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Abstract

High-throughput DNA sequencing is revolutionizing the
study of cancer and enabling the measurement of the
somatic mutations that drive cancer development.
However, the resulting sequencing datasets are large and
complex, obscuring the clinically important mutations in a
background of errors, noise, and random mutations. Here,
we review computational approaches to identify somatic
mutations in cancer genome sequences and to
distinguish the driver mutations that are responsible for
cancer from random, passenger mutations. First, we
describe approaches to detect somatic mutations from
high-throughput DNA sequencing data, particularly for
tumor samples that comprise heterogeneous populations
of cells. Next, we review computational approaches that
aim to predict driver mutations according to their
frequency of occurrence in a cohort of samples, or
according to their predicted functional impact on protein
sequence or structure. Finally, we review techniques to
identify recurrent combinations of somatic mutations,
including approaches that examine mutations in known
pathways or protein-interaction networks, as well as de
novo approaches that identify combinations of mutations
according to statistical patterns of mutual exclusivity. These
techniques, coupled with advances in high-throughput
DNA sequencing, are enabling precision medicine
approaches to the diagnosis and treatment of cancer.
and treatment [5-15]. These advances hold promise for
Challenges of cancer genome sequencing and analysis
Cancer is driven largely by somatic mutations that accu-
mulate in the genome over an individual’s lifetime, with
additional contributions from epigenetic and transcrip-
tomic alterations. These somatic mutations range in
scale from single-nucleotide variants (SNVs), insertions
and deletions of a few to a few dozen nucleotides
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(indels), larger copy-number aberrations (CNAs) and
large-genome rearrangements, also called structural vari-
ants (SVs). These genomic alterations have been studied
for decades using low-throughput approaches such as
targeted gene sequencing or cytogenetic techniques,
which have led to the identification of a number of
highly recurrent somatic mutations [1,2]. Importantly, a
subset of these mutations have been successfully tar-
geted therapeutically; for example, imatinib has been
used to target cells expressing the BCR-ABL fusion gene
in chronic myeloid leukemia [3], and gefitinib has been
used to inhibit the epidermal growth factor receptor in
lung cancer [4]. Unfortunately, highly recurrent muta-
tions with a corresponding drug treatment are unknown
for most cancer types, in part due to our lack of compre-
hensive knowledge of somatic mutations present in dif-
ferent patients from a variety of cancer types.
In the past few years, high-throughput DNA sequen-

cing has revolutionized the identification of somatic mu-
tations in cancer genomes. Whole-genome sequencing
reveals somatic mutations of all types, whereas whole-
exome sequencing identifies coding mutations at a lower
cost, but does not allow the analysis of non-coding re-
gions or the detection of SVs. When applied to many
samples of the same cancer type, these technologies enable
the identification of novel recurrent somatic mutations, a
subset of which present new targets for cancer diagnostics

precision medicine, or precision oncology, where a cancer
treatment could be tailored to a patient’s mutational pro-
file [16]. Fulfilling this promise of precision oncology will
require researchers to overcome several challenges in the
analysis and interpretation of sequencing data.
In this review, we focus on three key challenges in

cancer genome sequencing. First is the issue of identify-
ing somatic mutations from the short sequence reads
generated by high-throughput technologies, particularly
in the presence of intra-tumor heterogeneity. Second is
the problem of distinguishing the relatively small
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number of driver mutations that are responsible for
the development and progression of cancer from the
large number of passenger mutations that are irrelevant
for the cancer phenotype. Third is the challenge of
determining the biological pathways and processes that are
altered by somatic mutation. We survey recent computa-
tional approaches that address each of these challenges.
The rapid advances in high-throughput DNA sequen-

cing technologies and their application to cancer genome
sequencing has led to a proliferation of approaches to
analyze the resulting data. Moreover, there are multi-
ple signals in sequencing data that can be used to
address the challenges listed above, and different compu-
tational methods use different combinations of these sig-
nals. This rapid pace of progress, the diversity of strategies
and the lack, for the most part, of rigorous comparisons
among different methods explain why a standard pipeline
for the analysis of high-throughput cancer genome se-
quencing data has yet to emerge. Hence, we are able to in-
clude only a fraction of possible approaches. Moreover, we
restrict attention to methods for DNA sequencing data
and do not discuss the analysis of other high-throughput
sequencing data, such as RNA sequencing data, that also
provide key components for precision medicine [17].

Detection of somatic mutations
Many of the recent advances in our understanding of driver
mutations have been the result of the increasing availability
and affordability of DNA-sequencing technologies produced
by companies such as Illumina, Ion Torrent, 454, Pa-
cific Biosciences, and others. Such technologies enabled
the sequencing of the first cancer genome [18] and the
subsequent sequencing of thousands of additional can-
cer genomes, particularly through collaborative pro-
jects such as The Cancer Genome Atlas (TCGA) and
the International Cancer Genome Consortium (ICGC).
Some of these projects employ whole-genome sequen-
cing, whereas others use exome sequencing, a targeted
approach that sequences only the coding regions of the
genome, enabling deeper coverage sequencing of genes
but at the expense of ignoring non-coding regions. At
the moment, the dominant approach is to perform
whole-exome sequencing using one of several target-
enrichment protocols followed by Illumina sequencing.
However, the cost-benefit analysis of different tech-
nologies and approaches is continually changing, and
we refer the reader to recent surveys for additional in-
formation [17,19,20].
The advances in DNA sequencing technologies have

been dramatic, but these technologies still face some sig-
nificant limitations in measuring genomes. In particular,
all of the technologies that sequence human genomes at
reasonable cost produce millions to billions of short se-
quences, or reads, of approximately 50–150 bp in length.
To detect somatic mutations in cancer genomes, these
reads are aligned to the human reference genome and
differences between the reference genome and the can-
cer genome are identified (Figure 1a). A matched normal
sample from the same individual is typically analyzed
simultaneously to distinguish somatic from germline
mutations. The process of detecting somatic mutations
from aligned reads is not straightforward. Numerous er-
rors and artifacts are introduced during both the se-
quencing and the alignment processes including: optical
PCR duplicates, GC-bias, strand bias (where reads indi-
cating a possible mutation only align to one strand of
DNA) and alignment artifacts resulting from low com-
plexity or repetitive regions in the genome. These lead
to somatic mutation predictions containing both incor-
rect variants (false positives) and missing variants (false
negatives) [21].
While standard pre-processing handles some sources of

error (such as the removal of PCR duplicates), most
methods for somatic mutation detection address only a
subset of the possible sources of error. For instance, the
methods MuTect [22] and Strelka [23] for predicting SNVs
both employ stringent filtering after initial SNV detection
to remove false positives resulting from strand bias or from
poor mapping resulting from repetitive sequence in the ref-
erence genome. Such filtering may, however, result in high
false negatives. On the other hand, the VarScan 2 method
[24] does not specifically address either of these issues, but
still outperforms the previously mentioned methods on
some datasets [25]. These differences demonstrate that the
performance of methods can vary by dataset, and suggest
that running multiple methods is advisable at present.
Table 1 lists a number of publicly available algorithms for
the detection of somatic SNVs, CNAs, and SVs from DNA-
sequencing data. New methods and further refinements of
existing methods for somatic mutation detection continue
to be developed.

Intra-tumor heterogeneity
One particular challenge in identifying and characteriz-
ing somatic mutations in tumors is the fact that most
tumor samples are a heterogeneous collection of cells,
containing both normal cells and different populations
of cancerous cells [26]. The clonal theory of cancer [27]
posits that all cancerous cells in a tumor descended from
a single cell in which the first driver mutation occurred,
and that subsequent clonal expansions and selective
sweeps lead to a tumor with a dominant (majority)
population of cancerous cells containing early driver
events. Most cancer-genome sequencing studies gener-
ate data from a bulk tumor sample that contains both
normal cells and one or more subpopulations of tumor
cells. This intra-tumor heterogeneity complicates the
identification of all types of somatic mutations and
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Figure 1 Somatic mutation detection in tumor samples. DNA-sequence reads from a tumor sample are aligned to a reference genome
(shown in gray). Single-nucleotide differences between reads and the reference genome indicate germline single-nucleotide variants (SNVs; green
circles), somatic SNVs (red circles), or sequencing errors (black diamonds). (a) In a pure tumor sample, a location containing mismatches or single
nucleotide substitutions in approximately half of the reads covering the location indicates a heterozygous germline SNV or a heterozygous somatic
SNV - assuming that there is no copy number aberration at the locus. Algorithms for detecting SNVs distinguish true SNVs from sequencing errors by
requiring multiple reads with the same single-letter substitution to be aligned at the position (gray boxes). (b) As tumor purity decreases, the fraction
of reads containing somatic mutations decreases: cancerous and normal cells, and the reads originating from each, are shown in blue and orange,
respectively. The number of reads reporting a somatic mutation decreases with tumor purity, diminishing the signal to distinguish true somatic
mutations from sequencing errors. In this example, only one heterozygous somatic SNV and one hetererozygous germline SNV are detected
(gray boxes) as the mutation in the middle set of aligned reads is not distinguishable from sequencing errors.
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specialized methods [28-31] have been developed to
quantify the extent of heterogeneity in a sample. The
simplest form of intra-tumor heterogeneity is admixture
by normal cells. The tumor purity of a sample is defined
as the fraction of cells in the sample that are cancerous.
A read from a tumor sample represents a sequence in
the cell, or subpopulation of cells, from which the read
was derived. Thus, lower tumor purity results in a reduc-
tion in the number of sequence reads derived from the
cancerous cells, and thus a reduction in the signal that
can be used to detect somatic mutations (Figure 1b).
Tumor purity is an important parameter in the detection

of somatic mutations. To obtain reasonable sensitivity and
specificity, methods to predict somatic aberrations must
utilize, either implicitly or explicitly, an estimate of
tumor purity. The VarScan 2 program [24] for calling
somatic SNVs and indels allows a user to provide an
estimate of tumor purity in order to calibrate the ex-
pected number of reads containing a somatic mutation
at a single locus. Conversely, methods such as MuTect
[22] and Strelka [23] explicitly model tumor and nor-
mal allele frequencies using observed data to calibrate
sensitivity. As a result, MuTect and Strelka may pro-
vide improved sensitivity for detecting mutations that
occur in lower frequencies, especially when tumor pur-
ity is unknown a priori. The performance of these and
other somatic mutation-calling algorithms depends on
accurate estimates of tumor purity.
Standard methods for estimating tumor purity involve

visual inspection by a pathologist or automated analysis



Table 1 Methods for detecting somatic mutations

Objective Data Method Description

Somatic mutation
detection

SNV MuTect [22] Designed to detect low-frequency mutations in both whole-genome and exome data.

Strelka [23] Can be applied to both whole-genome and whole-exome data. Uses stringent post-call
filtration.

VarScan 2 [24] Demonstrates high sensitivity for detecting SNVs in relatively pure tumor samples from
both whole-genome and exome data.

JointSNVMix [128] A probabilistic model that describes the observed allelic counts in both tumor and
normal samples.

CNA
or SV

BIC-Seq [129] Detects CNAs from whole-genome data.

APOLLOH [130] Predicts loss of heterozygosity regions from whole-genome sequencing data.

CoNIFER [131] Detects CNAs from exome data.

BreakDancer [132] Cluster paired-end alignments to detect SVs. One version to detect large aberrations and
another to detect smaller indels.

VariationHunter-CommonLaw
[133], HYDRA [70]

Cluster paired-reads, including reads with multiple possible alignments. Support simul-
taneous analysis of multiple samples.

GASV/GASVPro [134,135],
PeSV-Fisher [136]

Combine paired-read and read-depth analysis to detect SVs.

Meerkat [130] Combines paired-end split-read and multiple alignment information to detect structural
aberrations.

Delly [137], Break-Pointer [138] Combines paired-end and split-read signals to detect structural aberrations.

Tumor purity
estimation

SNV ABSOLUTE [28] Originally designed for SNP array data, but may be adapted for whole-genome sequen-
cing data. Handles subclonal populations as outliers.

ASCAT [29] Designed for SNP array data, but may be adapted for whole-genome sequencing data.
Only considers a single tumor population.

CNA THetA [30] Able to consider multiple subclonal tumor populations, but only if they differ by large
CNAs. Designed for whole-genome sequencing data.

SomatiCA [31] Only uses aberrations that are identified as clonal to estimate tumor purity.

CNA, copy number aberration; SNV, single-nucleotide variant; SV, structural variant.
A representative list of software available for the detection of somatic mutations from high-throughput sequencing data of cancer genomes. Some methods
detect more than one type of mutation but are listed only once for clarity.
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of cellular images [32]. Recently, several alternative ap-
proaches have been developed to estimate tumor purity
directly from sequencing data by identifying shifts in the
expected number of reads that align to a locus (Table 1).
This is not an easy task as most cancer genomes are an-
euploid and thus do not contain two copies of each
chromosomal locus. The tumor ploidy, defined as the
total DNA content in a tumor cell, also results in shifts
in the sequencing coverage. Thus, estimation of tumor
purity and tumor ploidy are closely intertwined. ABSO-
LUTE [28] and ASCAT [29] are two algorithms that are
used to infer both tumor purity and tumor ploidy from
single-nucleotide polymorphism (SNP) array data. Al-
though both methods may be modified to work with
DNA-sequencing data [33], they model a tumor sample
as consisting of only two populations: normal cells and
tumor cells. As they do not directly model the possible
existence of multiple distinct tumor subpopulations, the
tumor purity estimates that result can be inaccurate,
and reflect either an average over all tumor subpopula-
tions or a bias for the dominant tumor subpopulation
[30]. Furthermore, accurate identification of tumor sub-
populations may provide important information on tu-
mors that do not respond well to treatments [34-36].
Recently, the Tumor Heterogeneity Analysis (THetA)

algorithm [30] was developed to infer the composition
of a tumor sample (including tumor purity) containing
any number of tumor subpopulations directly from
DNA-sequencing data. Although THetA overcomes
some of the limitations of earlier methods, it is unable
to distinguish distinct tumor subpopulations that do not
contain CNAs, necessitating the development of add-
itional approaches to identify tumor subpopulations that
are distinguished only by SNVs and/or small indels. The
identification of somatic mutations and the estimation of
intra-tumor heterogeneity are closely related, and so
methods that jointly perform these tasks while allowing
for multiple tumor subpopulations are desirable for
obtaining highly sensitive and specific estimates of all
somatic aberrations in tumors.
Advances in DNA-sequencing technologies have also

enabled the direct quantification of intra-tumor
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heterogeneity. One approach is to perform targeted,
ultra-deep-coverage sequencing of SNVs, followed by
clustering of the read counts for each SNV into distinct
subpopulations [37,38]. Ding et al. [37] identified two
distinct clonal evolution patterns for acute myeloid
leukemia (AML) patients: a relapse sample evolved ei-
ther from the founding clone in the primary tumor or
from a minor subclone that survived initial treatment.
Shah et al. [38] demonstrated extreme variability in the
total number of tumor subpopulations (ranging from 1–
2 to more than 15 subpopulations) in tumors from a
large cohort of breast cancer patients. Another approach
to measure intra-tumor heterogeneity is to sequence
samples from multiple regions within the same tumor.
Gerlinger et al. [39] sequenced multiple regions from
several kidney tumors and found that a majority (63-
69%) of the somatic mutations identified were present in
only a subset of the sequenced regions of the tumor.
Navin and colleagues [40,41] found similar heterogeneity
in the CNAs present within different regions of breast
tumors. These results demonstrate that a single sample
from a tumor might not fully represent the complete
landscape of somatic mutations (including driver muta-
tions) present in the tumor.
Finally, Nik-Zainal et al. [42] demonstrated how care-

ful computational analysis can reveal information about
the composition of a tumor sample, including the identi-
fication of clonal mutations that are present in nearly all
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these approaches are perfect, and each returns a subset of driver mutation
approaches can then be validated using a variety of experimental techniqu
cells of the tumor (and thus presumably are early events
in tumorigenesis) and subclonal mutations that are
present in a fraction of tumor cells. Using high-coverage
(188X) whole-genome DNA sequencing of a breast
tumor, they inferred the proportion of tumor cells con-
taining somatic SNVs and CNAs and grouped these pro-
portions into several clusters, demonstrating different
mutational events during the evolutionary progression
from the founder cell of the tumor to the present tumor
cell population. Eventually, single-cell sequencing tech-
nologies [41,43-47] promise to provide a comprehensive
view of intra-tumor heterogeneity, but these approaches
remain limited by artifacts introduced during whole-
genome amplification [47]. In the interim, there is an
immediate need for better methods to detect somatic
mutations that occur in heterogeneous tumor samples.

Computational prioritization of driver mutations
Following the sequencing of a cancer genome, the next
step is to identify driver mutations that are responsible
for the cancer phenotype. Ultimately, the determination
that a mutation is functional requires experimental val-
idation, using in vitro or in vivo models to demonstrate
that a mutation leads to at least one of the characteris-
tics of the cancer phenotype, such as DNA repair defi-
ciency, uncontrolled proliferation and growth, or
immune evasion. As a result of advances in DNA-
sequencing technology, the measurement of somatic
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es.



Table 2 Methods for prediction of driver mutations and genes

Objective Data Method Description

Recurrent somatic
mutation identification

SNV MutSigCV [48] Uses coverage information and genomic features (e.g. DNA replication time) to
estimate the background mutation rate of a gene.

MuSiC [49] Uses a per-gene background mutation rate; allows for user-defined regions of
interest.

Youn et al. [51] Includes predicted impact on protein function in determining recurrent
mutations.

Sjöblom et al. [52] Defines a cancer mutation prevalence score for each gene.

DrGaP [139] Uses Bayesian approach to estimate background mutation rate; helpful for cancer
types with low mutation rate.

CNA GISTIC2 [61],
JISTIC [63]

Uses ‘peel-off’ techniques to find smaller recurrent aberrations inside larger
aberrations.

CMDS [62] Identifies recurrent CNAs from unsegmented data.

ADMIRE [65] Multi-scale smoothing of copy number profiles.

Functional impact
prediction

General SIFT [72] Uses conservation of amino acids to predict functional impact of a non-
synonymous amino-acid change.

Polyphen-2 [74] Infers functional impact of non-synonymous amino-acid changes through align-
ments of related peptide sequences and a machine-learning-based probabilistic
classifier.

MutationAssessor
[75]

Uses protein homologs to calculate a score based on the divergence in
conservation caused by an amino-acid change.

PROVEAN [73] Benchmarks favorably against MutationAssessor, Polyphen-2 and SIFT.

Cancer-specific CHASM [77] Uses a machine-learning approach to classify mutations as drivers or passengers
based on sequence conservation, protein domains, and protein structure.

Oncodrive-FM
[79]

Combines scores from SIFT, Polyphen-2, and MutationAccessor into a single
ranking.

Positional or
structural
clustering

NMC [83] Finds clusters of non-synonymous mutations across patients. Typically used with
missense mutations to detect so-called ‘activating’ mutations.

iPAC [84] Extends the NMC approach to search for clusters of mutations in three-
dimensional space using crystal structures of proteins.

Pathway analysis and
combinations of
mutations

Known pathways GSEA [92] A general technique for testing ranked lists of genes for enrichment in known
gene sets. Can be used on rankings derived from significance of observed
mutations.

PathScan [95] Finds pathways with excess of mutations in a gene set (pathway), by combining
P-values of enrichment across samples.

Patient-oriented
gene sets [94]

Tests known pathways using a binary indicator for a pathway in each patient.

Interaction
networks

NetBox [140] Finds network modules in a user-provided list of genes. Significance depends
only on the topology of the genes in the network, and not on mutation scores.

HotNet [102] Finds subnetworks with significantly more aberrations than would be expected
by chance, using both network topology and user-defined gene or protein
scores.

MEMo [104] Finds subnetworks whose interacting pairs of genes have mutually exclusive
aberrations [105]; recommends including only recurrent SNVs and CNAs in the
analysis.

De novo Dendrix [102] Identifies groups of genes with mutually exclusive aberrations.

Multi-Dendrix
[112]

Simultaneously finds multiple groups of genes with mutually exclusive
aberrations.

RME [110] Finds groups of genes with mutually exclusive aberrations by building from gene
pairs; best results obtained when restricting to genes with high mutation
frequencies (e.g. > 10%).

CNA, copy number aberration; SNV, single-nucleotide variant.
A representative list of software available to predict driver mutations or genes by detecting their recurrence across multiple samples, functional impact, or
interactions with other mutations in pathways or combinations. Some methods fall into multiple categories but are listed only once for clarity.
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Box 1. The binomial model: a statistical test for
detecting recurrent mutations.

Using the background mutation rate (BMR) and the number n of

sequenced nucleotides within a gene (g), the probability (Pg) that a

passenger mutation is observed in g is given by Pg = 1 - (1- BMR).

Since somatic mutations arise independently in each sample, the

occurrences of passenger mutations in g are modeled by flipping a

biased coin with probability pg of heads (mutation). Thus, if somatic

mutations have been measured in m samples, the number of

patients in which gene g is mutated is described by a binomial

random variable B(m, Pg) with parameters m and Pg. From B(m, Pg),

it is possible to compute the probability that the observed number

or more samples contain passenger mutations; this is the P-value

of the statistical test. A multiple-hypothesis testing correction is

applied when examining multiple genes.
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mutations is now significantly cheaper and faster than
the functional characterization of a mutation. Moreover,
as cancer-genome sequencing moves from the research
laboratory into the clinic, there is a strong need to auto-
mate the categorization of mutations to prioritize rapid,
accurate diagnoses and treatments for patients. Unfortu-
nately, distinguishing driver from passenger mutations
solely from the resulting DNA-sequence change is
extremely complicated, as the effect of most DNA-
sequence changes is poorly understood, even in the sim-
plest case of single nucleotide substitutions in coding
regions of well-studied proteins.
In the following sections, we describe three ap-

proaches for computational prioritization of driver mu-
tations: identifying recurrent mutations; predicting the
functional impact of individual mutations; and assessing
combinations of mutations using pathways, interaction
networks, or statistical correlations. These approaches
provide alternative strategies to filter the long list of
measured somatic mutations, and to identify a smaller
subset enriched for driver mutations to undergo further
experimental and functional validation (Figure 2).

Statistical tests for recurrent mutations
One approach to prioritize mutations for further experi-
mental characterization is to identify recurrent mutations.
Each cancer sample has undergone an independent evolu-
tionary process in which acquired driver mutations that
provide selective advantage result in clonal expansion of
these lineages [27]. As these mutational processes converge
to a common oncogenic phenotype, the mutations that
drive cancer progression should appear more frequently
than expected by chance across patient samples. Recur-
rence may be revealed at different levels of resolution, such
as an individual nucleotide, a codon, a protein domain, a
whole gene, or even a pathway. In this section, we describe
the techniques and difficulties in identifying recurrently
mutated driver genes.

Statistical tests for genes with recurrent single-nucleotide
mutations
Several methods have been designed to find recurrent
mutations in a cohort of cancer patients, including Mut-
SigCV [48], MuSiC [49], and others [50-53] (Table 2).
The fundamental calculation in all these approaches is
to determine whether the observed number of mutations
in the gene is significantly greater than the number ex-
pected according to a background mutation rate (BMR).
The BMR is the probability of observing a passenger
mutation in a specific location of the genome. From the
BMR and the number of sequenced nucleotides within a
gene, a binomial model can be used to derive the prob-
ability of the observed number of mutations in a gene
across a cohort of patients (Box 1).
The main differences between methods for identifying
recurrently mutated genes are in how they estimate the
BMR and how many different mutational contexts they
analyze. Regarding the former, the BMR is not constant
across the genome, but depends on the genomic context
of a nucleotide [52] and the type of mutation [7]. More-
over, the BMR of a gene is correlated with both its rate
of transcription [54] and replication timing [55,56]. The
BMR is also not constant across patients, and cancer co-
horts often present hypermutated samples [6]. Finally,
certain genomic regions may display localized somatic
hypermutation, termed kataegis [57]. Different combina-
tions of these effects can cause the BMR to vary by as
much as an order of magnitude across different genes.
The estimated BMR greatly affects the identification of

recurrent mutations, as an estimate that is higher than
the true value fails to identify recurrent mutations (false
negatives), whereas an estimate that is lower than the
true value would leads to false positives. Of course, if a
driver gene is mutated in a very high percentage of sam-
ples (more than 20%, for example), even an inaccurate
estimate of the BMR is sufficient to correctly identify
such a gene as recurrently mutated. Thus, well-known
cancer genes (such as TP53) are readily identified as re-
currently mutated genes by all computational methods.
The priority now is to identify rare driver mutations that
are important for precision oncology. The tools that are
currently available often report different rare mutations
as drivers, and more work is needed in order to improve
the sensitivity in the detection of rare driver mutations
and to compare and combine the results from different
tools [58]. In general, reporting rarely mutated genes as
recurrently mutated with high confidence requires either
better estimates of the BMR and/or much larger patient
cohorts.
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Statistical tests for genes with recurrent copy number and
structural aberrations
The identification of genes with recurrent copy number
or structural aberrations presents different challenges.
Somatic copy number aberrations (SCNAs) show large
variation in their position and length across different
samples. For example, an oncogene may be amplified in
one sample because of a whole-chromosome gain,
whereas in another sample, the amplification may be
focal and include only the oncogene. Thus, determining
whether CNAs in two individuals are the ‘same’ is not a
straightforward task. Moreover, recent evidence suggests
that SCNAs are not distributed uniformly over the gen-
ome but are biased by chromosome organization and
DNA replication timing [59,60]. Because of these diffi-
culties, no accurate model to identify CNAs has been
developed. Thus, methods for predicting recurrent
CNAs generally take a non-parametric approach. Early
approaches looked for minimal common regions, regions
of shared aberrations across individuals. The statistical
significance of such overlaps was then assessed by fixing
the lengths of the aberrations but independently permut-
ing their position across individuals. More recent ap-
proaches, such as GISTIC2 [61], CMDS [62], JISTIC
[63], DiNAMIC [64], and ADMIRE [65] (see Table 2),
use more sophisticated models to separate and assess
the statistical significance of overlapping CNAs of different
lengths.
Recurrent structural aberrations such as transloca-

tions, inversions, and other genome rearrangements are
typically straightforward to detect when: (1) the break-
points of these aberrations are closely located in differ-
ent individuals; and (2) these breakpoints are outside of
repetitive or low-complexity regions that present diffi-
culties for read alignment. Examples of rearrangements
that are readily detectable include highly recurrent
fusion genes such as BCR-ABL in leukemias and
TMPRSS2-ERG in prostate cancers. In some cases, it is
possible to detect recurrent fusion genes directly from
microarray data that does not involve sequencing the
breakpoints [66]. At the other extreme, mechanisms
such as chromothripsis [67] or chromoplexy [68], which
lead to simultaneous rearrangement of multiple genomic
loci, result in complicated sets of overlapping break-
points. Such complex rearrangements demand special-
ized techniques for analysis [69,70] and are difficult to
assess for recurrence across individuals.

Prediction of functional impact
Another approach for distinguishing driver mutations
from passenger mutations is to predict the functional
impact of a mutation using additional biological infor-
mation about the sequence and/or structure of the pro-
tein encoded by the mutated gene. The advantage of
such approaches is that they can be applied to mutations
that are present in only a single individual. These
methods are applied to non-silent SNV (nsSNVs) that
result in changes in the amino-acid sequence of the cor-
responding protein. These changes include missense
mutations that substitute one amino-acid residue, non-
sense mutations that introduce a stop codon, frame-shift
mutations that alter the reading-frame of the transcript,
in-frame insertions or deletions that may alter the func-
tion of the protein, and splice-site mutations that alter
splice donor or acceptor sites. Nonsense and frame-
shift mutations are typically assumed to be inactivating
mutations, and therefore highly likely to have a func-
tional impact. Thus, these mutations are not further
annotated with respect to functional impact. Splice-site
mutations require specialized techniques for interpret-
ation that address the complexities of alternative spli-
cing [71]. In this section, we briefly highlight methods
for predicting the functional impact of missense muta-
tions (Table 2).
Several methods have been developed to predict the

effect of germline SNPs. Popular methods include SIFT
[72], PROVEAN [73], and Polyphen-2 [74]. More re-
cently, MutationAssessor [75] and the algorithm of
Fischer et al. [76] have been designed to combine evo-
lutionary conservation and protein-domain information
in order to infer the functional impact of somatic mu-
tations and therefore distinguish driver from passen-
ger mutations. Other recent methods focus specifically
on somatic mutations. These include CHASM [77],
which uses machine-learning algorithms trained on
known driver mutations and the algorithm presented
by Li et al. [78], which uses a combination of cluster-
ing of nsSNVs and conservation of residues at nsSNVs.
Similarly, Oncodrive-FM [79] combines scores from
SIFT, Polyphen-2 and MutationAssesor and looks for
bias in these scores across a collection of patients
(typically having the same cancer type).
Another approach to predict functional impact is to

examine whether missense mutations cluster in the pro-
tein sequence. The motivation for examining positional
clustering comes from examples of activating mutations
in oncogenes that show strong positional preferen-
ces (such as the V600E mutation in BRAF [80] and mu-
tations in residues 12, 13, and 61 of KRAS [81]) or
inactivating mutations such as those observed in the
DNA-binding domain of TP53 [82]. Approaches such as
NMC [83] and iPAC [84] identify clustering of missense
mutations in protein sequence (two-dimensional space)
and protein structure (three-dimensional space), respect-
ively. NMC can be run on any sequence, but iPAC re-
quires that the crystal structure of the protein has been
solved. Although the percentage of solved protein struc-
tures is rapidly increasing, this requirement limits three-
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dimensional analysis to well-studied proteins and thus
reduces the ability of iPAC to discover novel cancer-
related genes.
Although these approaches are useful in prioritizing

mutations, they assume that a priori information, such
as evolutionary conservation, known protein domains,
non-random clustering of mutations, protein structure,
or some combination thereof, will help to distinguish
passenger from driver mutations. These data may not,
however, provide enough information to allow predic-
tion of a mutation’s oncogenic impact; for example, the
specific epitopes of phospho-kinases and signal trans-
duction proteins can be quite complex [85]. Thus, these
approaches may miss important oncogenic mutations;
for example, MutationAssessor [75] assigns a low score
to a well-known activating mutation (H1047R) in
PIK3CA [86].

Combinations of mutations: pathways, interaction
networks, and de novo approaches
Genes and their protein products rarely act in isolation.
Rather, they interact with other genes or proteins in vari-
ous signaling, regulatory, and metabolic pathways, as well
as in protein complexes. Cancer research over the past
few decades has characterized a number of these key
pathways and has provided information about how these
pathways are perturbed by somatic mutation [1,87]. At
the same time, the complexity of this interacting network
of genes or proteins presents a major confounding factor
for identifying driver mutations in genes using statistical
patterns of recurrence. For instance, if cancer progres-
sion requires the deregulation of a particular pathway
(such as those involved in apoptosis) there are a large
number of known and unknown genes whose mutation
would perturb this pathway. While some of the genes in
these pathways may be frequently altered, other genes
may be mutated rarely in a collection of patients with a
given cancer type. This idea explains the long tail
phenomenon that is apparent from recent cancer gen-
ome studies: only a few genes are mutated frequently and
many more are mutated at frequencies that are too low
to be statistically significant [2]. Consequently, in order
to identify rare driver mutations that are crucial for pre-
cision oncology, it is advantageous to identify groups or
combinations of genes that are recurrently mutated.
In the following sections, we consider three ap-

proaches that have been used to identify such combina-
tions: first, the identification of recurrent mutations in
pre-defined gene sets using databases of known path-
ways, protein complexes, or other functional groupings;
second, the identification of recurrent mutations in
genome-scale interaction networks; and third, the identi-
fication of recurrent combinations of mutations de novo
without any prior knowledge of gene sets. These three
approaches sequentially reduce the amount of prior
knowledge that must be available on the gene sets under
consideration, thus enabling the discovery of novel com-
binations of mutated genes. This potential benefit
comes, however, at the expense of an increase in the
number of hypotheses that are considered, resulting in
computational and statistical issues that must be ad-
dressed appropriately (Figure 3).

Known pathways
A direct approach to assess whether groups of genes are
recurrently mutated in a cohort of sequenced cancer ge-
nomes or exomes is to examine the frequency of muta-
tion in gene sets determined by prior biological
knowledge of functionally related genes (Table 2). The
most straightforward approach is to determine whether
a list of mutated genes shares significant overlap with
known gene sets. Any of the many tools used for the
analogous analysis of gene expression, such as DAVID
[88,89], FaTiGO [90] or GoStat [91], may be used. To
use these tools, an appropriate list of mutated genes
must first be defined; often this is accomplished by
relaxing the threshold for statistical significance in one
of the tests for recurrently mutated genes. An alternative
approach is to rank the list of mutated genes, and then
apply a method such as Gene Set Enrichment Analysis
(GSEA) [92] that assesses whether a pre-defined set of
genes has more high-ranking genes than would be ex-
pected by chance. Lin et al. [93] used this approach,
ranking genes by their Cancer Mutation Prevalence
(CaMP) scores [52]; the resulting method was called
CaMP-GSEA. Since then, similar approaches have been
taken, in which different scores are applied in combin-
ation with the GSEA algorithm to determine enrichment
of mutations in certain pathways or cellular functions.
Recently, more sophisticated methods that consider

the variability in the mutation rate in individual patients
have been developed [94,95]. The method of Boca et al.
[94] focuses on patient-oriented gene sets, defining a
per-patient score for a gene set and then combining
these scores across all of the patients. PathScan [95]
evaluates the enrichment for mutations in a gene set
separately for each patient (also accounting for the
length of each gene in the set), and then combines the
results of these tests across all of the patients.
These tests of known gene sets overcome some of the dif-

ficulties in tests of individual genes, but they have four
major limitations. First, many annotated gene sets are large,
containing dozens of genes. Enrichment and rank statistics
may not deem mutations in a smaller subset of these genes
to be significant. Second, pathways do not act in isolation;
pathways themselves are interconnected in larger signaling
and regulatory networks. This crosstalk between pathways
is itself important; as stated by Frank McCormick, the
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Figure 3 Overview of approaches to predict driver mutations. (a) Recurrent mutations that are found in more samples than would be expected by
chance are good candidates for driver mutations. To identify such recurrent mutations, a statistical test is performed (see Table 2), which usually collapses
all of the non-synonymous mutations in a gene into a binary mutation matrix that indicates the mutation status of a gene in each sample. (b) Assessing
combinations of mutations overcomes some limitations of single-gene tests of recurrence. Three approaches to identify combinations of driver mutations
are: (1) to identify recurrent mutations in predefined groups (such as pathways and protein complexes from databases); (2) to identify recurrent mutations
in large protein-protein interaction networks; (3) de novo identification of combinations, without relying on a priori definition of gene sets. These
approaches sequentially decrease the amount of prior information in the gene sets that are tested, thus allowing the discovery of novel combinations
of driver mutations. However, the decrease in prior knowledge comes at the expense of a steep increase in the number of hypotheses considered,
posing computational and statistical challenges. Different methods to identify combinations of driver mutations lie on different positions of the spectrum
that represents the trade-off between prior knowledge and number of hypotheses tested.
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genes involved in the development of cancer ‘affect multiple
pathways that intersect and overlap’ [96]. Third, gene-set
methods ignore the topology of interactions, instead con-
sidering all genes within a pathway equally. Finally, restrict-
ing attention to known pathways, or gene sets, does not
allow the discovery of novel combinations of mutated genes
and reduces the power to detect driver mutations in less-
characterized and less-studied pathways.

Interaction networks
An alternative to examining mutations in previously de-
fined gene sets is to examine mutations on large-scale
protein-protein interaction networks. Examples of such net-
works are HPRD [97], BioGrid [98], Reactome [99],
STRING [100], and iRefIndex [101]. These networks
include some combinations of experimentally characterized
interactions, interactions derived by high-throughput
approaches (such as yeast two-hybrid screens or mass
spectrometry), and/or interactions derived by auto-
mated curation of interactions reported in the litera-
ture. Some networks integrate interaction information
from multiple sources. Although these networks cur-
rently provide only a partial picture of the interactions
among proteins, network approaches can potentially
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overcome some of the limitations of pathway analysis
noted in the previous section.
Driver mutations perturb signaling, regulatory or

metabolic pathways that promote the development and
progression of cancer. Therefore, a desirable goal is to
identify all significantly mutated subnetworks (which
comprise connected sets of proteins) in a biological
interaction network, but this is a complicated task. A
naive approach to the problem (not based on prior
knowledge) is to test all possible subnetworks for recur-
rent mutations using the gene-set approaches described
earlier. However, the number of such subnetworks is
enormous (for example, there are than 1014 subnetworks
with at least eight proteins in a moderately sized inter-
action network); this presents major computational and
statistical testing issues. Further complicating this type
of approach is the fact that within most biological net-
works there are a few proteins that have an extreme
number of interacting partners compared to the average
protein in the network. These high-degree nodes cause
many proteins to be connected via a small number of
‘hops’ in the graph, which implies that straightforward
tests of network connectivity may lead to erroneous
conclusions.
The HotNet [102] algorithm addresses many of these

problems by using a heat-diffusion model to encode
both the frequency of mutations in genes and the local
topology of the interaction network. Furthermore, to
overcome statistical issues HotNet also employs a novel
statistical test (Figure 4). HotNet is able to identify sub-
networks containing genes that are mutated in a rela-
tively small number of samples (too few to be identified
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Figure 4 Overview of the HotNet algorithm. HotNet [102] uses a heat-d
an interaction network. (a) Heat is assigned to each gene according to the
copy number aberration (CNA) in the gene. (b) The initial heat then spread
cold edges connecting genes that do not exchange large amounts of heat
number and size of the resulting subnetworks using a two-stage statistical
as recurrently mutated genes), but whose interactions
indicate that these mutations are clustered on a small
set of interacting proteins. HotNet’s statistical test avoids
the explicit testing of the huge number of subnetworks
present in the interaction network, as well as the corre-
sponding naive multiple hypothesis correction that
would greatly reduce the power of detecting significantly
mutated subnetworks. Two examples of significantly
mutated subnetworks that have been identified by
HotNet are the Notch pathway in TCGAs ovarian serous
adenocarcinoma study [7] and several members of the
SWI/SNF chromatin remodeling complex in the TCGA
study of renal cell carcinoma [9]. In addition to the ovarian
and kidney studies, HotNet has been used in a prostate
cancer study [103] and in the TCGA study of AML [10].
The MEMo [104] algorithm takes a different approach

in which subnetworks (called modules) of proteins that
share multiple interacting partners in an interaction net-
work are partitioned such that the genes encoding pro-
teins in the module demonstrate a significant pattern of
mutual exclusivity in their mutations. MEMo is generally
run using a short list of genes (< 100) that are recur-
rently mutated (with SNVs or CNAs), and whose expres-
sion level is concordant with identified CNAs [105].
When used in this way, MEMo is unlikely to identify
any novel genes that are not already reported as signifi-
cantly mutated. Nonetheless, MEMo has been used in
several TCGA studies [5,8,9,11,12] to identify exclusive
mutations in the TP53 signaling pathway in breast cancer
[12] among others.
Network analysis is less restrictive than testing known

pathways or gene sets, but these analyses remain limited
Key:

n network Two-stage statistical test:
significantly mutated subnetworks

Hot Cold

(c)

iffusion process to identify significantly mutated subnetworks within
proportion of samples containing a single-nucleotide variant (SNV) or
s on the edges of the network for a fixed amount of time. Removing
breaks the network into smaller subnetworks. (c) HotNet assesses the
test.
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by the quality and coverage of the interaction network.
High-quality interaction networks derived from well-
characterized experimental interactions remain relatively
scarce. Thus, to increase the coverage of the network,
most interaction networks are constructed using data
from high-throughput screens (such as yeast two-hybrid
screens or mass spectrometry), thereby increasing the
number of false positives. In addition, interaction net-
works may suffer from ascertainment bias, as genes
whose roles in cancer are well-documented are likely to
have been extensively tested for interactions, whereas
novel cancer genes may not have been characterized at
all. Finally, nearly all currently available interaction net-
works are the superposition of interactions between pro-
teins that occur in different tissues, in different cellular
locations, or at different developmental time points or
cell-cycle phases. Such limitations will need to be over-
come in order to improve the identification of combina-
tions of driver mutations using interaction networks.

De novo approaches
To identify novel combinations of mutations or mutated
genes, it would be ideal to test all possible combinations
for recurrent mutations across a cohort of cancer pa-
tients, but such a de novo approach is impractical. For
example, there are more than 1029 possible sets of eight
genes in the human genome, which is both too many to
evaluate computationally and too many hypotheses to
test while retaining statistical power. One promising
approach is to restrict the possible combinations of mu-
tations that are evaluated by focusing on those combina-
tions that exhibit particular patterns of occurrence. One
such pattern is mutual exclusivity between driver muta-
tions. Under the hypotheses that each tumor has rela-
tively few driver mutations [1] and these driver
mutations perturb multiple cellular functions in different
pathways [87], one can conclude that a tumor rarely
possesses more than one driver mutation per pathway.
Thus, when examining data across cancer samples,
driver pathways (pathways with driver mutations) cor-
respond to mutually exclusive sets of genes (with mutual
exclusivity in individual samples). Mutually exclusive
pairs of interacting proteins [106] and sets of interacting
proteins [107] in the same pathway have previously been
reported in many cancer types. Examples include BRAF
and KRAS [108] (in the RAS-RAF signaling pathway)
and APC and CTNNB1 (in the β-catenin signaling path-
way), both in colorectal cancer [109], and TP53 and
MDM2 in ovarian cancer [7].
A few algorithms have been developed to identify pu-

tative driver pathways by finding sets of genes that ex-
hibit a statistically significant pattern of mutual
exclusivity. Note that because many recurrently mutated
genes are present in a minority of samples, mutually
exclusive sets of genes will also be present just by
chance; it is therefore necessary to determine the statis-
tical significance of mutual exclusivity. The Recurrent
and Mutually Exclusive (RME) [110] algorithm identifies
modules with exclusive patterns of mutations using an
information theoretic measure to test for the significance
of the observed exclusivity. RME starts from scores that
measure the exclusivity of pairs of genes, and includes
only genes mutated with relatively high frequency
(≥ 10% in [110]), limiting its effectiveness in identifying
rare driver mutations. The De novo Driver Exclusivity
(Dendrix) algorithm [102] identifies sets of genes that
are mutated across a large number of samples and
whose mutations are mutually exclusive by determining
the statistical significance of the optimal set of genes of
a fixed size. In data from the TCGA glioblastoma study,
Dendrix identified significant exclusivity between muta-
tions in three sets of genes that are part of the Rb
pathway, the p53 pathway, and the RTK pathway,
respectively [111]. Multi-Dendrix [112] simultaneously
identifies multiple mutually exclusive sets of genes. In
data from the TCGA breast cancer study, Multi-Dendrix
identified significant exclusivity of mutations in path-
ways involved in p53 signaling, PI3K/AKT signaling,
cell-cycle checkpoints, and p38-JNK1 signaling. Finally,
the MEMo algorithm described earlier also examines
pairs of genes with mutually exclusive mutations, but
these are restricted to those pairs that share multiple
interacting partners in an interaction network.
Approaches based on mutual exclusivity provide a

strategy for assessing combinations of mutations that is
less biased by prior information, but they do not con-
sider all possible combinations of mutations. Moreover,
there are examples of co-occurring driver mutations in
cancer [106]. The hypothesis pertaining to mutual exclu-
sivity is only for mutations in the same pathway, there-
fore co-occurring mutations do not violate this
hypothesis if they are in different pathways. There are,
however, examples of co-occurring mutations in genes
that directly interact, such as KRAS and PIK3CA in
colorectal tumors [113]. Thus, the pattern of mutual ex-
clusivity is not enough to characterize all functional
combinations of mutations.

Conclusions and future perspective
This review focused on some of the challenges in the se-
quencing and identification of driver mutations and
driver genes in cancer genomes using high-throughput
DNA sequencing. We highlighted several computational
approaches that are used to detect somatic mutations
and to prioritize these mutations for further experimen-
tal validation. These and other approaches are increas-
ingly being translated from the research laboratory into
the clinical setting. Several academic medical centers
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have begun targeted or whole-exome sequencing of can-
cer patients [114-117] in order to guide clinical treat-
ment. Such precision medicine approaches have begun
to bear fruit in clinical trials in which the drug regime is
tailored to the mutational landscape of the individual pa-
tient [118]. Consortiums like TCGA and ICGC are con-
tinually expanding the number of sequenced cancer
genomes or exomes. Given the dividends that these and
other studies have returned in only a few years, the
rapid, precise computational identification of driver mu-
tations is likely to be a key step in determining patient
prognosis and treatment.
The past 5 years has witnessed a revolution in cancer

genome sequencing, but additional challenges remain if
the promise of high-throughput DNA sequencing for
cancer diagnosis and treatment is to be fully exploited.
First, non-coding somatic mutations have not yet re-
ceived the same amount of scrutiny as coding variants.
Huang et al. [119] recently discovered a mutation in the
promoter region of the TERT gene (which encodes tel-
omerase reverse transcriptase) that increased the tran-
scription of TERT in melanoma. This observation,
coupled with recent ENCODE reports that provide func-
tional annotations for many non-coding regions of the
human genome [120], indicates that the identification of
intergenic driver mutations will also prove useful for un-
derstanding tumorigenesis. Second, certain cancers ex-
hibit different subtypes, and a mixture of these subtypes
can complicate the identification of recurrent mutations
or combinations of mutations. Recently, Hofree et al.
[121] introduced the Network-based stratification ap-
proach to predict subtypes with different clinical out-
comes directly from mutation data, a useful step in
addressing this issue. In addition, the Pan-Cancer project
within TCGA showed that, in some cases, combining
different cancer types improved rather than complicated
the analysis [58,122-125]. Third, more work is needed to
determine the extent to which different cancer types or
subtypes can be analyzed together. Finally, the interpret-
ation of somatic mutations is informed by other types of
genomic and epigenomic data including RNA sequen-
cing, DNA methylation, and chromatin modifications.
Some methods have been designed to integrate across
these different types of sequencing data [69,126,127], but
more work is required to fully integrate the various types
of information. Finally, the translation of genomic, epi-
genomic or transcriptomic discoveries into practical can-
cer treatment faces numerous hurdles in functional
validation and drug design. For some patients, precision
oncology is a reality now, but for many other patients,
difficult but important work remains.
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