
http://genomemedicine.com/content/1/8/77 Tiffin et al.: Genome Medicine 2009, 1:77

Abstract
Genome-wide association analyses on large patient cohorts are 
generating large sets of candidate disease genes. This is coupled 
with the availability of ever-increasing genomic data bases and a 
rapidly expanding repository of biomedical literature. Computa-
tional approaches to disease-gene associa tion attempt to 
harness these data sources to identify the most likely disease 
gene candidates for further empirical analysis by translational 
researchers, resulting in efficient identification of genes of 
diagnostic, prognostic and therapeutic value. Existing compu-
tational methods analyze gene structure and sequence, functional 
annotation of candidate genes, characteristics of known disease 
genes, gene regulatory networks, protein-protein interactions, 
data from animal models and disease phenotype. To date, a few 
studies have success fully applied computational analysis of 
clinical phenotype data for specific diseases and shown genetic 
associations. In the near future, computational strategies will be 
facilitated by improved integration of clinical and computational 
research, and by increased availability of clinical phenotype data 
in a format accessible to computational approaches.

Historically, disease phenotype has informed the selection 
of candidate disease genes through observations of the 
effects of perturbations in these candidates in vitro, in 
tissue cultures and in animal models. This hypothesis-
driven approach is increasingly being superseded by 
genome-wide analyses that assume no prior knowledge of 
the underlying genotype, and hypotheses about the 
associated genes are inferred from large-scale genetic 
studies of samples with the disease phenotype. These 
studies include genome-wide linkage and association 
studies in affected and healthy patient populations to 
identify chromosomal regions most likely to contain 
etiological genes [1-3], and the detailed analysis of genome-
wide changes in the disease state by high-throughput 
techniques, such as single nucleotide polymorphism (SNP) 
[4] and microarray expression analysis [5], serial analysis 
of gene expression (SAGE) [6] and cap analysis of gene 
expression (CAGE) [7]. Current approaches include next 
generation sequencing of linked regions, high-density SNP 
analysis and the study of copy number variation [8].

Typically, genome-wide approaches generate large sets of 
potential genetic associations for further analysis; for 
example, multifactorial disease loci identified by linkage 
analysis can be approximately 30 Mb in size and contain 
several hundred genes [9]. This synergizes with ongoing 
research on many complex diseases, in which multiple 
gene variations, rather than single dysfunctional genes, are 
believed to underlie the disease phenotype [10]. Genome-
wide analyses have therefore massively increased the 
number of candidate genes to be investigated for a given 
phenotype.

Concurrently, available genetic information has increased 
as a result of more sophisticated experimental methods 
and centralization of genetic information in public genome 
databases (such as Ensembl [11], NCBI [12] and UCSC 
[13]), gene expression databases (such as GEO [14]) and 
human variation databases (such as HapMap [15]). 
Additional data on gene regulatory networks and pathways 
are becoming increasingly accessible (for example, KEGG 
[16] and Reactome [17]). In addition, biomedical literature 
has become too massive a resource to be assimilated by 
individuals (for example, 17.8 million abstracts are listed 
by PubMed in May 2009, of which 10 million deal with 
human data).

The subsequent challenge is to use this wide variety of data 
sources to identify relevant disease gene candidates within 
the lists of genes generated from genome-wide analyses for 
further empirical research, an overwhelming task to under-
take manually. Computational analysis can facilitate 
efficient and accurate utilization of all such sources of 
information, and the resulting early prioritization allows 
streamlined empirical research and quicker and cheaper 
identification of disease-causing genes.

To date, many computational methods have focused on the 
prediction of candidates by analysis of inherent sequence 
characteristics of genes, sequence similarity to known 
disease genes, and functional annotation of candidate 
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genes [18]. These approaches are briefly reviewed here. 
The computational analysis of phenotypes for the priori-
tiza tion of disease candidates is less utilized, and is 
explored later in this article (Figure 1).

Approaches for the identification of candidate 
disease genes
Using intrinsic gene properties
By analyzing the intrinsic properties of genes already 
associated with an inherited disease regardless of its 
phenotype, differences can be found between disease genes 
and all human genes. The pattern of differences can be 
used to predict novel disease genes. Properties associated 
with disease genes include gene structure, such as longer 
size of the gene and its associated proteins, and longer 
regulatory regions such as the mRNA 3’ un-translated 
region (UTR); phylogenetic information, including lower 
mutation rates, broader phylogenetic breadth and fewer 
paralogs (that is, fewer highly similar genes giving less 
opportunity for functional redundancy); and genomic 
properties such as a higher proportion of CpG islands in 
promoters and longer intergenic distances.

The first method to apply this type of approach was DGP 
[19], followed by PROSPECTR [20], which included 
additional gene properties (for an extensive review of these 
approaches see [21]). Such analyses rely on the definition 
of genes as ‘disease genes’ and ‘non-disease genes’ and, 
although suited to analysis of monogenic (Mendelian) 
diseases, such approaches may preclude the selection of 
genes that do not produce an obvious phenotype but rather 
contribute to disease susceptibility or the severity of the 
effect of a simultaneous mutation in another gene. The 
efficacy of such approaches thus becomes limited in the 
study of complex phenotypes, in which the association 
between the gene and disease may not be one of direct or 
exclusive causation.

Similarity to genes previously associated with disease
Several methods of associating genes with diseases rely on 
the functional annotation of the gene and, under the 
hypothesis that similar diseases may have associated genes 
with similar functions, propose associations on the basis of 
genes already known to be associated with a disease. This 
approach is supported by multiple lines of evidence and is 
a logical way to initiate a search for candidate genes. For 
example, genes related to the detection or synthesis of 
neurotransmitters are likely to be good candidates for 
association with neural disorders, or immune-related 
genes with asthma and allergy phenotypes.

This is a logical inference, but when there is a growth in the 
number of gene candidates it becomes difficult to get all 
the information on known diseases and related literature 
manually, and computational approaches are helpful. 
Computational analyses take advantage of both controlled 

vocabularies describing disease features (such as MeSH 
terms - an ontology developed at the National Library of 
Medicine covering different subject categories, including 
disease phenotype [22]) and similarity between gene 
functions measured by using their annotations with 
controlled vocabularies, such as the Gene Ontology [23]. 
Methods such as G2D [9], POCUS [24], ENDEAVOUR [25] 
and TOM [26] use this approach.

A limitation of methods relying on the functional 
annotations of genes is that just a small percentage of 
genes in the databases have an experimentally verified 
function (6% have links to non-genomic literature [27]). 
Most annotation (for approximately 71% of genes [27]) is 
based on functions assumed to associate with predicted 
protein domains from manually curated databases (such as 
the Gene Ontology Annotation (GOA) project [28]).

Implication of genes in regulatory networks or in 
protein-protein interaction networks
Information from interactions between genes can be used 
to find disease-related genes. These data are available from 
multiple public resources and may describe protein-
protein interactions (such as STRING [29] and UniHI 
[30]), proteins regulating gene expression (such as 
TRANSFAC [31]), and metabolic pathways (such as KEGG 
[16]). Some of these categories can overlap to some extent 
with functional annotations (for example, several genes 
encoding proteins from the same pathway or protein 
complex may be described by the same functional 
annotation comprising a common Gene Ontology term).

The assumption made is that if two genes work together, 
the known association of one with a disease suggests that 
the other may also be associated with the same disease. For 
example, mutations in different subunits of the sarcoglycan 
complex can result in muscular dystrophy [32]. For genes 
in a regulatory cascade, if the mutation of a gene produces 
a given phenotype, then mutations in genes further 
up stream, such as a transcription factor for the down-
stream gene or a protein kinase that phosphorylates it, 
could result in the same phenotype. Methods such as 
ENDEAVOUR [25] and recent versions of G2D [33] exploit 
this hypothesis.

Gene expression information
The methods described earlier can be complemented using 
gene expression data. This can be done in relation to the 
particular disease under analysis (for example selecting 
genes that are expressed in an affected tissue, such as 
neural tissue in the case of a neurodegenerative disease); 
or gene co-expression can be used as another measure of 
gene similarity to find associations between genes. The 
second approach is based on the premise that genes acting 
together will be expressed together, as seen for subunits of 
protein complexes (such as is described in [21,25,34]).
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Disease phenotypes
Clinical knowledge is fundamental to defining disease 
phenotype, and some existing methods aim to make use of 
this knowledge directly. For example, GeneSeeker [35] is a 
web tool that uses phenotype search terms input directly 
by the researcher and filters positional candidate disease 
genes based on expression and phenotypic data. The 
Database of Chromosomal Imbalance and Phenotype in 
Humans using Ensembl Resources (DECIPHER) cen-
tralizes clinician-sourced phenotype data and their 
relation ship to copy number variation [36] and is ground-
breaking in its aim to make accessible a global wealth of 
phenotype descriptions submitted directly by clinicians.

Animal models allow in-depth studies of phenotypic 
variation associated with genes, which are impossible in 
human subjects (for example, genetic manipulations such 
as gene knockouts). The data thus generated can be used to 
associate human genes with phenotypes according to the 
properties of orthologous genes in such model organisms. 
In some cases, phenotype association may be in the form of 
quantitative trait loci (QTLs) involving a number of genes. 
These methods have to overcome the challenge of identi-
fying the appropriate orthology relations between human 
and animal genes, which becomes harder with increasing 
evolutionary distance between the species under study and 
humans. This approach is used by methods such as 
GeneSeeker [35] and ToppGene [37] with mouse 
phenotype data, and Fraser and Plotkin have used a similar 
approach with yeast data [38].

Some available methods define the disease phenotype in a 
formalized way that involves the use of existing or custo-
mized ontologies. As ontologies are formal repre sentations 
of a set of concepts within a domain of knowledge and the 
relationships between those concepts, they are preferable 
to a definition of the problem pheno type by means of a 
mere set of keywords provided by the user. Ontologies can 
facilitate optimal use of available knowledge because many 
pieces of information can be linked through queries in the 
databases in which they are used. For example, most of the 
articles in MEDLINE are annotated with MeSH terms. In 
this way, they can directly link the phenotype described by 
a MeSH term to the information contained in the article 
annotated with it. Phenotype ontologies are used to mine 
textual databases, such as MEDLINE abstracts in PubMed 
and/or Online Mendelian Inheritance in Man (OMIM) 
records, and relate them to gene features and lists of 
candidate genes. eVOC, a controlled vocabulary for 
unifying gene expression data, is a purposely developed 
anatomical ontology that can integrate text mining of 
biomedical literature and data mining of available human 
gene expression data [39]. The GFINDer method uses an 
ontology developed from OMIM entries [40]. G2D uses 
disease MeSH terms linked in the OMIM record associated 
with the phenotype of interest to link phenotypes and Gene 

Ontology terms [9]. PhenoGO, another ontology that 
assigns phenotypic context to Gene Ontology annotations, 
also mines the literature to associate phenotypes to Gene 
Ontology terms [41]. A Human Phenotype Ontology has 
been developed and used to annotate OMIM entries [42], 
and the broader Mammalian Phenotype Ontology [43] is 
used in both the Mouse and Rat Genome Databases 
[44,45].

Despite the obvious limitations of transferring information 
between animal models and humans, the broad range of 
phenotypic measures that can be obtained from animals is 
impossible to collect from humans. In the context of 
complex phenotypes, mice are being predominantly used 
to study the (usually small) quantitative phenotypic 
differences associated with a genetic variation (QTLs) [46]. 
Large-scale projects are underway to induce knockouts in 
mice and analyze the corresponding genotypes by high-
throughput techniques [47,48]. These projects will need 
extensive and more sophisticated annotation systems such 
as Phenotype and Trait Ontology (PATO [49]), which 
combines existing phenotype ontologies with phenotype 
qualities; for example ‘insect eye’, from the fly anatomy 
ontology, can bear the quality ‘red’, giving the combined 
‘red eye’ phenotype.

Application of computational approaches to 
specific diseases
Only a few studies so far have used phenotype-based 
computational approaches to identify disease genes and 

Figure 1

Miners in Germany (1952). As with mining of minerals, data mining 
of associations between genes and diseases can be dirty and 
disheartening, but the potential for reward is great. Photo: Günther 
Paalzow. Reproduced from Bundesarchiv, Bild 183-13175-0020 
under the Creative Commons Attribution ShareAlike 3.0 license 
(Germany).
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followed this through in patient samples. The GeneSeeker 
tool was used to prioritize candidates for skeletal dysplasia, 
and the contribution of a selected candidate to the disease 
phenotype was demonstrated [50]. In this study, linkage 
analysis identified 77 candidate genes in a 17.1 cM interval. 
GeneSeeker identified the disease-causing gene as RMRP 
(an untranslated RNA gene), and its etiological role was 
confirmed in patients with the disease. Mutations in this 
gene have been identified previously as disease-causing in 
milder types of autosomal recessive skeletal dysplasias 
with differing phenotypes; identification of this additional 
disease phenotype associated with the gene, however, has 
furthered understanding of gene function and suggested its 
involvement in other related disease phenotypes.

The G2D method was used to prioritize candidate genes 
for asthma and atopy (a type of allergic hypersensitivity) 
at two previously linked loci in a French Canadian 
population [51]. Ten genes were selected by G2D for a 
subsequent association study, and SNPs within the 
candidate genes were genotyped and analyzed using a 
family-based asso ciation test. The results suggested a 
protective association with allergic asthma for the protein 
tyrosine phosphatase gene PTPRE in this French 
Canadian population, although the association could not 
be replicated in a different cohort [51].

Other than these translational studies, computational 
analyses have generally been applied to specific diseases 
and where there are known etiological genes for the disease 
in question, the accuracy of the results has been assessed 
by the ranking of these known genes. The candidates that 
have been flagged as most likely and warranting further 
empirical research are published for use by the research 
community, as in our previous studies on candidate genes 
for metabolic syndrome [52] and type 2 diabetes (T2D) 
[53]. In these, we used multiple computational techniques, 
including those based on phenotype [35,39], for disease 
gene prioritization, using sets of genes defined by multiple 
linkage analysis data available through the biomedical 
literature as starting point.

In the case of metabolic syndrome [52], we initially 
selected candidates for discrete phenotypes that are asso-
ciated with the disorder from a starting set of 13,882 genes, 
and identified candidate genes showing commonality 
across multiple phenotypes. The phenotype-specific 
candidates were then weighted according to the prevalence 
of each phenotype in patient populations, with 19 
candidates prioritized as the most likely etiological genes. 
For T2D, we used multiple computational approaches to 
identify obesity- and T2D-specific candidates from a 
starting set of 9,556 positional candidates. This allowed us 
to generate a final list of nine primary T2D candidates, two 
of which were also primary candidates for obesity. A SNP 
in the lipoprotein lipase gene LPL, which was one of the 

proposed two top candidates, has since been associated 
with T2D in Korean patients [54].

Similar approaches have been used for other diseases, such 
as the use of multiple existing computational methods for 
prediction of genes associated with osteoporosis [55], and 
the use of extensive phenotype data to select candidate 
etiological genes for fetal alcohol syndrome [56]. 
ENDEAVOUR has also been used to prioritize candidate 
genes for a variety of phenotypes, reviewed in [25].

Future directions for computational 
prioritization of candidate disease genes
With increased understanding and availability of human 
genome and transcriptome data, additional resources can 
refine the computational prioritization of candidate disease 
genes. These include data on copy number variation, which 
has already been used to identify candidate genes for 
autism [57], and on RNA editing in candidate genes [58]. 
Phenotype can be affected by perturbations in additional 
elements such as long non-coding genes [59]; long range 
non-coding RNAs, as identified for short stature pheno-
types [60] and cancer [61]; natural antisense transcripts 
[62]; promoter elements, such as those associated with 
degenerative heart disease [63]; and microRNAs [64]. 
Epidemiological data for disease occurrence used in 
conjunction with genome-wide data on population varia-
tion [65] can facilitate associations between disease 
phenotypes prevalent in particular populations and their 
underlying genotypes. Finally, collation and standardi-
zation of phenotype data (as undertaken in the DECIPHER 
project [36]) and the further development of phenotype 
ontologies that have an appropriate degree of granularity 
and are accessible to scientists are essential for the 
compilation of clinical phenotype data in a format that 
allows the computational analysis of associations between 
disease phenotype and genotype.

Conclusions
Understanding underlying disease genetics is crucial for 
the development of appropriate disease-specific diagnostic, 
prognostic and therapeutic approaches, and increasing the 
efficiency of this process can result in substantial progress 
in the clinical management of disease. Computational 
approaches for the identification of disease genes have 
contributed significantly to our understanding of gene and 
protein characteristics. These include the tendency of 
enzymes and transporters to underlie recessive diseases, 
while transcription regulators and structural molecules 
often underlie dominant inheritance [19]. More generally, 
they have shown evidence that disease gene function and 
expression patterns correlate with the type of disease they 
cause [66]. The computational analysis of disease pheno-
types has revealed the tendency for similar disease 
phenotypes to be caused by functionally related genes [67]. 
Such analyses have also shown that the phenotypic 
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similarity between syndromes correlates with the sequence 
similarity of their associated genes [18,68]. We believe, 
however, that there is great scope to better harness clinical 
phenotypic data to improve computational disease gene 
prioritization. In an ideal scenario, extensive clinical 
pheno typic data would be available to computational 
scientists to use in conjunction with genome-wide 
empirical data, allowing for effective prediction of most 
likely disease gene candidates and leading to rapid and 
economical empirical identification of etiological genes.

For this to become a reality, several objectives need first to 
be realized. Most importantly, clinical phenotype data need 
to be routinely standardized in an accessible, patient-
anonymous format for computational use. To this end, 
prospective studies on patient populations could include a 
computational component at the design stage, so that 
standardized clinical/phenotypic data can be collected 
throughout the study. To ensure that this becomes 
standard practice, however, clinicians need to be convinced 
of the utility of computational approaches in determining 
candidate disease genes, and computational studies for 
specific diseases need to reach the appropriate clinical 
audience. Collaborative studies between clinical researchers 
and computational scientists are invaluable in bridging 
this gap and promoting recognition of computational 
applications in clinical research, but these are not yet 
standard practice.

In addition, many computational scientists focus on the 
development of novel generic approaches for candidate 
gene prediction for diseases in general. This should not, 
however, preclude the application of existing methods to 
specific diseases. Such disease-specific studies, presented 
in a format accessible to non-computational researchers, 
would facilitate translation of computational research into 
the clinical environment and promote recognition of the 
role of computational studies in disease gene identification.

The ability to investigate the genetics underlying disease 
phenotypes at a genome-wide level will result in more 
rapid disease gene identification, as genome-wide analyses 
can return multiple potential candidate genes simul-
taneously, rather than verifying or refuting the implication 
of individual genes in a sequential way. This transition is 
serendipitous, given that the field of disease genetics is 
moving on from Mendelian diseases and focusing on 
complex diseases in which multiple etiological genes are 
believed to act in concert [69]. As increasingly sophis-
ticated techniques uncover the stronger and more frequent 
gene-disease associations, research techniques will shift 
towards defining our understanding of more subtle or 
indirect effects of genes on disease phenotype, in parallel 
with our increased understanding of the subtleties and 
complexities of the biological mechanisms of the human 
cell.

The challenge now lies in finding relevant candidates 
within the lists of potential disease genes generated from 
genome-wide approaches. Computational methods are 
well suited to the systematic analysis of these large gene 
lists to generate encompassing hypotheses about disease 
genotype, predict the most likely disease gene candidates 
from large datasets, and rapidly disseminate the results to 
clinical researchers performing translational research. 
Computational disease gene prediction can thus contribute 
substantially to faster and more cost-efficient empirical 
identification of disease-causing genes.
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