tolerant or highly tolerant GOMF groups
(Additional file 5).

Using baseline tolerance to functional variants to
transform original scores
We wanted to transform the FISs of SNVs provided by
SIFT, PPH2 and MA by taking into account these differ-
ences in tolerance to functional mutations in the germline.
We are using the generic term ‘functional impact score’ -
originally employed by the MA team [3] - to refer to the
scores provided by these various methods. The rationale
behind the transformation is that if two mutations with
the same FIS affect genes with different germline tolerance
to functional SNVs, the impact of the mutation on the

least tolerant gene is expected to be greater than its impact
on the most tolerant one. If GOMF results are taken as
reference (Figure 1), a mutation on a gene with one of the
functions shown in Figure 1b is expected to have a higher
impact than another mutation affecting a protein with a
function shown in Figure 1c.
As explained above, another way to present this trans-

formation is to think of it as adjusting the FIS of the
mutation to compensate for the importance of the gene
to cell operation. Genes with essential cellular functions
would appear on the lower end of the functional impact
score scale, while genes whose malfunction can be com-
pensated for by diverse mechanisms or does not lead to
very deleterious phenotypes are located at the upper end
of the FIS scale.
Figure 2 presents the flowchart used to transform the

original FIS. Let us illustrate this process with one specific
PIK3CA mutation detected in breast invasive carcinoma
by the The Cancer Gene Atlas. This particular mutation
involves the change of the glutamic acid residue at posi-
tion 545 of the protein to an alanine residue. The MA FIS
for this mutation is 1.775, which makes it a low impact
mutation.
First, we compute the functional impact for all germline

SNVs detected in the human population (1000 Genomes
Project) using SIFT, PPH2 and MA (Figure 2a). Next,
a measure of baseline tolerance to germline SNVs is com-
puted for each protein-coding gene. We do this by pooling
all genes with GOMF terms shared by the gene in ques-
tion and computing the means and standard deviations of
the FISs of the nsSNVs that affect them (as detailed in
Materials and methods; Figure 2b). In this example,
PIK3CA belongs to nine GOMF terms of increasing hier-
archy from ‘phosphatidylinositol-4,5-bisphosphate
3-kinase activity’, which contains only five scored nsSNVs,
to ‘protein binding’, with more than 9,500 scored nsSNVs.
Pooling the scored nsSNVs of the three most specific
GOMF terms (phosphatidylinositol-4,5-bisphosphate
3-kinase activity, 1-phosphatidylinositol-3-kinase activity,
inositol or phosphatidylinositol kinase activity) satisfies the
condition of using at least 20 nsSNVs to compute the
baseline tolerance of a gene. In the case of PIK3CA, group-
ing these nsSNVs yields mean and standard deviation MA
FISs of 0.853 and 0.327, respectively. (An analogous algo-
rithm is applied to compute the baseline tolerance of
genes in accordance to the three other classification
systems.)
Finally, the original FIS of a cancer somatic SNV is

transformed according to the baseline tolerance of the
gene that harbors it, as illustrated by the following equa-
tion (Figure 2c):

transfic =
os− dm
dstd
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Figure 2 Outline of the method to transform the scores. (a) Functional impact scores (FISs) of all germline single nucleotide variants (SNVs)
from the 1000 Genomes Project are computed. (b) SNVs are partitioned into subsets according to the category of the genes that harbor them
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where transfic represents the transformed FIS, os the
original score, and dm and dstd are the mean and the
standard deviation of the distribution of FISs of nsSNVs
computed as explained above. In our illustrative example,
this implies that the E545A mutation in PIK3CA will see
its MA FIS score of 1.775 converted to a transFIC MA of
2.82, which being above 2 will be labeled by the transFIC
webserver as a highly affecting mutation (see below). In
the spirit of our interpretation of the transFIC presented
in the Hypothesis section, we may propose that, in this
case, the transFIC compensates for the effect of a rela-
tively mild mutation - one that occurs at a site of the
gene does not possess strong evolutionary constraints.
The resulting transFIC would thus more accurately pre-
sent the impact of this relatively mild malfunction of a
key signaling protein - whose essentiality is reflected in
its low baseline tolerance - on cell operation.

Comparing transformed FISs to original FISs
To compare the capability of the transformed FIS to that
of the original FIS to identify mutations involved in cancer,
we needed a set of somatic mutations involved in cancer
development (positive set) and a set of passenger somatic
variants (negative set); however, no gold-standard dataset
exists. Previously used datasets are based on the recur-
rence of mutations found in the COSMIC database [3,37]
or manually curated sets of cancer driver mutations [5,14].
However, each of these datasets has its own biases; in par-
ticular, they are enriched for mutations in well-known
genes that have been widely studied in cancer. Instead of
employing only one data source, we decided to use several
proxy datasets with nsSNVs gathered from different
sources, under the assumption that each will have its own
biases and errors.
We devised these proxy datasets so that the positive sub-

set of mutations is enriched in likely driver mutations -
either because they have been manually curated from
previous reports, because they occur in known cancer
genes, or because they appear recurrently in the dataset -
and is complemented by a negative subset of mutations
enriched in passenger mutations. Known driver mutations
are the result of years of cancer genetic and genomics
research and are, in most cases, experimentally verified [5].
Mutations that occur in cancer genes have an increased
likelihood of being drivers because they are prone to affect
likely driver genes. On the other hand, mutations that
recur in several different tumors also have an increased
likelihood of being drivers, because their increased fre-
quency makes it more likely that they have been positively
selected and less likely to have appeared by chance in
tumors. As stated above, both recurrent cancer mutations
and mutations in cancer genes have been employed else-
where as datasets enriched in driver mutations.

Some of these proxy datasets are derived from COSMIC
version 57b [35], while others come from a pool of
nonsynonymous somatic mutations detected by 12
whole-exome (or comprehensive specific gene) tumor
sequencing projects framed within the ICGC [38] and
The Cancer Gene Atlas. The number of nonsynon-
ymous somatic mutations obtained from each cancer
genome re-sequencing project included in the pool
dataset are detailed in Table 1. The composition of all
the proxy datasets is listed in Table 2 and their assembly
is described in detail in the Materials and methods sec-
tion. The negative subset in some datasets is composed
of known polymorphisms [2]. Furthermore, we provide
the subsets of mutations that compose these nine proxy
datasets in the help section of the transFIC web page
[20], because we consider they could be useful for other
researchers interested in developing methods to identify
cancer driver variants. (The names of the subsets
respect the nomenclature from Table 2.)
By using several datasets derived from different sources

we can assess if the transFIC works systematically better
than the original FIS. In other words, we assume that
each dataset has an unknown percentage of misclassified
mutations. For this reason, instead of focusing on the net
performance of each method in a particular dataset we
look for the systematic improvement of the transformed
FIS.
We computed the transformed FIS of all somatic muta-

tions in the nine proxy datasets. To assess the perfor-
mance of each FIS (or transformed FIS) in identifying
likely functional somatic mutations, we computed the
Matthews correlation coefficient (MCC) and overall
accuracy (ACC) yielded by the classification of positive
and negative cases in each proxy dataset. We did this cal-
culation for cutoff values covering the full range of FIS
(or transformed FIS) and retained the highest MCC
achieved and the ACC corresponding to the same cutoff
value. The MCC and ACC were computed using:

MCC =
tp× tn− fp× fn√(

tp + fp
) (
tp + fn

) (
tn + fp

) (
tn + fn

)

and

ACC =
tp + tn

tp + fp + fn + tn

where tp, tn, fp and fn are the number of true positive,
true negative, false positive and false negative cases
detected by the FIS (or transformed FIS) in question.
Because all datasets are relatively biased towards an excess
of negative cases, the MCC is a better estimator of perfor-
mance than accuracy [6].
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We found that the transformed FIS outperforms the ori-
ginal FIS on all nine proxy validation sets. In the case of
MA, this is true for transformed FISs computed from the
GOMF partition for all proxy datasets tested (Figure 3;
Additional file 6), while the gain is more modest or non-
existent when other partitions are used. In the case of
PPH2 and SIFT the transformed FISs systematically out-
perform their original counterparts in all partitions and all
proxy datasets tested, with up to 12-fold improvement in
some cases.
Since PPH2 was trained using HumVar polymorph-

isms, we did an additional validation of this method
using polymorphisms not present in the HumVar dataset
(Additional file 6). The MCC of the original score of
PPH2 diminished in these datasets but interestingly
transFIC score performed comparably.
It is important to note that the transformation of the FIS

affects the SNVs in all proxy datasets equally, depending

solely on the functional annotation of the gene where the
SNV is located. In other words, a somatic mutation (from
COSMIC, for instance) and a common polymorphism
(from HumVar) will see their FISs diminished in exactly
the same quantity if they occur in genes within the same
functional category. The resulting transFIC computed for
the polymorphism in this hypothetical example will be
probably lower than the transFIC of the cancer mutation,
but only because the original FIS of the polymorphism
was closer to the baseline tolerance of its gene.
Next we decided to test the transFIC approach with

CHASM [5,14,32], a method trained to distinguish
manually curated driver mutations from randomly gener-
ated mutations. Thus, in this case, the distribution of
CHASM scores across GOMF groups computed from
1000 Genomes Project nsSNVs reflects the tolerance of
different functional groups of genes to driver-like muta-
tions in the human population. We used WG2+/1 and

WGCGC/nonCGC*

WG2+/WG1*

Mutations in CGC genes versus non-recurrent mutations in nonCGC genes in
whole genome/exome projects. *Excluding mutations used to train CHASM

Recurrent mutations versus non-recurrent mutations in Whole-genome/exome
projects. *Excluding mutations used to train CHASM

WGCGC/nonCGC

WG2+/WG1

CosmicD/Pol

CosmicD/O

CosmicCGC/nonCGC

Cosmic5+/Pol

Cosmic2+/Pol

Cosmic5+/1

Cosmic2+/1

Mutations in CGC genes versus non-recurrent
mutations in nonCGC genes in whole genome/
exome projects

Recurrent mutations versus non-recurrent
mutations in Whole-genome/exome projects

Manually curated driver mutations in Cosmic
versus polymorphisms

Manually curated driver mutations in Cosmic
versus rest of mutations in Cosmic

Mutations in CGC genes versus non-recurrent
mutations in nonCGC genes in Cosmic

Recurrent (in more than 5 samples) versus
polymorphisms

Recurrent mutations in Cosmic versus
polymorphisms

Recurrent (in more than 5 samples) versus non-
recurrent mutations in Cosmic

Recurrent versus non-recurrent mutations in
Cosmic

MCCMCCMCC

PolyPhen-2 MutationAssessor SIFT Proxy Datasets

Original Score

TransFIC Score

CHASM

MCC

Proxy Datasets

A

B

Figure 3 Transformed Functional Impact for Cancer (transFIC) systematically outperforms original scores in the task of differentiating
cancer driver mutations from neutral variants. (a) Performance of GOMF transFIC is compared to the three original functional impact scores
(FISs) classifying the nine proxy datasets, using as cutoff the value of FIS (or transFIC) that maximizes the Mathews correlation coefficient (MCC)
in each case. (b) Performance of GOMF transFIC is compared to the original score of CHASM (q-value cutoff <0.05) in two proxy datasets after
removal of mutations within the training set of CHASM.
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WGCGC/nonCGC datasets to test CHASM and the trans-
FIC of CHASM. Note that since CHASM was trained with
manually curated driver mutations from COSMIC we
could not use COSMIC datasets to assess CHASM; more-
over, the datasets used were modified to eliminate the
mutations that appear within the training set of CHASM.
The result of this assessment shows that the transFIC of
CHASM outperforms significantly the original score in the
two datasets tested (Figure 3b; Additional file 7). Thus, the
transFIC approach is also useful to transform scores that
prioritize driver-like nsSNVs.
One final remark that must be made about the transFIC

approach is that it is not in principle specific to cancer
somatic mutations. Although our basic interest, as stated
in the Hypothesis section was to improve the FIS provided
by known tools that rank cancer mutations according to
their likelihood of being drivers, in principle the basic rea-
soning on baseline tolerance may be applied also to dis-
ease mutations as well. This is why we tested the
performance of the transformed FIS of SIFT, PPH2 and
MA on the classification of HumVar, a dataset of disease-
related/neutral nsSNVs [2]. We found no improvement
whatsoever with respect to their original counterparts
(Additional file 8). To understand the reason for this
result, we checked the distribution of disease-related genes
(those annotated in OMIM [39]) across the GOMF groups
ordered by baseline tolerance, as in Figure 1. We found
that unlike cancer genes (discussed above), disease-related
genes are more or less evenly distributed across all cate-
gories with different baseline tolerance. As a result, the
original scores provided by the tools for SNVs within
these genes are transformed in either direction, with no
clear resulting trend. (In the case of cancer genes, the
scores of their SNVs generally tend to become amplified
upon transformation, because they usually appear in lowly
tolerant classes.) Nevertheless, we also observed that
groups with low tolerance tend to be enriched in domi-
nant disease genes, while the opposite occurs with reces-
sive disease genes. Therefore, we hypothesize that, upon
transformation, the FISs of nsSNVs in dominant disease
genes increase, but those in recessive disease genes
decrease, making them similar to neutral variants.

Implementation of the method
The approach we have described to transform well-
established FIS calculations to take into account the dif-
ferences in baseline tolerance to nsSNVs between protein
families can be easily implemented. It is important to
highlight that although we have used SIFT, PPH2, MA
and CHASM to present and test our approach, in princi-
ple this transformation can be applied to any other FIS.
The best overall performance in the classification of the

nine proxy datasets was achieved by the transformed FIS

based on the GOMF. Therefore, we decided to follow that
classification system for implementation of our transFIC,
as well as for the web server.
Note that the inferior limit of 20 SNVs to compute the

baseline tolerance (described in the ‘Detecting differences
in baseline tolerance across genes’ section) applies not to
a single gene but rather to the SNVs pooled from genes
within the same functional group(s). With this limit, we
were able to successfully transform the FISs of nsSNVs in
15,651 genes using the GOBP classification scheme,
17,229 genes using GOMF, 11,642 using Doms and 6,830
using CPs. For nsSNVs in the remaining genes - which
are either not classified within a given system, or do not
belong to groups that account for at least 20 SNVs - we
compute a transFIC using the mean and standard devia-
tion of all the SNVs in the 1000 Genomes Project.

Interpretation of transFIC scores
To facilitate the interpretation of transFIC SIFT, PPH2
and MA results, we have devised three categories (low,
medium and high impact) into which somatic mutations
can be classified based on their transformed FIS. For each
transFIC, complementary cumulative distributions of
non-recurrent, recurrent and highly recurrent COSMIC
mutations were taken into account in defining the cate-
gories, an idea that we adapted from the MA tool [3].
The boundaries of these categories were defined as

follows: low impact upper boundary (SIFT -1, PPH2 -1,
MA -1), drawn at the transFIC score above which lays
approximately 95% of the distribution of highly recurrent
COSMIC mutations (in other words, this category contains
at most approximately 5% of highly recurrent COSMIC
mutations); high impact lower boundary (SIFT 2, PPH2
1.5, MA 2), a transFIC cutoff establishing a category with
at most approximately 25% of the distribution of nonrecur-
rent COSMIC mutations; and medium impact, the remain-
ing mutations with transFIC scores between these two
limits. The concept of this categorization, as well as the
categories themselves for the three transFIC presented
here, are illustrated in Figure 4a-c. The specificity and
sensitivity attained by the transFIC of the three tools at
separating highly recurrent from non-recurrent COSMIC
mutations and recurrent from non-recurrent COSMIC
mutations at each of these cutoffs are presented in
Additional file 9.
The results shown in Figure 4 (as well as those in

Figure 3) reveal that the MA transFIC exhibits the best
performance amongst the three transformed scores in
the transFIC website to distinguish between highly
recurrent and non-recurrent COSMIC mutations.
Nevertheless, we believe that it is important for the
researcher to appraise the three transFIC scores of their
mutations to make an informed decision regarding the
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likely functional impact of their somatic mutations.
Also, it is important to bear in mind that the researcher
may replicate the approach described in this paper to
transform any other score of functional impact of SNVs
to produce their own transFIC.

Conclusions
We observed large differences in the FIS distribution of
nsSNVs from different protein groups, which indicates
that genes with distinct functions possess a different
baseline tolerance to deleterious mutations. We exploited
these differences of baseline tolerance to transform
the FISs of cancer somatic mutations provided by three
well-known bioinformatics tools. The transformed FIS sys-
tematically outperforms the original FIS on nine proxy vali-
dation sets, each composed of a positive set of mutations
enriched in driver nsSNVs and a negative set of mutations
enriched in passenger nsSNVs (or polymorphisms).
Therefore, we recommend the use of a transformed FIS

to assess the functional impact of cancer mutations. We
have implemented the method to compute the trans-
formed FIS of these three tools, which we call transFIC
(transformed Functional Impact Scores in Cancer). We
distribute it as a PERL script that users can download
and use locally. We have also set up a web server that
can be queried to obtain the transFIC of somatic cancer
nsSNVs.

Additional material

Additional file 1: A graph depicting the distribution of FIS of
nsSNVS in groups of genes that belong to different canonical
pathways. The graph is analogous to Figure 1.

Additional file 2: A graph depicting the distribution of FISs of
nsSNVs in groups of genes that belong to different GOBPs. The
graph is analogous to Figure 1.

Additional file 3: A graph depicting the distribution of FISs of
nsSNVs in groups of genes with different Pfam domains. The graph
is analogous to Figure 1.

Additional file 4: Comparison of the mean MA score assigned to
each gene with the approach explained in the main paper using
the GOBP and the GOMF classifications.

Additional file 5: A table with the results of comparing the
prevalence of cancer genes versus non-cancer genes (and tumor
suppresor genes versus oncogenes) amongst those that belong to
the 100 with lowest baseline tolerance and the 100 with the
highest baseline tolerance in the GOMF category.

Additional file 6: Tables and figures showing the Matthew’s
correlation coefficients and overall accuracy of transformed FISs on
the nine proxy datasets. This is the same data presented in Figure 3. It
also contains discussion on observations comparing SIFT, PPH2 and MA
improvements with transFIC in different datasets.

Additional file 7: A table and figure showing the performance of
the four methods used (SIFT, PPH2, MA and CHASM) and its
transFIC scores (GOMF) in the classification of two proxy datasets
and a modified version of them excluding mutations used to train
CHASM.

Additional file 8: A table showing the Matthew’s correlation
coefficients and overall accuracy of transformed FISs on a dataset
of disease-related nsSNVs and polymorphisms.

Additional file 9: Two tables showing the values of sensitivity and
specificity attained by the transFIC of the three methods when
separating highly recurrent from non-recurrent COSMIC mutations
and recurrent from non-recurrent COSMIC mutations.
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ACC: accuracy; CGC: Cancer Gene Census; COSMIC: Catalog of Somatic
Mutations in Cancer; CP: MSigDB canonical pathway; Dom: Pfam Domain;
FIS: functional impact score; GOBP: Gene Ontology Biological Process; GOMF:
Gene Ontology Molecular Function; ICGC: International Cancer Genome
Consortium; MA: MutationAssessor; MCC: Matthew’s correlation coefficient;
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