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Abstract

Background: The human gut microbiome is associated with the development of colon cancer, and recent studies
have found changes in the microbiome in cancer patients compared to healthy controls. Studying the microbial
communities in the tumor microenvironment may shed light on the role of host—bacteria interactions in colorectal
cancer. Here, we highlight the major shifts in the colorectal tumor microbiome relative to that of matched normal
colon tissue from the same individual, allowing us to survey the microbial communities in the tumor microenvironment
and providing intrinsic control for environmental and host genetic effects on the microbiome.

Methods: We sequenced the microbiome in 44 primary tumor and 44 patient-matched normal colon tissue samples to
determine differentially abundant microbial taxa These data were also used to functionally characterize the microbiome
of the cancer and normal sample pairs and identify functional pathways enriched in the tumor-associated microbiota.

Results: We find that tumors harbor distinct microbial communities compared to nearby healthy tissue. Our results
show increased microbial diversity in the tumor microenvironment, with changes in the abundances of commensal
and pathogenic bacterial taxa, including Fusobacterium and Providencia. While Fusobacterium has previously been
implicated in colorectal cancer, Providencia is a novel tumor-associated agent which has not been identified in
previous studies. Additionally, we identified a clear, significant enrichment of predicted virulence-associated genes in
the colorectal cancer microenvironment, likely dependent upon the genomes of Fusobacterium and Providencia.

Conclusions: This work identifies bacterial taxa significantly correlated with colorectal cancer, including a novel finding
of an elevated abundance of Providencia in the tumor microenvironment. We also describe the predicted metabolic
pathways and enzymes differentially present in the tumor-associated microbiome, and show an enrichment of
virulence-associated bacterial genes in the tumor microenvironment. This predicted virulence enrichment supports the
hypothesis that the microbiome plays an active role in colorectal cancer development and/or progression. Our results
provide a starting point for future prognostic and therapeutic research with the potential to improve patient outcomes.

Background

Colorectal cancer (CRC) is the second most commonly
diagnosed cancer in females and the third in males world-
wide [1]. The microbial communities present in the intes-
tinal tract have known associations with colon health,
though until recently researchers were limited to the study
of microbes that were amenable to in vitro culturing. As a
result of recent advances in culture-independent measure-
ments of microbial communities, we know that the
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human gut is host to roughly a thousand different bacter-
ial species [2]. Alterations of this bacterial community are
correlated with host health, including diseases ranging
from diabetes and obesity to Crohn’s disease and arterio-
sclerosis [3]. The composition of the gut microbiome also
has a known association with CRC, although the direction
of causality remains unclear [4—10]. A recent report dem-
onstrated that analysis of the microbiome can be used as a
pre-screening test for CRC that dramatically outperforms
the current standard methods [11]. These analyses have
identified significant shifts in the relative abundances of
specific bacterial taxa in CRC cancer patients’ colon mu-
cosa and stool microbiomes. For instance, bacteria in the
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genus Fusobacterium are enriched in some CRC patients’
microbiomes [7, 8, 10, 12]. Fusobacterium are thought to
elicit a pro-inflammatory microenvironment around the
tumor, driving tumor formation and/or progression [7].
More specifically, a recent study has demonstrated that
the FadA protein, a virulence factor expressed by Fusobac-
terium nucleatum, can signal epithelial cells via E-cadherin,
a cell-surface molecule important for CRC metastasis as
well as a component of the WNT/B-catenin signaling
pathway, the most commonly mutated pathway in CRC
[13, 14]. Other cancer-associated bacterial taxa have
been identified, including Escherichia coli strain NC101
and Bacteroides fragilis, each with a proposed mechan-
ism of interaction with colon cancer [15]. The species
Akkermansia mucinphila, a bacterium that has known
associations with obesity, has also been implicated as a
cancer-associated agent, with its mucin-degrading ac-
tivity as a proposed mechanism to drive inflammation
contributing to cancer genesis and/or progression [15].
In addition to defining the set of bacteria significantly
associated with CRC, several groups have used measure-
ments of microbiome diversity to compare cancer patients
with normal subjects. There are distinct differences in
these results that depend on the sources of the samples
used to assess the microbiome (e.g., stool samples versus
mucosal or tissue samples, longitudinal versus cross-
sectional sampling). For instance, in a study that used
stool samples to compare CRC patients with normal con-
trols, the researchers showed decreased alpha-diversity
among the microbial communities found in the CRC
patients’ stools compared with the control [16]. Another,
recent study, also focusing on fecal samples, was unable to
detect differences in microbial community diversity or
richness between normal and cancer-associated micro-
biomes [17]. However, in a study that used tissue samples
from patients with colon adenomas and compared them
with patient-matched normal tissues, the alpha-diversity
present at the site of the lesion was actually increased
[18]. This finding was repeated by Mira-Pascual et al. [19],
who performed side-by-side analyses of tissue and stool
samples. They found that stool samples in general had
roughly twice the microbial diversity when compared with
tissue-associated microbiomes, with stools from cancer
patients showing lower diversity than those from normal
controls. When comparing the microbial diversity be-
tween tissue samples, however, the tumor microbiome
was more diverse than the normal microbiome. It is likely
that this is a function of the stool samples harboring mi-
crobes from the entire colonic environment, including
species that are not directly related to the tumor micro-
environment, adding noise to the taxonomic results ac-
quired from assessment of stool samples relative to
direct measurements of tissues. These findings suggest
that in order to detect differences specific to the cancer-
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associated microbiome, samples taken directly from the
tumor microenvironment are preferable, at least at the ini-
tial characterization phase, to bulk stool samples, which
are not likely to have the discriminatory power required to
measure small, yet significant, effects [19].

The use of traditional case-control studies of the colon
cancer microbiome makes it difficult to control for all of
the external effects on the microbiome. For example, the
composition of gut microbial communities is strongly
affected by diet [20]. Host genetic variation is also ex-
pected to control variation in the gut microbiome [21],
through differences in host immune response among
other genetic mechanisms [22]. The large effects these
factors have on microbiome composition are likely to
confound traditional case-control studies. By using
tumor and normal tissue samples taken from the same
individual, our study controls for these variables intern-
ally, providing a more accurate view of the tumor-
associated shifts in the microbiome. Several previous
studies have utilized this strategy to assess changes in
the cancer-associated microbiome in a variety of popula-
tions [7, 9, 10, 12, 19, 23, 24]. However, most used far
fewer samples than would be necessitated by using un-
matched tissue or stool samples. Another caveat with
these analyses, even with the use of patient-matched
samples, is that the normal tissue itself may possibly be
affected by the changes elicited in the organ by the
tumor. There has been a report indicating that, in some
cases, biofilms may form in otherwise normal areas of
the colon of patients who also have tumors [24]. In the
event that this is the case, the overall differences seen
between tumor and normal matched tissue microbiomes
might be diminished as the tumor is producing a “field
effect” that influences surrounding tissue.

In addition to measuring bacterial taxa levels in colon
cancer, it is also important to take into account associ-
ated factors, such as host genetics and gene expression,
as well as the microenvironmental metabolome. Inde-
pendent research groups have attempted to uncover
pertinent alterations in these factors and how they correl-
ate with cancer state [25-27]. Of note, analysis of the
CRC-associated metabolome highlighted differences in
the biochemical composition of cancer patients’ stools.
CRC patients were found to have higher levels of some
amino acids and alterations in the levels of some short
chain fatty acids (SCFAs) in their stools when compared
with controls [25]. Butyrate, a SCFA with known anti-
cancer properties, was depleted in CRC patient stool
samples, as were several genera of butyrate-producing
bacteria [28]. Our work continues this effort by expanding
the analysis of the CRC-associated microbiome to include
virtual metagenomic profiling of the enzymes and path-
ways present in the CRC microbiome, with specific
attention paid to assessing the presence of known
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virulence-associated genes [29]. Previous work has been
performed attempting to identify transcripts from 22
different, potentially cancer-related bacterial toxins in
metatranscriptomic data, though with limited success
[30]. As this study focuses on a comparison of fully
developed tumors and compares them with patient-
matched normal tissue, it is important to highlight that
this work is not an assessment of the initiation of can-
cer, but rather a characterization of cancer after it has
transformed into a malignancy.

Methods

Tissue samples and DNA isolation

We used 88 tissue samples from 44 individuals, with one
tumor and one normal sample from each individual.
These de-identified samples were obtained from the
University of Minnesota Biological Materials Procurement
Network (Bionet), a facility that archives research samples
from patients who have provided written, informed con-
sent. All research conformed to the Helsinki Declaration
and was approved by the University of Minnesota Institu-
tional Review Board, protocol 1310E44403; see Additional
file 1 for detailed information on the samples used in this
study. Tissue pairs were resected concurrently, rinsed with
sterile water, flash frozen in liquid nitrogen, and character-
ized by staff pathologists. The criteria for selection were
limited to the availability of patient-matched normal and
tumor tissue specimens. The specific site of the tumor
within the intestinal tract was recorded and can be found
in Additional file 1. Total DNA was isolated from the
flash-frozen tissue samples and their associated micro-
biomes by adapting an established nucleic acid extraction
protocol [31]. Briefly, approximately 100 mg of flash-
frozen tissue were physically disrupted by placing the
tissue in 1 mL of Qiazol lysis solution and sonicating in a
heated (65 °C) ultrasonic water bath for 1-2 h. The effi-
ciency of this approach was verified by observing high
abundances of Gram-negative bacteria across all samples,
including those from the phylum Firmicutes. Additionally,
sequences from the notoriously difficult to lyse bacterial
genera Mycobacterium and/or Bacillus [32] were detected
in the majority of samples, also indicating a rigorous and
efficient lysis. DNA was purified from the lysate using the
Qiagen All-prep kit (Qiagen Inc., Valencia, CA, USA).

16S rRNA sequencing

Briefly, DNA isolated from colon samples was quantified
by quantitative PCR (qPCR), and the V5-V6 regions of
the 16S rRNA gene were PCR amplified with the
addition of barcodes for multiplexing. The forward and
reverse primers were the V5F and V6R sets from Cai
et al. [33]. The PCR conditions were as follows. Amplifi-
cation was carried out in a 25 pL. PCR reaction with 5
uL of template DNA with an initial denaturation step at
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95 °C for 5 min followed by 30 cycles of denaturation
(50 s at 94 °C), annealing (30 s at 40 °C), and elongation
(30 s at 72 °C). Amplified samples were then diluted
1:100 in water for input into library tailing PCR. This
PCR reaction was similar to initial amplification except
the PCR conditions consisted of an initial denaturation
at 95 °C for 5 min followed by 15 cycles of denaturation
(50 s at 94 °C), annealing (30 s at 40 °C), and elongation
(I min at 72 °C). Quantification of PCR products was
performed using the Quant-iT PicoGreen dsDNA Assay
Kit (Life Technologies, Grand Island, NY, USA). A
subset of the amplified libraries was spot-checked on a
Bioanalyzer High-Sensitivity DNA Chip (Agilent Tech-
nologies, Santa Clara, CA, USA) to ascertain if the ampli-
cons were the predicted size. These samples were each
normalized to 2 nM and pooled. The total volume of the
libraries was reduced using a SpeedVac and amplicons
were size-selected at 420 bp +20 % using the Caliper XT
(Perkin Elmer, Waltham, MA, USA). The pooled libraries
were cleaned with 1.8x AMPureXP beads (Beckman
Coulter, Brea, CA, USA) and eluted with water. DNA con-
centration in the final pool was assayed with PicoGreen
and normalized to 2 nM for input into Illumina MiSeq (v3
Kit) to produce 2 x 250 bp sequencing products. Cluster-
ing was performed at 10 pM with a 5 % spike of PhiX. A
single lane on an Illumina MiSeq instrument was used to
generate the 16S rRNA gene sequences. Raw sequencing
data have been submitted to the NCBI Sequence Read
Archive under project accession PRINA284355.

PCR and gPCR
Quantitative real-time PCR was performed to assess the
abundance of the FadA gene present in a subset of normal
and tumor tissue pairs. DNA from the ATCC control
strain of F. nucleatum 25586 was used as a positive con-
trol. FadA abundances were normalized relative to pan-
eubacteria abundance per sample. Primers FadA-F (5'-
GAAGAAAGAGCACAAGCTGA-3’') and FadA-R (5'-
GCTTGAAGTCTTTGAGCTCT-3") were used to meas-
ure FadA [14], and primers for universal eubacteria 16S
(5'-GGTGAATACGTTCCCGG-3") and (5'-TACGGCTA
CCTTGTTACGACTT-3") were used to determine the
total eubacterial abundance per sample [34]. The analysis
was performed using 10 ng of DNA in a 20 pL reaction
containing FastStart Universal SYBR Green Master Mix
(Rox; Roche Diagnostics, Indianapolis, IN, USA) on an
Applied Biosystems 7300 Real Time PCR system. Reactions
were performed in triplicate. FadA relative abundances
were calculated as per the ACT method [35]. Relative fold
differences were calculated by dividing the FadA abundance
from the normal samples by that of the tumor sample.
Fusobacterium genus-specific PCR was performed on
a subset of samples using previously characterized
primers: forward (5'-GGATTTATTGGGCGTAAAGC-
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3’) and reverse (5'-GGCATTCCTACAAATATCTACG
AA-3’) [34, 36]. The PCR was carried out using Accus-
tart Taq polymerase (Quanta Biosciences, Gaithers-
burg, MD, USA) following the manufacturer’s protocol
for 30 cycles with an annealing temperature of 55 °C.
DNA from the ATCC control strain F. nucleatum
25586 was used as a positive control.

Providencia genus-specific PCR was performed using
a previously published protocol and primer set: spl6s-
F1 (5'-ACCGCATAATCTCTTAGG-3") and Pspl6s-R2
(5"-CTACACATGGAATTCTAC-3’), with the following
modifications [37]. The PCR was carried out using Accus-
tart Taq polymerase (Quanta Biosciences, Gaithersburg,
MD, USA) following the manufacturer’s protocol for 30
cycles with an annealing temperature of 50 °C. The ATCC
control strain Providencia alcalifaciens 9886 was used as a
positive control. Amplicons were resolved in 2 % agarose
TAE gel.

Sequence analysis

The sequence data contained approximately 21.4 million
reads passing quality filtering in total, inclusive of forward
and reverse reads, with a mean value of 242,940 quality
reads per sample. The forward and reverse read pairs were
merged using the USEARCH v7 program ‘fastq_merge-
pairs, allowing stagger, with no mismatches allowed
[38]. Merged reads were quality trimmed, again using
USEARCH, to truncate reads at any quality scores of 20
or less. Following merging and trimming, there were an
average of 62,100 high quality reads per sample (me-
dian 48,817; range 6559-173,471). The fasta sequence
headers were renamed using a custom script to con-
form to QIIME standards.

The merged and filtered reads were used to pick oper-
ational taxonomic units (OTUs) with QIIME v.1.7.0 using
‘pick_otus.py, with the closed-reference usesearch_ref
OTU picking protocol against the Greengenes database
(August 2013 release) at 97 % similarity [39-41]. Reverse
read matching was enabled, while reference-based chimera
calling was disabled. Rarefaction was performed on the
OTU table at 5000 reads prior to subsequent analyses.

The final OTU table was used to generate a phylogen-
etic tree by including only taxa with at least 0.1 % rela-
tive abundance in at least half of all samples. Starting
with the full reference tree provided by the Greengenes
database (August 2013 release, file 97_otus_unannotated.
tree), a smaller tree file that contained only this limited
set of taxa was generated using a custom pipeline (Syca-
more from the Alm laboratory at MIT). The output of
this pipeline was visualized with the Interactive Tree of
Life [41, 42]. See Additional file 2 for the OTU table
used in this study.

We used a linear model to correct for several patient and
tumor covariates, individually as well as in combination,
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including patient age, sex, tumor stage, and tumor site.
None of these factors, alone or in combination, were
found to have a significant impact in this sample set. We
also performed principle coordinate analysis using the dif-
ference between the tumor and normal abundances for
each taxon. Using this unsupervised approach, there was
no clear segregation of the patients by age, sex, tumor
stage, site, or microsatellite instable (MSI) status. Add-
itionally, we focused specifically on Providencia and
Fusobacterium, and while there was a slight trend to-
ward higher tumor stage with increases in these two
genera at the tumor site, it was not statistically signifi-
cant. We note that microsatellite instable/microsatellite
stable (MSI/MSS) statuses were only available for 13 of
the 44 patients.

Correlation analysis was performed using SparCC,
available at [43] from Jonathan Friedman at MIT, on the
complete OTU table collapsed to the genus level [44].
Pseudo p values were inferred using 100 randomized
sets. Correlations with pseudo p values <0.05 that were
within two degrees of separation from Providencia or
Fusobacterium with absolute correlations of 0.05 or
more were visualized using Cytoscape v.3.1.0 [45].

The PICRUSt v.1.0.0 pipeline was used to generate a
virtual metagenome using the OTU table containing raw
counts generated in the previous analyses by QIIME
[29, 39, 40]. Pathways and enzymes were assigned using
the Kyoto Encyclopedia of Genes and Genomes (KEGG)
database options built into the pipeline. Virulence genes
were identified by mapping the data in the PICRUSt
enzyme abundance table to MVirDB using the UniProt
database file, idmapping.dat, available from [46], as a key.
See Additional files 3 and 4 for the metabolic enzyme and
pathway abundance tables, respectively.

Results

Tumor microenvironments harbor microbiomes distinct
from those of normal tissue microenvironments

We obtained patient-matched normal and tumor colon
tissue samples from the University of Minnesota Bio-
logical Materials Procurement Network (BioNet) from
44 patients (see Additional file 1 for sample informa-
tion). We assessed the microbiome associated with each
sample by Illumina sequencing across the V5-V6 hyper-
variable regions of the 16S rRNA gene (see “Methods”
for details). This analysis showed variation in the bacterial
phyla abundance when comparing the matched normal
and tumor tissues (Fig. la). This variability is consistent
with previous reports and demonstrates that there is in-
deed a cancer-associated signature in the tumor micro-
biome [6, 10, 16, 18, 34, 47, 48]. At the level of the phyla,
each sample was dominated by Firmicutes, Bacteroidetes,
and Proteobacteria. There were clear and significant
changes in these phyla between the normal and cancer
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Fig. 1 Differences in bacterial and archaeal phyla within the normal and colorectal cancer microbiomes. a Stacked bar plots indicating the
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states, with the tumors showing an enrichment of Pro-
teobacteria and a depletion of Firmicutes and Bacteroi-
detes (Fig. 1b). Also consistent with previous reports,
we saw an increase in the phylum Fusobacteria in the
tumor-associated microbiome (two-sided Wailcoxon
signed rank test q < 0.1 after false discovery rate (FDR)
correction for multiple tests) [7, 10, 12, 34].

When we assessed the differences at the level of OTUs
we discovered numerous changes between the normal
and tumor microbiomes with significant differences in
the abundances of 19 different taxa (Wilcoxon signed
rank test q < 0.1 after FDR correction; Additional file 5).
Of note, the tumors showed decreases in the abundances
of several taxa within the order Chlostridales, namely,
Lachnospiraceae, Ruminococcaceae, and Faecalibacter-
ium prausnitzii, as well as several members within the
order Bacteroidales, including Bacteroides, Rikenellaceae,
and Bacteroides uniformis (Figs. 2 and 3a). Taxa that
were enriched in the tumor microbiomes included Fuso-
bacterium and several Proteobacteria genera, including
Candidatus, Portiera and Providencia (Figs. 2 and 3a;
Additional file 6). Both Fusobacterium and Providencia
are known pathogens, and when a correlation network is
generated, it is clear that there are correlated abundance
changes in the microbiome as a function of their pres-
ence (Fig. 3b). For instance, Fusobacterium species have
been shown to have a mutualistic relationship with
some Pseudomonas species at abscesses [49]. This co-
occurrence is seen in our data as a positive correlation
between the abundances of the two genera (Fig. 3b).
Other specific interactions between different bacterial
taxa remain speculative. In the case of Lactobacillus in

the human microbiome, it has been demonstrated that
there can be reciprocal interference between species in
this genus and other bacterial species in the form of
competition for epithelial cell adhesion. As both Lacto-
bacillus and Providencia utilize cell adhesion in their
colonization of the human body, this may explain the
negative correlation between the two genera in our dataset
(Fig. 3b). While there was not a significant correlation
between the relative abundances of Fusobacterium and
Providencia in this analysis, we assessed the overlap
among patients who showed increased levels of these
genera at the tumor sites. Taken individually, Fusobac-
terium and Providencia were more abundant in the
tumor microenvironment of 23 out of 44 and 28 out of
44 patients, respectively. Nineteen out of 44 patients
showed increases in both of the genera in their tumor mi-
croenvironments with respect to their normal matched
tissue microbiomes.

CRC-associated microbiome diversity

We calculated alpha-diversity using a variety of metrics
within each of the samples using QIIME [39]. Alpha
diversity metrics that account for phylogenetic relation-
ships between the OTUs show that the tumor micro-
biomes exhibited higher alpha diversity than those of
the normal, patient-matched microbiomes (p = 0.029
by two-sided Wilcoxon signed rank test). This is also
true when using alternative measures of diversity such as
the Shannon’s index or the Inverse Simpson’s (p = 0.020
and 0.024, respectively, by Wilcoxon signed rank test;
Additional file 7).
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Variation in the functional pathways and enzymes in the
tumor microbiome
A recent report presented the validation of a pipeline
that leverages knowledge of the human gut reference
genomes to predict general microbiome function and
enzyme composition from 16S rRNA gene sequencing
data [29]. While this approach is not suitable for making
conclusive statements regarding single, specific enzymes,
it is appropriate for general functional comparisons be-
tween groups of samples, as is the case in this report.
Using this validated pipeline — Phylogenetic Investigation
of Communities by Reconstruction of Unobserved States
(PICRUSt) — we constructed a virtual metagenome for
each of the samples’ microbiomes [29]. The KEGG data-
base was used as a reference to determine the abundances
of metabolic pathways and enzymes within the virtual
metagenomes [50, 51]. As with the bacterial phyla, we saw
significant variation in the predicted functional pathways
represented within each of the sampled microbiomes
(Fig. 4a), though, as expected from previous studies, we
find that the variability in phylum abundances is far
greater than the variability in the functional pathways
(Fig. 4b) [2, 52]. It is important to note that the results of
this analysis are predictions only and not direct measure-
ments of sequences that correspond to pathway member
or enzyme genes. Despite the validation of this prediction
approach, it is possible that this method biases the predic-
tions toward microbial genomes that are well documented
to the exclusion of other, unknown or poorly documented
taxa.

These observations highlight the substantial functional
redundancy across the phyla. In other words, diversity
among the taxa within a given microbiome can mask the
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functional similarities — taxonomically distinct microbes
in the gut can operate identically, or nearly so, at the
functional level. The patient-by-patient variability in
phyla does not perfectly correspond to that seen at the
functional pathway level, though, as expected, analysis at
the level of enzymes and pathways provides insights that
analyses of the taxa alone may not be able to identify, due
to the high level of between-sample variation. In general,
the differences seen at the pathway level are roughly an
order of magnitude less than the differences seen at the
phylum level (compare Figs. 1b and 4b). Although the
pathway differences are smaller than those at the level of
the phylum, there remain physiologically relevant, statisti-
cally significant changes between the normal and tumor
metagenomes.

Twenty pathways (as defined by KEGG, level 3) were
found to be differentially abundant between the tumor
and normal tissue. Alanine, aspartate, and glutamate
metabolism, DNA replication proteins, and starch and
sucrose metabolism were significantly depleted in the
tumor microbiome (q < 0.01 for each pathway by two-
sided Wilcoxon signed rank test after FDR correction;
Fig. 5a). Conversely, secretion system, two-component
system, and bacterial motility protein pathways were sig-
nificantly enriched in the tumor microbiome (q < 0.04 for
each pathway by two-sided Wilcoxon signed rank test
after FDR correction; Fig. 5a).

To more closely examine the variation in the micro-
biome virulence potential, we used information regarding
virulence association from MVirDB to annotate the pre-
dicted enzymes [53]. We found that the tumor-associated
microbiome is significantly enriched with enzymes related
to microbial virulence. We found this enrichment to be
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significant when including all possible virulence categories
(p = 0.0046 by Fisher’s exact test; Fig. 5b, c). Additionally,
when assessing enrichment for virulence-related genes by
known functional categories in MVirDB, the tumors were
significantly enriched for genes encoding general virulence
proteins (p = 5.8 x 107>, by Fisher’s exact test). Genes
encoding bacterial toxins were also found at higher
abundance in the tumor, but the enrichment was not
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statistically significant (»p = 0.17 by Fisher’s exact test),
likely due to low total gene counts for some categories
(e.g., protein toxins).

We predicted that this virtual enrichment was driven by
known pathogenic bacteria within the microbiome, i.e.,
Providencia and Fusobacterium. In fact, when a compari-
son is made among the virulence-associated genes signifi-
cantly differentially found in the tumor microenvironment
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(155), the virulence genes associated with Providencia
(333), and the virulence genes associated with Fusobacter-
ium (209), there is substantial overlap among and between
the three different groups (Fig. 5d). In order to exclude
the possibility that the virulence enrichment and corre-
sponding overlap between the virulence genes found at
the tumor site were the result of non-specific effects
rather than due to the potential contributions of Providen-
cia and Fusobacterium, the entire PICRUSt pipeline and
subsequent enrichment analyses were repeated using an
OTU table from QIIME with both Fusobacterium and
Providencia explicitly excluded. In this case, while there
were still 123 virulence genes from other taxa associated
with the tumor microbiome, the enrichment is not signifi-
cant compared with the background of normal tissue from
the same cancer patients (Fisher’s exact test one-sided
p value >0.9). This demonstrates that the virulence sig-
nature in the microenvironment is dependent on Fuso-
bacterium and Providencia.

To highlight the differences seen when assessing
patient-matched tissue samples compared with asses-
sing case and control stool samples, we performed a
comparison of our results with those of Zackular et al.
[11]. Zackular et al. performed an assessment of the
microbiomes of CRC patients’ stool samples relative to
those of normal patients or patients with colorectal ad-
enomas [11]. In comparison with the data presented
here, a prediction would be that both Fusobacterium
and Providencia would be found at increased abun-
dances in CRC patients relative to normal controls.
While the data from Zackular et al. show a statistically
significant increase in Fusobacterium in CRC patients'
stools, Providencia at the genus level was not detected
in the stool samples. However, there was a clear trend
showing a doubling of the abundance of Enterobacteri-
aceae (the family to which Providencia belongs) when
looking at stools from normal patients in comparison
with stools from patients with adenomas and yet again
when comparing adenoma patients and CRC patients. A
likely explanation for the difference between our study
and Zackular et al. is that data in the latter study were col-
lected from stools and were not patient-matched. Thus,
inter-individual variability likely decreased the ability to
identify some tumor-associated taxa, such as Providencia.

Discussion

At the phylum level, the differences seen between the nor-
mal and tumor tissue-associated microbiomes are consist-
ent with many previous reports [6, 10, 16, 18, 34, 47, 48].
When assessing the data using information that accounts
for more fine-grained detail with respect to taxonomy, we
have made several important findings. Two of the gen-
era we found to be enriched in the tumor microbiome,
Providencia and Fusobacteria, are known to be pathogenic;
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Fusobacteria has been implicated previously in CRC
[7, 10, 12, 34].

Species belonging to the genus Providencia have been
implicated as infectious agents causing urinary tract in-
fections, ocular infections, and gastroenteritis [37, 54—60].
In addition, it is a genus in which several sub-strains
have acquired resistance to commonly used antibiotics
[56, 61, 62]. Fusobacterium is a genus that encompasses
several species known to be pathogenic in humans; they
are obligate anaerobes, with known sites of infection in
the oral cavity as well as in the gastrointestinal tract
[63, 64]. The finding that these particular genera are
prevalent in the tumor microenvironment suggests sev-
eral alternative, though not mutually exclusive, hypoth-
eses. One possibility is that these bacteria are causative in
oncogenesis or tumor progression; another possibility is
that these species are being enriched as the tumor has
formed a niche that favors these bacteria. In the case of
Fusobacteria, the results from several different studies,
both correlative and mechanistic, indicate that it is likely a
cancer driver [7, 14, 34]. In the case of Providencia, there
are as yet no definitive studies that implicate this genus as
a contributor to CRC. The discovery of Providencia in the
tumor microbiome is interesting as, similar to Fusobac-
teria, it encodes a potent, immunogenic lipopolysacchar-
ide [58, 65]. In fact, several virulence genes responsible for
lipopolysaccharide biosynthesis are shared by both genera
and are also significantly increased in the tumor micro-
environment (Fig. 5d). A recent study, using Drosophila
as a model system, performed a genomic comparison of
four different species of Providencia isolated from the hu-
man gut [66]. These researchers demonstrated that these
four species share common sets of virulence-related
genes, including a type 3 secretion system and genes for
cell adhesion. Additionally, Providencia has been shown
to disrupt the epithelial membrane in the intestines,
though the mechanism by which this is accomplished is
still unclear [55, 58, 67, 68]. These factors manifest pheno-
typically as gastroenteritis, though with our discovery of
its association with the cancer microenvironment, it is a
promising candidate cancer-promoting pathogen [60].

From a diagnostic and therapeutic perspective, assessing
the CRC-associated microbiome by testing for differen-
tially abundant taxa is an eminently worthwhile endeavor
as it is the logical location to look for specific taxa that
could be biomarkers and/or targets for intervention in
CRC. However, it is possible that the search for specific
taxa might miss the larger perspective. For instance, as de-
scribed above, Fusobacteria and Providencia share many
important phenotypic characteristics — potent, immuno-
genic lipopolysaccharide and the ability to damage colo-
rectal tissue. These similarities might be better assessed
using metagenomic or metatranscriptomic approaches,
virtual or otherwise, as these key features are undoubtedly
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reflected in the genes that these particular bacteria en-
code, many of which are shared virulence factors with
known detrimental properties.

Defining a clear set of virulence factors a priori as tar-
gets of interest and assessing their relative expression is a
promising approach to CRC therapy. This report proposes
such an approach by showing the striking predicted
enrichment of virulence genes in the tumor-associated
microbiome, potentially driven by Fusobacteria and Provi-
dencia. The fact that virulence proteins are predicted to
be enriched in the tumor-associated microbiome lends
support to the hypothesis that the microbiome is an active
contributor to CRC and not just a passive byproduct of
the changes the tumor makes in the organ. In the case of
F. nucleatum, it is clear that there is a direct functional
link between the bacteria and cancer development, though
more work using cell culture and model organisms will be
needed in the future to empirically assess the mechanistic
interplay between colorectal tissues and specific compo-
nents of the microbiome [14]. It is important to note that
this clear enrichment is likely underestimated because
MVirDB, while expansive, does not currently encompass
all known virulence genes in the microbiome, and, as the
field of medical microbial genomics advances, new viru-
lence genes will undoubtedly be discovered. For instance,
the FadA protein from F. nucleatum has been reported as
a critical virulence factor, yet as it is a recent report, this
finding has not yet made its way into MVirDB as of this
submission [14, 53].

It is important to note that this research uses 16S rRNA
gene sequences as the starting point. Although this
approach has obvious benefits in terms of resource expen-
ditures and computational processing, there are several
potential disadvantages. First, the microbiome functional
assessment presented here uses a prediction method that,
while validated and robust when applied to human gut
samples, remains a prediction and may not necessarily
perfectly reflect the biological reality [29]. Another con-
cern, as with all DNA-based approaches, is that even
when a gene is predicted in a sample, it may still not be
expressed or active. Additional metatranscriptomic re-
search will undoubtedly shed light on this situation in
the future. We also note that although our results show
microbiome patterns with potential roles in cancer, we
cannot determine causality as part of this study. We ex-
pect follow-up studies to focus on assessing the causal
role of the microbiome in colon cancer using animal
models and cell culture systems.

Conclusions

It is clear that there are numerous taxa in the CRC micro-
biome that are correlated with the disease. Here, in
addition to the previously reported genus Fusobacterium,
we report the discovery of another genus with similar
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pathogenic features, Providencia. This manuscript also
presents an analysis that incorporates predicted infor-
mation at the functional (e.g., virulence potential) level
to assess differences between the normal and cancer-
associated microbiomes. It is important to note that
these two approaches (taxonomy-based and function-
based) provide different, yet interdependent information
about the microbes in the tissue microenvironment. Our
work demonstrates that utilizing this combined approach
can provide researchers with specific taxa as biomarkers
and/or therapeutic targets while also looking globally at
the predicted pathogenic potential of the microbiome and
showing a clear predicted enrichment of virulence-
associated microbial genes present in the CRC micro-
biome. As with the bacterial genera associated with the
disease, these virulence genes may provide researchers
and clinicians with targets for therapeutic intervention to
improve patient outcomes.

Additional files

Additional file 1: Sample and patient clinical information and
metadata. A tab-delimited file containing a sample map containing patient
and tumor clinical information as well as the specific sample numbers that
will allow proper identification of tumor and normal matched pairs.

Additional file 2: Unfiltered OTU table. A tab-delimited file containing
the unfiltered OTU table with proportional abundances of the taxa output
from the QIIME pipeline.

Additional file 3: Enzyme abundances. A tab-delimited file containing
the unfiltered proportional abundances of enzymes detected in the virtual
metagenomes of each sample using PICRUSt. The file also contains an
additional column with an annotation from MVirDB, when available, as
well as a column that indicates if the predicted enzyme was significantly
more abundant at the site of the tumor.

Additional file 4: Pathway abundances. A tab-delimited file containing
the unfiltered level 3 KEGG pathway proportional abundances for each
sample generated using PICRUSt.

Additional file 5: Taxon significance testing. A tab-delimited file
containing p values, q values, and the site at which the taxa are more
abundant for the taxa tested for significance after correcting for multiple
tests. Those included in this analysis were those taxa that were present in at
least 50 % of all samples at an abundance of >0.1 %.

Additional file 6: Genus-specific PCR and FadA qPCR. a Genus-specific
PCR for Fusobacterium. Genus-specific PCR was carried out for a subset of
samples for normal and tumor-matched DNA samples. A PCR reaction
containing only water rather than DNA was used as a negative control,
while DNA from the ATCC control strain Fusobacterium nucleatum 25586
was used as a positive control. Bands on the 2 % agarose TAE gel are visible
for both the positive control as well as for the tumor samples at the
expected amplicon size of 162 base pairs. b Genus-specific PCR for
Providencia. Genus-specific PCR was carried out for a subset of samples
for normal and tumor matched DNA samples. A PCR reaction containing
only water rather than DNA was used as a negative control, while DNA from
the ATCC control strain Providencia alcalifaciens 9886 was used as a positive
control. Bands on the 2 9% agarose TAE gel are present for both the positive
control as well as for the tumor samples at the expected amplicon size of
515 base pairs. ¢ FadA qPCR. A subset of samples was used to determine
the relative abundance of the FadA gene in tumor samples relative to
normal samples. Both the normal and tumor samples were normalized
internally to the total abundance of eubacteria. The value for the normalized
tumor FadA abundance was divided by the normalized value for normalized
normal FadA abundance to arrive at the fold differences indicated.



http://genomemedicine.com/content/supplementary/s13073-015-0177-8-s1.txt
http://genomemedicine.com/content/supplementary/s13073-015-0177-8-s2.txt
http://genomemedicine.com/content/supplementary/s13073-015-0177-8-s3.txt
http://genomemedicine.com/content/supplementary/s13073-015-0177-8-s4.txt
http://genomemedicine.com/content/supplementary/s13073-015-0177-8-s5.txt
http://genomemedicine.com/content/supplementary/s13073-015-0177-8-s6.pdf

Burns et al. Genome Medicine (2015) 7:55

Additional file 7: Microbial diversity within normal and tumor-
associated microbiomes. Paired line plots show the phylogenetic
diversity, Shannon’s Index, and Inverse Simpson’s Index (alpha diversity
metrics) for the microbiomes associated with normal and patient-matched
tumor samples. The colors of the lines represent the direction of the change
for each matched pair (blue lines indicate a decrease in diversity from normal
to tumor, while red lines indicate an increase in diversity from the normal to
tumor). P values were calculated using a two-sided Wilcoxon signed
rank test.
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