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Abstract

The biological importance and varied metabolic capabilities of specific microbial strains have long been established
in the scientific community. Strains have, in the past, been largely defined and characterized based on microbial
isolates. However, the emergence of new technologies and techniques has enabled assessments of their ecology
and phenotypes within microbial communities and the human microbiome. While it is now more obvious how
pathogenic strain variants are detrimental to human health, the consequences of subtle genetic variation in the
microbiome have only recently been exposed. Here, we review the operational definitions of strains (e.g., genetic
and structural variants) as they can now be identified from microbial communities using different high-throughput,
often culture-independent techniques. We summarize the distribution and diversity of strains across the human
body and their emerging links to health maintenance, disease risk and progression, and biochemical responses to
perturbations, such as diet or drugs. We list methods for identifying, quantifying, and tracking strains, utilizing high-
throughput sequencing along with other molecular and “culturomics” technologies. Finally, we discuss implications
of population studies in bridging experimental gaps and leading to a better understanding of the health effects of
strains in the human microbiome.
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Background
The importance of phenotypes and physiology character-
istic of specific microbial strains has been recognized as
early as the nineteenth century. Robert Koch’s postulates,
for example, differentiate between disease-causing “patho-
gens” and benign but closely related microbial variants [1].
While the surprising differences between otherwise similar
microbial strains has thus been critical in infectious dis-
ease management and microbiology for centuries, it has
only recently become accessible in the context of micro-
bial communities and their ecology. It remains technically
challenging to detect and differentiate among closely re-
lated microbial strains within communities, and we will

discuss several high-throughput culture-independent and
culture-based methods for doing so here. More import-
antly, though, the beginning of such work has shown
strain variation in the human microbiome to be as import-
ant in the structure, function, immunology, and epidemi-
ology of our “normal” microbial residents as it is in the
definition of pathogenicity (Box 1).
Particularly within communities that are by definition

collections of heterogeneous cells, it has proven to be
technically challenging to detect and differentiate among
cells containing such closely related but highly variable
genomes. Indeed, it is not yet clear how clonally most
microbial lineages remain within typical in vivo commu-
nities. This suggests both basic questions about the gen-
eration and maintenance of closely related genome
variants in any microbial community, and also pressing
translational questions regarding the personalization and
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health consequences of strains in the human micro-
biome. Because of the extensive genetic and genomic
(i.e., functional) differences between even closely related
microbial strains, work to date has only rarely been

powered to associate “commensal” microbial strains with
their health consequences [11–14]. Here, we thus review
the ecology and effects known to date for microbial
strain variants carried within the human microbiome,
quantitative methods for their detection and epidemi-
ology, and potential next steps including characterization
of their surprisingly large pangenomic content of bio-
chemical dark matter.

Unexpected microbial strain diversity in health
and disease from population-scale investigations
of the human microbiome
Culture-based comparative genetics of isolates has been
a mainstay of microbial characterization for decades, and
along with culture-independent techniques, it is increas-
ingly important in an era of high-throughput “culturo-
mics” and creative isolation methods [15, 16]. Especially
for human pathogens that are both of clinical interest
and relatively easily culturable, hundreds or thousands
of genomes have been used in some cases to compare
strains and their transmission, associate SNV and struc-
tural variation to microbial or host phenotype, and de-
fine the genetic and evolutionary architectures of species
and other clades [17–19]. Metagenomic methods have
the unique ability to extend these strain-specific investi-
gations to almost any environment or microbe, while le-
veraging the insights already built up using isolate
genomics. In particular, if a “strain” is considered to be a
clonal genotype, it must correspond to a specific set of
genes and resulting functionality. This functional per-
spective on strains has captured a wide range of oper-
ational architectures, since some processes are well-
conserved across entire clades (e.g., butyrate production
in Faecalibacterium prausnitzii [20, 21]). Others, con-
versely, are highly variable even within specific benign or
pathogenic species—Escherichia coli in the gut being the
most prominent example [22].

Strains in the human gut microbiome
The gut is the greatest reservoir of biomass in the human
microbiome, the body’s largest immune exposure, the
most well-studied contributor to microbiome-linked dis-
ease, and one of the most ecologically diverse human-
associated microbial habitats [23]. It is also the source of
several of the most canonical examples of radically differ-
ent microbial physiology among closely related strains,
such as the benign E. coli variants carried in most guts as
compared to acute pathogens such as enterohemorrhagic
E. coli (EHEC) O157:H7 [24], long-term risks such as
colorectal cancer in association with colibactin production
in pks + E. coli [25], or the probiotic E. coli Nissle 1917
[26]. Isolate cultures have identified other strain-specific
characteristics associated with evolutionary advantages

Box 1 Terminology for microbial community strain analysis

Strikingly, there is no universal definition of what constitutes a microbial
strain (or, for that matter, species) [2, 3]. Many factors contribute to this
difficulty, including the rapidity of microbial evolution, the plasticity of
many microbial genomes, the prevalence of mobile elements and lateral
transfers, the difficulty in differentiating between many microbial taxa or
clades by non-molecular methods, and the overall natural history of
microbiology and microbial systematics. This ambiguity has led to a field
in which different microbial strains of the same species can differ by as
much as 5% nucleotide identity, or 30% or more of their gene content
[4]. As such, even apparently benign, phenotypically similar microbial
strain variants can differ genomically more than most eukaryotic species,
and most related terminology can be context-dependent or defined
operationally:
Species: microbial species have been variously defined based on (1)
whole-genome or pangenome nucleotide or amino acid phylogenetic
identity thresholds; (2) gross microbial physiology / morphology /
phenotype; (3) phenotypes induced by a microbe on its host or environ-
ment (e.g., human pathogens); and (4) the host or environment of a mi-
crobe, e.g., a specific geographical or biochemical origin [5]. The more
than 100-year history of microbial systematics must thus be constantly
resolved against new, and emerging, molecular and phenotypic infor-
mation, leading to operational definitions of microbial species in roughly
the two categories of “clades defined as species at some previous point”
versus “clades that meet specific quantitative phylogenetic criteria” [6].
These two definitions can be considered roughly equivalent if phyl-
ogeny (genotype) is considered to be a trait (i.e. phenotype) by which
isolates or community members can be classified into self-similar
groups.
Species group or complex: a group of taxonomically defined species
that are not well-differentiated based on genomic or other criteria [7].
These typically arise in microbial systematics due to multiple independ-
ent identifications of what later prove to be (essentially) the same or-
ganism. Conversely, individual taxonomically defined microbial species
can later prove to represent implicit complexes, if they, e.g., are not ini-
tially differentiated by physiology but are later found to be molecularly
distinct.
Subspecies clade: in communities, an operationally defined group of
related organisms or radius of phylogenetic divergence smaller than,
and contained within, a parent species [8]. This allows microbial
genotypes within communities to be manipulated independently of
their potential systematics, since, e.g., some taxonomically defined
species may unintentionally capture widely divergent genotypes (and
are thus better described using multiple subspecies clades), while others
may prove to be closely related or near-identical (and are thus better
described as a single species complex). Historically, subspecies have also
referred to phenotypically distinct groups within a species [5], which
may or may not be monophyletic.
Isolate: a presumed clonal strain grown, assayed, and manipulated
(presumably) axenically (i.e., in monoculture), typically in vitro, after a
process such as streaking and/or colony picking [9]. As per canonical
references such as Bergey’s Manual [10], when not defined genomically,
isolates have been commonly differentiated based on phenotypes such
as morphology; medium specificity; serologic, phage, or bacteriocin
sensitivity; biochemical reactions; pathogenicity; or other microbial
physiology.
Strain: Historically, this has meant a microbial isolate, although the
definition is not well-suited to microbial community studies. In this con-
text, the term is used variously to refer to a specific microbial genome
or collection of clonally identical cells (i.e., a genotype); one or more col-
onies (believed to be) derived from the same progenitor cell; or most
often, in practice, a collection of cells or genomes within a relatively
small range of phylogenetic variation (i.e., a very narrow subspecies
clade).
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ranging from increased virulence [27], mobility [28], nutri-
ent acquisition, antibiotic resistance [29], and defense [30].
Strains abundant in the infant gut are only rarely abun-

dant in maternal microbiomes [31–34] and are often re-
placed within the first 1–2 years of life [35, 36]. Their
similarity to maternal, familial, or generally environmental
strains is also itself highly variable and species-specific [31,
32, 37], but even small structural variants may be crucial
in immune programming during temporally specific de-
velopmental windows [38–41]. Like developmental vari-
ants of human gene products, such as hemoglobin forms
[42], this dynamism in early life has functional conse-
quences: Bifidobacterium longum, for example, is selected
for human milk oligosaccharide (HMO) utilization [43] in
breastfeeding infants, whereas closely related B. longum
strains in the adult gut frequently possess the capacity to
ferment carbohydrates, but not HMOs [44]. Strains abun-
dant in the infant gut are only rarely abundant in maternal
microbiomes [31–34] and are often replaced within the
first 1–2 years of life [35, 45], but even small structural
variants may be crucial in immune programming during
temporally specific developmental windows [38–41]. Ul-
timately, microbial strain variants affect not only host and
individual microbes’ physiology, but also the ecology and
phylogenetics of the overall gut community: Helicobacter
pylori is one of the best-known examples of resident mi-
crobial genetic variation paralleling that of human host
populations [46], but this has recently been shown to be
the case for multiple subsets of the gut microbiome, such
as Prevotella copri [12] or Eubacterium rectale [47]. This
leads to linkages between the evolution and diversification
of gut microbial community strains and host migration,
geography, and lifestyle [8, 48].
One of the most crucial environmental factors related to

this in the gut is diet, both acutely and over evolutionary
time scales. However, the specifics of this relationship
have been difficult to tease apart in human populations,
due to the challenges of measuring diverse human diets,
the confounding of long-term diet with other environ-
mental factors, and the complexity of diet-microbial bio-
chemical interactions. Indeed, diet represents only one
aspect of gut microbial interaction with our biochemical
environment, with several examples identified to date of
strain-specific metabolism of drugs such as digoxin [49],
metformin [50], acetaminophen [51], and potentially many
others [52]. With respect to diet itself, De Filippis et al.
[53], for example, found a greater abundance of P. copri
among participants more closely adhering to a
Mediterranean-style diet enriched with olive oil, fish,
fruits, and vegetables. In contrast, Kovatcheva-Datchary
et al. [54] observed that even on the same barley-rich diet,
Prevotella was only enriched among select participants,
potentially in a strain-specific manner. De Filippis et al.
[55] later found similar heterogeneity among individuals

on low-fat diets. Other examples include strains of short-
chain fatty acid (SCFA)-producing bacteria with differen-
tial responses to fiber-enriched diets [56, 57]. Perhaps one
of the most extreme examples of diet-linked strain specifi-
city in the gut are among probiotic organisms such as
Lactobacillus and Bifidobacterium, for which strains char-
acteristic of fermented foods are highly distinct from those
more typically resident in the human gut [58]. The health
consequences of probiotics can also be strain-specific
dependent either on the strain context of the microbiome
being entered [59], or on the strain of the probiotic organ-
isms, e.g., the recently proposed ability of some bifidobac-
teria to facilitate cancer immunotherapy [60].

Gut microbiome strains as risk factors in gastrointestinal
and systemic disease
While many studies have linked overall microbiome
structure or microbial species enrichments to gastro-
intestinal (GI) or systemic disease, relatively few have
identified strain-specific microbial variants associated
with these diseases. The inflammatory bowel diseases
(IBD) are among the best-studied chronic gastrointes-
tinal conditions with respect to the microbiome, and in
IBD, subspecies of E. coli and Ruminococcus gnavus have
each been associated with disease severity [61, 62]. Hall
et al. [13] noted a particular subpopulation of R. gnavus
strains more abundant in the IBD gut, enriched for
adaptations to oxidative stress response, adhesion, and
the utilization of iron and mucus. Bacteroides fragilis
strains exhibit divergent behaviors leading to differential
IgA induction in mouse models of IBD [63] and have
been associated with host immunomodulatory effects in
monocolonization [64]. While there are decades of work
demonstrating the effects of such variants during animal
monocolonization, understanding their effects in the hu-
man gut remains challenging, since the equivalent of a
human genome-wide association study for most micro-
bial community genetic variants (i.e., those not of very
high penetrance) would be challenging, given the degree
of multiple hypothesis testing necessary to account for
the underlying microbial genetic variability [65, 66].
Studies of systemic disease outside of the gastrointes-

tinal tract have also suggested functional roles for specific
gut microbial strains. New-onset rheumatoid arthritis pa-
tients appear to be enriched for P. copri in the gut in some
populations, for example, with evidence that this P. copri
subset may be functionally or phylogenetically distinct
[67]. Obesity and type 2 diabetes (T2D) have shown rela-
tively weak taxonomic or functional shifts in the gut
microbiome overall, but again using mice to avoid chal-
lenges in human population structure, specific strains of
Akkermansia muciniphila proved to be causal in alleviat-
ing these metabolic conditions [68]. In human subjects, at
least one study found SNPs specific to Bacteroides
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coprocola subpopulations within a T2D patient group
[69]. More broadly, strain-specific promotion of several
SCFA producers, including Bifidobacterium spp., Eubac-
terium spp., and Lactobacillus spp., was selectively
enriched by dietary fiber in a randomized clinical trial, im-
proving T2D parameters [70].
One of the most complex conditions bridging the gut

microbiome, gastrointestinal, and systemic health has
proven to be cancer. Particularly in colorectal cancer
(CRC), specific microbial strain functionality can be
readily shown to be locally causal, such as DNA-
damaging production of colibactin by pks + E. coli as in-
troduced above [71] or B. fragilis toxin [72]. Other mi-
crobes such as CRC-specific lineages of Fusobacterium
nucleatum have been identified more recently, with
mechanisms such as Fap2-mediated binding to host Gal-
GalNAc [73] or immunomodulation via TIGIT [74] me-
diating both their carcinogenicity and their differenti-
ation from typical oral F. nucleatum strains. Other
mechanisms of microbial influence on GI or systemic
cancer remain less well-understood, with strong evi-
dence of resident microbial effects on immunotherapy
responsiveness [75–77], but as yet few strain-specific
culprits. Likewise, limited studies have shown intratu-
moral bacteria within and outside of the colon to be cap-
able of direct metabolism of chemotherapeutics such as
gemcitabine [78], with potentially many more such
microbe-chemical interactions waiting to be discovered.

Strain carriage and variation in the body-wide human
microbiome
While the strain epidemiology of the gut microbiome is
perhaps best developed, similar examples exist of the ef-
fects of “commensal” and pathogenic strains throughout
the human body habitat. As with the gut, the most ex-
treme examples are those of well-studied pathogens [79],
such as resistant variants of Staphylococcus aureus in the
skin and nasal microbiomes [80]. More recently, combi-
nations of culture-independent and high-throughput
culture-based methods have exposed within-subject
pathogen evolution over the course of months to years
[81]. In these cases, as with pks + E. coli, resistance func-
tionality such as mecA can be attributed to just one or a
few loci that are genetically variable among strains via
mobile chromosomal or plasmid-encoded elements [82].
More unexpectedly, however, recent findings have
pointed to correspondingly strain-specific interactions
with non-pathogenic commensals, such as coporphyrin
III production by some Cutibacterium (formerly Propi-
onibacterium) strains inducing Staphylococcus biofilm
formation [83]. Indeed, due to their biogeographical het-
erogeneity relative to the gut, exposed topographical sur-
faces such as the skin, nasopharynx, and lung are among
the few body areas where detailed ecology and

persistence of multiple competing strains within an indi-
vidual has been directly observed [84–86], e.g., among S.
epidermidis strains in psoriasis [87].
Conversely, deep differentiation of strains within an

individual is technically more challenging in the vaginal
microbiome. Instead, this environment has revealed ex-
tensive subspecies heterogeneity between hosts within
the dominant Lactobacillus and other species of the va-
gina, again raising issues regarding the exact definition
of strains and species among different microbial clades.
Specifically, analysis of the intraspecific diversity of vagi-
nally dominant lactobacilli such as L. jensenii, L. iners, L.
gasserii, and L. crispatus is complicated by the systemat-
ics of the clade, which has been under scrutiny for
reorganization based on both isolate and culture-
independent genomics [88, 89]. Nevertheless, vaginal
Lactobacillus and other strains can be reasonably stable
within individuals over time [90], with particularly large
environmental changes such as pregnancy inducing
shifts over the course of gestation [91]. As in the gut,
such genetic variation between strains can affect health,
such as in the determinants of pathogenicity in E. coli
causing urinary tract infections [92, 93]. In examples
from even more acute infectious disease, strain-specific
Lactobacillus bioactivity can itself contribute to risk of
sexually transmitted infection acquisition such as HIV,
both due to direct microbial biochemistry [94] and its ef-
fect on host immunity [95].
Finally, oral microbiology has historically provided

some of the first and most striking examples of pheno-
typic heterogeneity between closely related microbial
isolates [96–98], and this trend holds true in the era of
culture-independent sequencing and whole-community
studies as well. Indeed, some of the earliest large
population-scale surveys of the microbiome found oral
site tropism to be a strong driver of subspecies differen-
tiation [99–101], with stable genetic differences among
related microbial colonizers of different surfaces—in-
cluding different teeth—within the same mouth. These
potentially adaptive, highly niche-specific variants have
begun to be explored at scale, remaining stable within
individual up to hundreds of days within subjects [102],
but revealing extensive long-term plasticity between
members of clades such as the Neisseria [11]. While
there is extensive ongoing work regarding the role of
overall oral microbial ecology in conditions from peri-
odontitis [103] to pancreatic cancer [104] and heart dis-
ease [105], the ecological and genomic diversity of the
oral microbiota has led to limited strain-specific associa-
tions to date. Several have been suggested for, e.g.,
Streptococcus variants in caries [106] or F. nucleatum in
association with oral cancer [107]—suggesting intriguing
links with its role in CRC. These include sufficient detail
to implicate microbial processes such as polyamine
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biosynthesis, motility and chemotaxis, and immunosti-
mulation (e.g., LPS and flagellar components), but with-
out yet a clear picture of the many possible strains
across which these functions may be distributed in the
complex oral environment.

Strategies and approaches to identifying
community strain diversity
It is not our goal here to summarize the many methods
that have been used to differentiate among microbial
strains in culture over decades of microbiology [108, 109],
so we will focus in this review mainly on culture-
independent techniques, as well as some high-throughput

culture-based methods appropriate for microbial commu-
nities (Fig. 1). In both of these categories, many strain def-
inition methods rely on sequencing: assembly of culture-
based isolates, or amplicon-based, shotgun metagenomic,
or single-cell culture-independent approaches. Other mo-
lecular assays, particularly mass spectrometry (MS)-based
proteomics, can be applied to strain-type either isolates or
communities [110]. This is also true for MS- or NMR-
based metabolomics or metabolic flux measurements
[111]. Of course, microbial culture physiology and direct
imaging has been used to differentiate among strains since
the earliest microbiology, and in some cases, these time-
tested methods can be applied to communities as well.

Fig. 1 Strain identification approaches for microbial communities. This review summarizes a variety of high-throughput, often (but not always) culture-
independent methods for strain identification within microbial communities. a Amplicon sequencing (e.g., 16S rRNA gene regions) can now be
processed to near-strain-level fidelity, resulting in unique markers such as amplicon sequence variants (ASVs). b Shotgun metagenomic sequencing,
either via assembly or using reference-based approaches, can identify strains broadly based on their single-nucleotide variants (SNVs) or structural
variants (gene gain and loss events). c Whole-community transcriptomes can amplify the effects of gene gains or losses, or the effects of small variants
that result in differential expression. d Single-cell methods can isolate individual microbial genomics directly from within communities, either via cell
sorting and amplification, or through synthetic long-read/linked-read techniques. e High-throughput “culturomics” can be combined with rapid
turnaround approaches such as peptide fingerprinting to strain-type isolates or microcolonies. f Relatedly, any combination of traditional isolation and
high-throughput cultivation—batch, serial, or continuous—can be combined with growth, phenotypic, or molecular readouts for strain identification.
g Finally, a variety of other approaches can be used with communities, ranging from flow- or high-content microscopic imaging to systems such as
gnotobiotic animal model physiology and phenotyping
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Strain identification from microbial community
sequencing
The first breakthroughs in microbial strain identification
from whole-community sequencing—like the first
community-wide applications of sequencing generally—
came from marker gene approaches relying on amplifi-
cation of 16S rRNA gene variable regions (amplicon or
“16S” sequencing, Table 1). In many cases, amplicon-
based technologies struggle to differentiate closely re-
lated microbial strains, due both to technical (sequen-
cing error, amplification noise, bioinformatics
approximations) and biological (lack of nucleotide vari-
ants in the amplified regions) limitations [123, 124].
Once data generation platforms reached the fidelity ne-
cessary to preserve amplicon biological variation when
present, however, several computational approaches
emerged to classify such sequences in the most strain-

specific manner possible. Oligotyping [125, 126] and
Minimum Entropy Decomposition (MED) [114] rely on
semi-supervised and unsupervised classification, respect-
ively, of variant positions within otherwise-identical 16S
amplicons that show statistically unusual distributions
across sample sets (and are thus unlikely due to tech-
nical factors). Other types of sub-operational taxonomic
unit (OTU) clustering [113] have subsequently extended
this intuition to “exact” or “amplicon” sequence variants
(ESVs or ASVs, respectively) using statistical error mod-
eling (e.g., DADA2 [115]) or filtering before or after se-
quence identity clustering (e.g., Deblur [116] or
UNOISE2 [117]). Strain-resolved 16S amplicons have
been used with methods like these to very specifically
link, e.g., Porphyromonas asaccharolytica ATCC 25260
and Parvimonas micra ATCC 33270 to CRC, for ex-
ample [127], or to assess the temporal stability of strains

Table 1 Tools for strain identification in community amplicon and shotgun metagenomic sequencing. Methods and brief summaries of
their algorithms for detecting and quantifying strains (by various definitions) from 16S rRNA gene amplicon or shotgun metagenomic
sequencing. These are currently the two most prevalent assays for culture-independent strain detection within microbial communities.
Note that we have excluded other experimental protocols from this summary, including single-cell, long-read, and synthetic long-read
sequencing, since they generally require more than application of a specific software pipeline. These alternatives, and non-sequencing-
based approaches, are described in more detail in the text

Method Platform Authors’ description Reference

Oligotyping 16S rRNA gene
amplicon

“oligotyping... Focus [es] on the variable sites revealed by the entropy analysis to identify highly refined
taxonomic units”

[112]

Sub-OTU
clustering

16S rRNA gene
amplicon

“we combine error-model-based denoising and systematic cross-sample comparisons to resolve the
fine (sub-OTU) structure of moderate-to-high-abundance community members”

[113]

MED 16S rRNA gene
amplicon

“MED uses information uncertainty among sequence reads to iteratively decompose a dataset until the
maximum entropy criterion is satisfied for each final unit”

[114]

DADA2 16S rRNA gene
amplicon

“DADA2 implements a new quality-aware model of Illumina amplicon errors. Sample composition is in-
ferred by dividing amplicon reads into partitions consistent with the error model.”

[115]

Deblur 16S rRNA gene
amplicon

“Deblur … compares sequence-to-sequence Hamming distances within a sample to an upper-bound
error profile combined with a greedy algorithm to obtain single-nucleotide resolution.”

[116]

UNOISE2 16S rRNA gene
amplicon

“UNOISE2... Cluster [s] the unique sequences in the reads. A cluster has a centroid sequence with
higher abundance plus similar sequences having lower abundances.”

[117]

PathoScope Shotgun
metagenomic

“PathoID … reassign [s] ambiguously aligned sequencing reads and accurately estimate [s] read
proportions from each genome in the sample.”

[118]

LSA Shotgun
metagenomic

“LSA... separates reads into biologically informed partitions and thereby enables assembly of individual
genomes.”

[119]

PanPhlAn Shotgun
metagenomic

“PanPhlAn identifies which genes are present or absent within different strains of a species, based on
the entire gene set of the species’ pangenome.”

[66]

MetaMLST Shotgun
metagenomic

“MetaMLST performs an in silico consensus sequence reconstruction of the allelic profile of the
microbial strains in a metagenomics sample.”

[120]

MIDAS Shotgun
metagenomic

“MIDAS … is a computational pipeline that quantifies bacterial species abundance and intra-species
genomic variation from shotgun metagenomes.”

[37]

ConStrains Shotgun
metagenomic

“ConStrains … exploits the polymorphism patterns in a set of universal bacterial and archaeal genes to
infer strain-level structures in species populations.”

[121]

StrainPhlAn Shotgun
metagenomic

“StrainPhlAn … is based on reconstructing consensus sequence variants within species-specific marker
genes and using them to estimate strain-level phylogenies.”

[8]

metaSNV Shotgun
metagenomic

“metaSNV … performs SNV calling for individual samples and across the whole data set, and generates
various statistics for individual species”

[102]

DESMAN Shotgun
metagenomic

“DESMAN identifies variants in core genes and uses co-occurrence across samples to link variants into
haplotypes and abundance profiles.”

[122]
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in the gut [128]. With additional data generation efforts,
they can also generally be extended to multiple -[129] or
non-16S amplicons [130], such as the VaST system for
identifying a minimum group of target loci for amplifica-
tion [131]. While SNV diversity in sub-regions of the
genome is typically highly correlated with that across the
genome [8], the presence or absence of at least one reli-
ably detected SNV within a single amplified 16S variable
region can be so precise as to become highly clade- and
protocol-specific [115].
Notably, the earliest forms of full-length 16S rRNA

gene sequencing avoided many of these issues by captur-
ing biological variation across the entire locus with high
fidelity [132], and this has recently become true again in
higher throughput with the advancement of “long-read”
technologies. Three main platforms can currently pro-
vide such long-reads: Pacific Biosciences, Oxford Nano-
pore, and linked-read analogs such as products from
10X Genomics and Loop Genomics. The extreme fidelity
offered by Pacific Biosciences circular consensus sequen-
cing (CCS) has been perhaps best-studied in this con-
text, readily differentiating between single-nucleotide
variants (SNVs, although sometimes not insertions or
deletions) when they exist anywhere across the 16S
rRNA gene locus between strains [133, 134]. Conversely,
while Oxford Nanopore’s extremely cost-effective Min-
ION can provide essentially full-length 16S rRNA gene
reads, its error rates have restricted strain-specific appli-
cations to cases in which no other sequences highly
homologous to microbes of interest are present in a
community [135–137]. Finally, several protocols now
exist facilitating “simulated” long- or linked-reads on a
variety of platforms [138, 139], but those which have
reached commercial viability are yet to be formally eval-
uated for amplicon profiling of microbial communities
[140]. Similarly, these technologies can sometimes be ap-
plied to entire microbial genomes isolated from single
cells (e.g., via sorting or microfluidics [48, 141]) or from
cross-linked genome copies [138]. This abrogates the
need for true metagenomic assembly or binning, as de-
scribed below, although again with few quantitative
studies of these emerging technologies in existence for
whole-community profiling at the strain level.
Overall, shotgun metagenomic approaches provide a

richer profile of microbial communities’ genetic compo-
sitions, as they can in principle identify structural or
SNVs anywhere within any microbe’s genome (Table 1).
Two broad classes of analyses are currently able to iden-
tify microbial strains, the first based on the alignment of
metagenomic nucleotides (typically unassembled) to a
reference set of genes or genomes. This is generally effi-
cient and sensitive, but of course only possible when suf-
ficiently similar reference genomes (or prior
metagenomic assemblies [142–144]) exist to permit

direct mapping of metagenomic reads. Notably, “suffi-
ciently similar” references need not be particularly high-
identity with respect to a target metagenome. Instead,
they must simply permit sufficient genome-wide map-
ping to identify SNVs or structural variants unique to
strains in the community, which can be successful at up
to several tens of percent overall nucleotide divergence.
Broadly speaking, four classes of reference-based com-

munity strain identification algorithms currently exist.
The first identifies the one or more reference genotypes
closest to those in a given community, with quantifica-
tion based on some algorithm for ambiguity-resolved
read mapping (e.g., PathoScope [118], Sigma [145]). The
second identifies the dominant, potentially novel geno-
type (strain) per species; these include StrainPhlAn [8],
MetaMLST [120], MetaSNV [146], and others [37].
These generally require deeper sequencing (up to 10× or
more coverage of the strains to be targeted) and differ in
their choice of which reference sequences to map against
(e.g., complete genomes vs. universal core genes vs.
species-specific marker genes) and the method and strin-
gency of SNV identification. A third class of reference-
based methods will further attempt to identify multiple
strains per species within a metagenome, such as Con-
Strains [121] or DESMAN [122], requiring even deeper
coverage and more stringent noise removal to prevent
false positives. Finally, fourth, methods that rely on
structural rather than SNV variants are generally more
sensitive (appropriate for community members as rare
as ~1× or lower coverage) and include PanPhlan [66]
(which can be combined with gene-targeted functional
profilers such as HUMAnN [147]), MIDAS [37], and
others [4, 65].
Alternatively, when sufficiently similar reference ge-

nomes are not available, metagenomic assembly [142–
144] can be used for highly novel strain discovery [148].
There is an inherent tension in assembly-based metage-
nomic strain profiling, as most assemblers seek to iden-
tify a single consensus sequence for each contig and
require > 1× coverage of an entire genome (or region) to
do so. This is appropriate when a single strain dominates
its nearby phylogenetic space within a community, in
which case less-common strains can be found by map-
ping metagenomic reads back to, e.g., a binned assembly
[149–151] and identifying nucleotide or structural vari-
ants roughly as one would within complete genomes [8].
However, in the presence of too many closely related
strains within a community, such a consensus sequence
is not achievable in the first place, and most assemblers
will not be able to provide a contig appropriate for map-
ping [152, 153]. Even when possible, this process can be
further complicated by the high ecological and technical
variability of microbial community assemblies, resulting
in diverse coverage and confidence (dependent on
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sequencing depth and population strain admixture) and
benefitting from manual inspection of putative variants
[154, 155]. Algorithms facilitating this process include
Latent Strain Analysis (LSA), which can refine strain-
level taxonomy using covariant clusters across multiple
related (e.g., longitudinal) samples [132]. Similarly,
DESMAN uses statistical models not unlike those for
ASV calling in amplicon data to identify variant geno-
types well-supported across multiple samples’ co-
assembly [122]. In a very few cases to date, strain vari-
ants within microbial communities have been identified
via analogous differences in metatranscriptomic gene ex-
pression quantification, such as strain-specific variation
in Eggerthella lenta metabolism of the cardiac drug di-
goxin [49].
Whether from reference sequences or assemblies,

SNV versus structural approaches are often complemen-
tary and can provide unique information regarding the
same underlying community: SNVs (when detectable)
identify finer-grained phylogenetic and evolutionary dif-
ferences, but can be difficult to interpret functionally,
whereas structural variants (i.e., gain or loss of full genes
or genomic regions) have a lower limit of detection

within communities and can speak directly to the bio-
chemical roles of the affected genes (when known,
Fig. 2). Unsurprisingly, each approach can provide dif-
ferent strengths and weaknesses. Structural variation
can be captured well by reference-based approaches,
which are sensitive to unique gene (non-)detection.
However, it is very difficult to identify rearrangements
(rather than gains or losses) using such techniques, and
these are better identified by assembly-based methods
instead (when they can be reliably differentiated from,
e.g., chimeric assembly errors [157]). Conversely, SNV
variation can be well-captured by either reference- or
assembly-based approaches—the former more sensi-
tively for organisms with representative isolates, the lat-
ter less sensitively but for novel organisms—and by
either pangenome or whole-genome mapping ap-
proaches, depending where the most uniquely identify-
ing polymorphisms occur. Finally, both structural
variation and, to a lesser extent, nucleotide variation are
particularly driven in microbial communities by mecha-
nisms of genetic mobility, including all forms of lateral
transfer, gene gain/loss, mobile elements, plasmids, and
phage integration.

Fig. 2 Microbial SNV, structural, and metatranscriptomic variants as features for genetic epidemiology in the human microbiome. Statistical approaches
can link subspecies microbial features to human health phenotypes in several ways. a When microbial strains are identified using SNV genotypes
(whether from genome bins, marker genes, core genes, etc.), any individual microbial SNV—or overall genotype—is typically of low prevalence and
high variability. This means that it is extremely difficult to power significant associations with individual SNVs in reasonably sized human population
studies. Instead, significant assortment of a host phenotype with strain phylogeny can be assessed, e.g., by PERMANOVA on per-species genetic
distances [8] or by aggregating SNVs to genes or larger loci. b An extreme of this type of association test directly assesses the nonrandom assortment
of genes’ presence or absence among microbial strain pangenomes in association with a phenotype of interest [66], since a gene loss (or gain) is
essentially the “sum” of variants at every nucleotide within the gene. c Alternatively, even when no differences in genomic SNVs or structural variants
are detectable at a study’s level of power, the transcriptional regulatory effects of these variants can be amplified, resulting in strain-specific differences
in locus expression in association with a phenotype [156]
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Other high-throughput molecular methods for strain
identification in microbial communities
Other molecular technologies for microbial strain typing
in communities are often limited to microbes that can be
cultured or otherwise isolated, although advances in
(semi-)automated anaerobic culture and nanoculture have
made this feasible in high throughput as well. Particularly
in clinical microbiology, near-strain variant typing via
mass spectrometry peptide fingerprinting is commonplace
for pathogen isolates [110, 158], due to its rapid turn-
around time and low cost per individual sample relative to
sequencing. The technology has some of the same caveats
as ASV identification from sequence amplicons intro-
duced above, however: amino acid variants must exist be-
tween the strains of interest in the profiled proteins, at a
level detectable above experimental noise, and must be
classifiable to a taxon of origin in a reference database or
by clustering [159, 160]. While in principle the same types
of strain-level protein variants could be detected using
MALDI-TOF MS technologies in culture-independent
community extracts, such applications remain extremely
challenging, and instead, community proteomics are cur-
rently more commonly analyzed in a gene- or taxon-
centric way [161].
Conversely, microbial imaging—arguably the first

method for differentiating strains—has made the high-
throughput leap to whole communities in several
culture-independent forms that are, under appropriate
circumstances, able to provide strain-level identification.
In some cases, this can mean literally direct microscopy
of microfluidically separated (or nanocultured) cells,
using automated cell isolation and image analysis [162].
More molecular techniques include spectral or combina-
torial fluorescent in situ hybridization (Combinatorial
Labeling and Spectral Imaging or CLASI-FISH), which
can currently identify over a dozen microbes within a
community while maintaining spatial structure [163,
164]. Along with related techniques such as multilabel
FISH (MiL-FISH) [165], this relies on the presence of
sufficient genetic variants at the FISH-probed loci (often
16S rRNA gene regions) to be differentially bound by
spectrally distinct probes, but can in some cases be ex-
tended to living bacteria [166]. This is also true for other
microbial probe imaging methods such as flow cytome-
try [167] or light sheet microscopy [168], which can re-
tain viable cells, but require probes or genetically
manipulated microbes with loci capable of distinguishing
between closely related strains.
While many of these methods are in part or whole

culture-independent, it is difficult to understate the im-
portance of the “culturomics” renaissance in separating
and characterizing microbial strain isolates from commu-
nities including the human microbiome [15, 16, 169].
While pathogen epidemiology has long relied on

comparative genomics among up to tens of thousands of
isolates, it has only recently become efficient to carry out
large-scale isolation of commensal organisms from human
populations or individuals [170, 171]. Doing so, however,
opens up the ability to identify strain-level differences
among isolates of the same species among individuals [12,
13, 172, 173], within an individual microbiome at different
spatial locations [81, 174], or over time [170, 175]. Once
isolated, of course, such microbial strains can be charac-
terized by any number of standard methods, including dif-
ferences among growth curves or media, chemical (e.g.,
antimicrobial) resistance, metabolic flux profiling, or
amplicon or shotgun sequencing. Alternatively, whole-
community culture via chemostat bioreactors [176] pro-
vides an intermediate environment in which strains that
are rare in situ can sweep to dominance, or be perturbed
in a controlled manner, to amplify differential phenotypes
or sequences that may otherwise remain below the limit
of detection. Finally, culture-based and culture-
independent strain identification techniques blur in the
areas of single-cell microbial isolation [177, 178] and
microcolony growth [179, 180] from communities. Micro-
fluidic techniques in this vein include gel microdroplets
(GMDs) for single-cell amplification [181] or phenotyping
[182], as well as microfluidic streak plates (MSPs) [183]
that combine the specificity of single cells with the bio-
mass of streaked colonies (if desired).
Particularly when considering culture-based and

ex vivo/in vitro/model system assays, the combination of
culture-independent high-throughput epidemiology with
subsequent strain isolation or manipulation opens up a
world of possibilities for characterizing novel health-
relevant strains in the human microbiome. This review
has taken an essentially “top down” perspective, akin to
forward genetics, in which strain-specific features of
interest (SNVs, gene cassettes, metabolism, etc.) are
identified by various means from human population
studies [184]. Such an approach leads naturally to the
subsequent biochemical characterization of these vari-
ants, either via isolation from primary samples [15, 170]
or by in silico retrieval of homologous sequences or re-
lated strains from databases or repositories (e.g., ATCC,
BEI, DSMZ) [185]. Primary samples can be characterized
as an entire community via gnotobiotics [186, 187] or
continuous culture [188, 189], or individual isolate
strains grown, characterized, or (when possible) genetic-
ally manipulated [15, 190, 191]. Such approaches dove-
tail nicely with “bottom up” approaches (analogous to
reverse genetics) that identify and characterize health-
relevant strains by directly beginning with isolates and
assessing their phenotypes in gnotobiotic mono- or
combinatorial colonization [192–197] or, when possible,
human feeding [198–200] or microbiota transplant clin-
ical trials [201–205].
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Perspectives and future directions
As introduced above, the precise definition of “strain” is
somewhat fluid throughout biology, let alone in micro-
biology [3] or microbial community biology [206]. While
it has most often referred to a single colony isolate cul-
ture in the past, the introduction of technologies and
tools for precisely resolved genetic variant identification
within microbial communities has led to increased
broadening of the term. It is now used with some fre-
quency to mean a subspecies or intraspecific clade with
relatively low genetic diversity, defined by core or pange-
nomic identity, nucleotide identity within an amplicon
such as the 16S rRNA gene, or the other genotyping or
phenotypic similarities described above. As has increas-
ingly been discussed in the literature for microbial sys-
tematics overall [8, 207], this suggests the need for a
more quantitative definition of strains or subspecies
clades, particularly within naturally variant microbial
communities. In the absence of a single consensus defin-
ition, it is extremely useful for individual studies to de-
fine their use of “strain” up front when describing
culture-based or (especially) culture-independent micro-
bial community research [174].
Regardless of their precise definition, several emer-

ging technologies offer exciting new approaches for
identifying, isolating, and characterizing health-
relevant strains in the human microbiome. Historic-
ally, microbial genetic variants not associated with an
overt, acute phenotype have gone largely undetected,
until the relatively recent availability of whole-
community profiling techniques by which they can be
efficiently captured. Truly single-cell approaches reli-
ant on individual microbial separation have been so
far difficult to apply to human epidemiology, with
methods for eukaryotic cells not transferring well at
scale to the heterogeneity of microbial cell wall bio-
chemistry [208] and methods from environmental
community profiling difficult to apply to matrices as
diverse as human stool or skin [209]. In addition to
bioengineering for cell separation and lysis, advances
in low-input, low-noise DNA isolation, amplification,
and sequencing will help to address this challenge
[210], as will nanoculture approaches that inherently
amplify genomes in vivo [180]. Such methods for cap-
turing strains from the human microbiome go hand-
in-hand with additional technologies for characteriz-
ing them at scale, including cheaper experimental sys-
tems such as gut-on-chip [211, 212] or organoid
variants [213, 214] that sit in between single isolate
culture and rich gnotobiotic models. Ultimately, un-
derstanding human microbiome biology will require
not just the detection of specific microbial genetic
variants in communities, but their introduction and
manipulation, including the theoretical ability to

genetically perturb any microbial strain either after or
even before isolation from its host community [173,
190].
Even in the absence of such technology, extensive

work remains to be done to characterize the microbial
strain diversity in the human microbiome that has
already been uncovered. Of the tens of millions of gene
families identified within the human microbiome [23,
99, 215], some ~ 75% are not biochemically character-
ized by anything more than (in some cases remote)
homology to reference sequences, and ~ 25% are not
closely homologous to any isolate open reading frames
[216]. This astounding pool of biochemical dark matter
may be unsurprising to microbial bioprospectors, who
have mined primarily environmental communities for
novel enzymatic and antimicrobial function for decades
[217]. As such, it represents a remarkable potential for
new bioactive discovery in human health as well, since
human-associated microbes could easily be enriched for
protein and metabolite products that modulate host re-
sponses [218]. In many of the examples described above,
successful associations of SNV or structural variants in
the microbiome with human phenotypes or environmen-
tal factors have led to genes of unknown function [13,
65, 66]. Strain-level epidemiology in the human micro-
biome can thus help to prioritize the daunting task of
identifying and characterizing the “most interesting”
novel microbial variants and products of greatest rele-
vance to health.
Finally, the ways in which better techniques for strain

characterization in the microbiome can benefit human
health are themselves diverse. Cheap, rapid, and repro-
ducible methods to quantify microbiome SNVs and gen-
etic variants across human populations will allow the
identification of precise microbial risk factors, much as
did the standardization of human genetics platforms for
genome-wide association studies (GWAS) [219]. Also
analogously to GWAS, microbial strains can thus pro-
vide prognostic or diagnostic biomarkers for disease risk
or diagnosis, or hints as to their underlying molecular
mechanisms [220–222]. This has been the case for de-
cades in for comparative genetics microbial isolates, and
as the number and depth of metagenomes continues to
increase, it will undoubtedly become practical in micro-
bial communities as well [223, 224]. Conversely, features
of strains found to be bioactive can be used to develop
novel interventions for health maintenance or therapy.
These can range from better targeting of existing fecal
microbiota transplant (FMT) technologies based on
donor or recipient strain content [225], to the rational
design of synthetic FMTs [226], treatment response pre-
diction for FMTs or prebiotics [227–230], or the even-
tual administration of genetically modified organisms or
communities [231–234]. Recent work in strain-level
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epidemiology of microbial communities and the human
microbiome is thus one of many important, ongoing ef-
forts to realize the microbiome’s substantial translational
potential.
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