
Nabbi et al. Genome Medicine           (2023) 15:67  
https://doi.org/10.1186/s13073-023-01219-x

RESEARCH Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Genome Medicine

Transcriptional immunogenomic analysis 
reveals distinct immunological clusters 
in paediatric nervous system tumours
Arash Nabbi1†, Pengbo Beck2,3†, Alberto Delaidelli4,5, Derek A. Oldridge6,7, Sumedha Sudhaman8, Kelsey Zhu1, 
S. Y. Cindy Yang1, David T. Mulder1, Jeffrey P. Bruce1, Joseph N. Paulson9, Pichai Raman10, Yuankun Zhu10, 
Adam C. Resnick10, Poul H. Sorensen4,5, Martin Sill2,3, Sebastian Brabetz2,3, Sander Lambo2,3, David Malkin8, 
Pascal D. Johann2,3,11, Marcel Kool2,3,12, David T. W. Jones2,13, Stefan M. Pfister2,3,11, Natalie Jäger2,3* and 
Trevor J. Pugh1,14,15*   

Abstract 

Background Cancer immunotherapies including immune checkpoint inhibitors and Chimeric Antigen Receptor 
(CAR) T-cell therapy have shown variable response rates in paediatric patients highlighting the need to establish 
robust biomarkers for patient selection. While the tumour microenvironment in adults has been widely studied 
to delineate determinants of immune response, the immune composition of paediatric solid tumours remains rela-
tively uncharacterized calling for investigations to identify potential immune biomarkers.

Methods To inform immunotherapy approaches in paediatric cancers with embryonal origin, we performed 
an immunogenomic analysis of RNA-seq data from 925 treatment-naïve paediatric nervous system tumours (pedNST) 
spanning 12 cancer types from three publicly available data sets.

Results Within pedNST, we uncovered four broad immune clusters: Paediatric Inflamed (10%), Myeloid Predominant 
(30%), Immune Neutral (43%) and Immune Desert (17%). We validated these clusters using immunohistochemis-
try, methylation immune inference and segmentation analysis of tissue images. We report shared biology of these 
immune clusters within and across cancer types, and characterization of specific immune cell frequencies as well as T- 
and B-cell repertoires. We found no associations between immune infiltration levels and tumour mutational burden, 
although molecular cancer entities were enriched within specific immune clusters.

Conclusions Given the heterogeneity of immune infiltration within pedNST, our findings suggest personalized 
immunogenomic profiling is needed to guide selection of immunotherapeutic strategies.
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Background
Cancer immunotherapies have been clinically and 
experimentally investigated in paediatric oncology with 
a wide range of response rates. Objective responses to 
immune checkpoint inhibitors (ICI) as a monother-
apy have been limited to 5–11% of paediatric cancers 
[1–3]. Addition of a monoclonal antibody targeting 
disialoganglioside GD2, granulocyte–macrophage col-
ony-stimulating factor (GM-CSF) and interleukin-2 
to standard therapy (isotretinoin) has been shown to 
improve overall survival of children with high-risk neu-
roblastoma treated with intensive multimodal ther-
apy [4, 5]. More recently, anti-GD2 Chimeric Antigen 
Receptor (CAR) T-cell therapy has been investigated in 
diffuse midline gliomas in four patients, three of whom 
showed clinical improvement [6]. Experimentally, novel 
immunotherapies have been proposed and tested in 
preclinical models including CAR-T targeting immune 
checkpoint protein, B7-H3 [7], and targeting the mye-
loid compartment with anti-CSF1R [8] or anti-CD47 
[9]. Considering the wide range of response rates for 
existing and emerging paediatric cancer immunothera-
pies, biomarkers for patient stratification are needed to 
identify potential candidates for clinical trials.

Immunogenomic analysis of tumours has been a 
major focus of biomarker discovery for immuno-
therapy. A prominent outcome of such studies is the 
FDA approval of tumour mutation burden (TMB) 
and microsatellite instability as the first immunother-
apy-related biomarkers in adult cancers [10]. Several 
other biomarkers have been derived from large-scale 
genomic and transcriptomic datasets with a major 
focus on adult extracranial tumours [11–15]. Despite 
recent single-cell RNA sequencing (RNA-seq) studies 
in neuroblastoma [16], high-grade glioma [17], epend-
ymoma [18, 19] and medulloblastoma [20], a compari-
son of the immune microenvironment across paediatric 
nervous system cancers and implications for informing 
immunotherapeutic interventions or patient selection 
have not been systematically analysed. In this study, we 
sought to characterize the immune microenvironment 
in 925 treatment-naïve paediatric central and periph-
eral nervous system cancers, as they share embryonal 
origins and similar levels of TMB [21]. We showed dis-
crepancies across existing immune deconvolution tools 
when applied to paediatric nervous system tumours. To 
address this, we performed a consensus geneset analy-
sis using publicly available datasets to identify specific 
immune genes with no tumour cell expression, fol-
lowed by further characterization of pathway and gene 
expression, TMB and genomic alterations, T- and B-cell 
repertoire and cellular interactions.

Methods
Human subjects
We curated a total of 925 tumours from the Children’s 
Brain Tumour Network [22] (CBTN, n = 581), the Ther-
apeutically Applicable Research To Generate Effective 
Treatments [23] (NCI TARGET, n = 149) and the Interna-
tional Cancer Genome Consortium [24] (ICGC, n = 195). 
We selected tumours from paediatric patients (median 
age 7  years) who had RNA-seq data generated from 
their primary tumours. We focused this study to major 
types of paediatric CNS tumours and neuroblastoma; 
ETMR (n = 9), neurofibroma (n = 11), choroid plexus 
tumours (n = 16), meningioma (n = 13), schwannoma 
(n = 14), craniopharyngioma (n = 27), ATRT (n = 31), 
ependymoma (n = 65), pedHGG (n = 83), neuroblas-
toma (n = 151), medulloblastoma (n = 208) and pedLGG 
(n = 298). As adult cancer comparator, we included 
TCGA participants with common types of adult cancers; 
glioblastoma multiforme (GBM, n = 153), low-grade gli-
oma (LGG, n = 507), skin cutaneous melanoma (SKCM, 
n = 102), colorectal adenocarcinoma (COAD, n = 298), 
ovarian serous adenocarcinoma (OV, n = 373), prostate 
adenocarcinoma (PRAD, n = 497) and lung adenocarci-
noma (LUAD, n = 522).

Tumour datasets
We used RNA-seq datasets from the TARGET [23] 
(https:// ocg. cancer. gov/ progr ams/ target), CBTN [1] 
(https:// cbtn. org/ resea rch/ speci menda ta/), ICGC [24] 
(https:// icgc. org/ icgc/ cgp/ 62/ 345/ 822) and TCGA [25] 
(https:// www. cancer. gov/ about- nci/ organ izati on/ ccg/ 
resea rch/ struc tural- genom ics/ tcga) in this study. For the 
ICGC dataset, we chose 195 primary CNS tumour sam-
ples with matched RNA-seq and WGS, and complete 
clinical data [21]. For the TARGET dataset, we chose 149 
primary neuroblastoma samples with matched RNA-seq 
and WES data. For the CBTN dataset [22], we refined the 
original dataset (n = 996) and excluded data from 22 cell 
lines, 153 progression samples, 70 recurrences and 16 
secondary malignancies. We further removed 98 samples 
from rare (defined as ≤ 10% of the cohort) or unannotated 
tumours. To enable comparison at the transcriptional 
level, we performed unsupervised clustering on primary 
samples and removed 51 samples that did not match 
their corresponding pathological annotation (Additional 
file  1: Fig. S1B-C). This sample curation resulted in 581 
samples from the CBTN consortium (Additional file  1: 
Fig. S1A). These resulted in a cohort of 925 paediatric 
CNS tumours and neuroblastomas.

We accessed CBTN, TARGET and TCGA data through 
the Kids First Data Resource Centre [22] (https:// portal. 
kidsfi rstd rc. org/) and used the CAVATICA [22] platform 

https://ocg.cancer.gov/programs/target
https://cbtn.org/research/specimendata/
https://icgc.org/icgc/cgp/62/345/822
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://portal.kidsfirstdrc.org/
https://portal.kidsfirstdrc.org/
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for data processing and analysis (https:// cavat ica. sbgen 
omics. com/). In total, we analysed 925 cases of paediatric 
nervous system tumours (CNS and neural crest tumours) 
(CBTN, TARGET and ICGC). We included RNA-seq 
data from 79 PDX models (2 ATRT, 10 ependymoma, 10 
HGG, 14 neuroblastoma, 43 medulloblastoma) obtained 
from ITCC-P4 as control for immune infiltration and 
immune cell-specific geneset analysis (https:// www. itcc- 
conso rtium. org/). We used a neuroblastoma dataset as a 
validation set for immune checkpoint profiling that was 
available on CAVATICA pounder accession number 
phs001436.c1 [26]. This dataset was not included in the 
pedNST cohort, as tumour types (primary, relapsed, etc.) 
were not known.

Transcriptome data processing
RNA-seq reads from TCGA and TARGET were aligned 
to human genome 38 (hg38) as described on the GDC 
website (https:// docs. gdc. cancer. gov/ Data/ Bioin forma 
tics_ Pipel ines/ Expre ssion_ mRNA_ Pipel ine). We used 
RSEM output for the TCGA and TARGET from Toil 
[27]. The CBTN raw RNA-seq reads were aligned to hg38 
using the STAR v2.5.2b [28] and quantified using RSEM 
v1.2.28 [29] (detailed workflow can be accessed under 
https:// github. com/ kids- first/ kf- RNA- seq- workf low). 
The ICGC data were aligned and quantified using STAR 
[28] v2.7.6a and RSEM [29] v1.2.28, respectively. With 
the exception of the ICGC, all data processing was per-
formed on the CAVATICA data analysis platform [22]. 
For immune inference, we used transcripts per million 
(TPM), as per instructions [30]. For gene set enrichment 
scores and consensus clustering, we used  log2 trans-
formed TPM values corrected for batch effects (data 
source) using ComBat function from the sva [31] R pack-
age. To adjust for cancer type differences, we normal-
ized  log2 transformed batch-corrected TPM values using 
median expression in each cancer type.

Variant and fusion calling
For the TCGA and TARGET, variant calls were obtained 
from whole exome sequencing (WES) while the ICGC 
and CBTN variant calls were from whole genome 
sequencing (WGS). For the TCGA and TARGET, we 
restricted our analyses to those with MuTect2 [32] calls 
available on the GDC (details available at https:// docs. 
gdc. cancer. gov/ Data/ Bioin forma tics_ Pipel ines/ DNA_ 
Seq_ Varia nt_ Calli ng_ Pipel ine). For the ICGC, we used 
SNV and Indels calls as previously described [21]. 
CBTN WGS data were processed using MuTect2 [32] 
and Strelka2 [33] (detailed workflows at https:// github. 
com/ kids- first/ kf- somat ic- workfl ow.) and only overlap-
ping calls were used for downstream analysis. For all 
datasets, we excluded somatic variants with less than 

3% variant allele frequency. The Arriba [34] workflow 
was used for gene fusion calling on CBTN and ICGC 
datasets (https:// github. com/ suhrig/ arriba). Detailed 
workflows are available at https:// github. com/ DKFZ- 
ODCF/ RNAse qWork flow [35] and https:// github. com/ 
kids- first/ kf- rnaseq- workfl ow [36].

TMB and oncogenic pathways
To ensure all variants in our study were covered 
across WES and WGS datasets, we generated a com-
mon region list by intersecting.bed files used in exome 
experiments with 50 base pairs padding. The exome 
kits included Agilent Custom V2 Exome Bait (TCGA 
and TARGET), Agilent SureSelect All Exon 38  Mb V2 
(TCGA), Agilent SureSelect All Exon 50  Mb (TCGA), 
SeqCap EZ Exome Probes v3.0 (TCGA), SeqCap EZ 
Human Exome Library v2.0 (TARGET) and SeqCap EZ 
HGSC VCRome 2.1 (TCGA). The final common.bed file 
consisted of 30,028,393 base pairs. We then used this 
region list to subset the WGS variant calls. We included 
non-synonymous coding SNV and Indels in the TMB 
calculations.

For molecular pathways and their associations with 
immune clusters, we identified samples with at least one 
alteration in genes involved in ten TCGA oncogenic path-
ways [37]. The Receptor Tyrosine Kinase (RTK) pathway 
contained 71 affected genes with a total of 419 altera-
tions in 274 samples that encompassed 71% of pedLGG. 
Twenty six genes in the PI3-kinase pathway were altered 
in 74 pedNST samples, 32% of which were pedHGG. The 
Wnt pathway was disrupted in 70 samples, of which 36 
and 20% were medulloblastoma and craniopharyngioma. 
We found 155 alterations in 51 genes involved in the 
Notch signalling pathway across 66 samples, primarily 
medulloblastoma (45%) and pedHGG (23%). Cancer enti-
ties with alterations in 32 genes involved in the HIPPO 
pathway included neuroblastoma (25%), pedHGG (22%) 
and medulloblastoma (20%). Five core genes involved in 
the TP53 pathway accounted for 56 mutations across 51 
pedNST samples. At least one of 10 cell cycle genes was 
mutated in 16 pedNST samples, primarily in pedHGG 
(56%). Acknowledging that MYCN amplifications were 
not included in this analysis, we found 26 alterations in 
10 genes related to MYC signalling in 15 samples. Nine 
samples showed alterations in the TGF-β pathway that 
consisted of 7 altered genes. NRF2 pathway contained 
three genes (KEAP1, CUL3 and NFE2L2) with 7 muta-
tions across 6 samples. We studied the effects of somatic 
alterations in the Mismatch Repair (MMR) pathway on 
immune microenvironment by comparing samples with 
at least one somatic alteration in MLH1, MSH2, MSH6, 
PMS2, POLE or POLD1 to those without any alterations.

https://cavatica.sbgenomics.com/
https://cavatica.sbgenomics.com/
https://www.itcc-consortium.org/
https://www.itcc-consortium.org/
https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/Expression_mRNA_Pipeline
https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/Expression_mRNA_Pipeline
https://github.com/kids-first/kf-RNA-seq-workflow
https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/DNA_Seq_Variant_Calling_Pipeline
https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/DNA_Seq_Variant_Calling_Pipeline
https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/DNA_Seq_Variant_Calling_Pipeline
https://github.com/kids-first/kf-somatic-workflow
https://github.com/kids-first/kf-somatic-workflow
https://github.com/suhrig/arriba
https://github.com/DKFZ-ODCF/RNAseqWorkflow
https://github.com/DKFZ-ODCF/RNAseqWorkflow
https://github.com/kids-first/kf-rnaseq-workflow
https://github.com/kids-first/kf-rnaseq-workflow
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Immune infiltration and in silico simulations
We used ESTIMATE with default parameters to meas-
ure overall immune infiltration (https:// bioin forma 
tics. mdand erson. org/ public- softw are/ estim ate/) [38]. 
We performed in silico simulations using bulk RNA-
seq data from PDX models derived from medulloblas-
toma and RNA-seq data of four immune cell types 
(CD8 + T-, CD4 + T-, B-cell and NK cells) downloaded 
from ENCODE portal under identifiers ENCSR861QKF 
[39] (CD8 + T-cells), ENCSR463JBR [40] (CD4 + T-cells), 
ENCSR449GLL [41] (B-cells), ENCSR357XTU [42] (NK 
cells)). For each simulation, an equal percentage of reads 
from four immune cell types was randomly sampled 
using SAMtools [43] v1.9, converted to fastq files with 
BEDTools [44] v2.27.1 and then concatenated together 
with randomly sampled reads from PDX RNA-seq data 
to a total of 100 million reads. The generated pseudo-
samples were then processed with Kallisto and Sleuth 
[45, 46], and TPM values were used as input for the 
ESTIMATE.

Immune microenvironment analysis
We used TIMER2 [30] web interface (http:// timer. cistr 
ome. org/) for comprehensive analysis of immune cell 
composition using six computational tools, CIBERSORT 
[47], EPIC [48], QUANTISEQ [49], MCPCOUNTER 
[50], TIMER [51] and XCELL [52]. We used the CRI-
iAtlas Shiny app (https:// isb- cgc. shiny apps. io/ iatlas/) to 
cluster the pedNST samples with the immune subtype 
classifier previously published for adult cancers [14]. To 
estimate immune cell composition using ICGC methyla-
tion array data, we used EpiDISH (Epigenetic Dissection 
of Intra-Sample Heterogeneity) R package that uses cell-
type-specific DNAse Hypersensitive Site (DHS) data and 
robust partial correlations to infer immune cell compo-
sitions [53]. We used a reference signature matrix previ-
ously constructed and used for immune deconvolution 
analysis of paediatric CNS tumours [54].

Development of immune cell‑type gene sets 
and consensus clustering
To identify genes specific to the immune system, we 
leveraged four data sources: (1) We obtained median 
gene expression for 18 purified cell types, as previously 
reported [13]. We found 9897 genes were expressed > 75th 
percentile of normalized expression (median centred and 
Median Absolute Deviation (MAD) scaled) in at least 
one cell type within this dataset. We selected 1958 genes 
with ≥ 2 MAD difference between immune and non-
immune cell populations. (2) We downloaded the human 
protein atlas data v20.1 (https:// www. prote inatl as. org/ 
about/ downl oad). The Human Protein Atlas consisted 
of single-cell data from 51 cell populations [55]. 15,302 

genes were expressed > 75th percentile in at least one cell 
population. (3) In the Human Protein Atlas and across 
37 tissues, 11,069 genes were annotated as specific to at 
least one tissue, determined as normalized expression ≥ 1 
(median normalized expression 33.9). We found 7206 
genes specific to only one tissue, 1257 of which were spe-
cific to blood, lymphoid tissue or bone marrow. (4) We 
included the ESTIMATE immune signature consisting 
of 141 genes [38]. In total, we found 3041 unique genes 
across four data sources with evidence of specificity to 
immune cell populations.

Next, we sought to identify genes that may be 
expressed in paediatric cancer and other non-immune 
cells. We compiled a paediatric cancer geneset using 
three data sources. (1) We used protein-coding gene 
expression data from 79 PDX models. We found 13,788 
genes expressed > 75th percentile in at least one PDX. 
(2) We used data from 22 cell lines collected by CBTN. 
These consisted of one ependymoma, 18 pedHGG and 
3 medulloblastoma. Across these cell lines, 11,195 pro-
tein-coding genes were expressed > 75th percentile in at 
least one cell line. (3) We leveraged published single-cell 
datasets from paediatric cancers, neuroblastoma [16] 
and ependymoma [18, 19] and used original cell annota-
tions as reported by authors. As single-cell datasets are 
generally sparse, we focused our analysis to genes with 
maximum expression > 75th percentile in at least one cell 
population in each dataset. We then determined non-
immune genes as those with ≥ 2 MAD difference between 
non-immune and immune cell populations in each data-
set. This analysis resulted in 3036, 12,109 and 5040 non-
immune genes from Jansky et  al. [16], Gojo et  al. [18] 
and Gillen et  al. [19] datasets, respectively. Intersect-
ing the immune and non-immune genes resulted in 791 
immune-specific genes.

To accurately assign the identified genes to immune 
cell types, we compiled genesets from seven sources and 
conducted a consensus approach to assign genes to spe-
cific immune cell types. For this analysis, we aggregated 
immune cell subtypes (e.g. Tregs) into the following 
major immune cell types: T, B, NK cells, dendritic cells, 
monocytes, macrophages, granulocytes and myeloid 
cells. These sources included gene annotations from five 
immune deconvolution tools, MCPCOUNTER [50], 
QUANTISEQ [49], CIBERSORT [47], EPIC [48] and 
TIMER [51]. We used all 264 genesets that were used to 
develop XCELL [52]. We used two additional sources: (1) 
scaled average counts of 7172 genes specific to 28 purified 
immune cell types derived from 416 healthy donors and 
patients with immune diseases (Immunexut) [56]. We 
chose 3896 genes with scaled count > 75th percentile in at 
least one cell type, of which 2555 genes had ≥ 2 MAD dif-
ference between one cell type compared to all others. (2) 

https://bioinformatics.mdanderson.org/public-software/estimate/
https://bioinformatics.mdanderson.org/public-software/estimate/
http://timer.cistrome.org/
http://timer.cistrome.org/
https://isb-cgc.shinyapps.io/iatlas/
https://www.proteinatlas.org/about/download
https://www.proteinatlas.org/about/download
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The human protein atlas annotated 5934 genes as blood 
cell specific [57], determined as genes with normalized 
expression ≥ 1 in at least one cell type. We chose 4902 
genes that were specific to one immune cell type. Our 
consensus analysis revealed 216 genes that were assigned 
to one specific immune cell type in at least two independ-
ent sources. We excluded myeloid cell geneset due to 
the low number of genes (n = 6) that may lead to inaccu-
rate enrichment scores. To calculate enrichment scores, 
we applied single-sample geneset enrichment analysis 
(ssGSEA) from GSVA R package [58] to batch-corrected 
 log2-transformed TPM values across pedNST. We then 
applied consensus clustering to the scaled (median cen-
tred and MAD scaled) immune cell-type enrichment 
scores using the ConsensusClusterPlus R package [59]. 
We performed k-means clustering based on Euclidean 
distance with 200 subsamples using 80% of samples and 
100% of features for 2 to 8 clusters. This analysis revealed 
four major immune clusters across pedNST.

For further delineate types of infiltrating T-cells, we 
derived enrichment scores of 40 T-cell subtypes using top 
50 signature genes derived from recent pan-cancer analy-
sis of tumour-infiltrating lymphocytes [60]. We focused 
this analysis on Paediatric Inflamed to avoid overesti-
mation as a result of low overall immune infiltration in 
other clusters. We scaled enrichment scores within each 
T-cell subtype across Paediatric Inflamed and performed 
consensus clustering with parameters as previously 
described. For myeloid cell subtypes, we used 13 myeloid 
signatures derived from single-cell analysis of adult can-
cer patients [61]. We chose 9 gene signatures consisting 
of genes with ≥ 1.5 fold change in expression between 
any given myeloid cell-type and other clusters. We scaled 
enrichment scores from myeloid gene signatures within 
each myeloid cell subtype across Myeloid Predominant 
and performed consensus clustering with parameters 
as previously described. For microglia, we used signa-
tures from two previous reports and derived enrichment 
scores in the pedCNS subset of Myeloid Predominant 
using ssGSEA [62, 63].

Immunohistochemistry
Formalin-fixed, paraffin-embedded TMA sections were 
analysed for CD4, CD8 and CD19 expression. The IHC 
staining was performed using the Ventana Discov-
ery platform. IHC was optimized and performed with 
CD4 (Abcam Ab183685), CD8 (Leica NCL-L-CD8-
4B11) and CD19 (e-Bioscience 14–0194) with dilu-
tions of 1:500, 1:100 and 1:500 respectively. In brief, 
tissue sections were incubated in Tris EDTA buffer 
(cell conditioning 1; CC1 standard) at 95  °C for 1 h to 
retrieve antigenicity, followed by incubation with the 

respective primary antibody for 1  h. Bound primary 
antibodies were incubated with the respective second-
ary antibodies (Jackson Laboratories) with 1:500 dilu-
tion, followed by Ultramap HRP and Chromomap DAB 
detection. For staining optimization and to control for 
staining specificity, normal tonsil was used as control. 
Intensity scoring was done on a common 4-point scale. 
Descriptively, 0 represents no staining, 1 represents low 
but detectable degree of staining, 2 represents clearly 
positive staining and 3 represents strong expression. 
Expression was quantified as H-score, the product of 
staining intensity and percentage of stained cells. The 
TMAs used in the study were obtained from the Chil-
dren’s Oncology Group (COG) and contains 9 ATRT, 
13 pedHGG, 20 ependymoma, 64 medulloblastoma and 
33 neuroblastoma cases, all of which are represented in 
duplicate cores.

To study protein levels of TIM3 and LAG3 in neu-
roblastoma, we purchased two serial TMA slides con-
sisting of 26 neuroblastoma cases all in duplicate cores 
with 10 cores of normal peripheral nerve tissue (Bio-
max, NB642a). Briefly, TMA sections were dewaxed 
and rehydrated through an ethanol series to water and 
endogenous peroxidases were blocked using 3%  H2O2 in 
PBS for 15 min at room temperature. Antigen retrieval 
was performed using 10  mM sodium citrate pH 6.0. 
Primary antibodies were incubated for 45 min at room 
temperature (TIM3 CST45208 1:150, LAG3 ab40466 
1:200) followed by several washes with PBS. Secondary 
antibodies were incubated for 30 min at room tempera-
ture (BA-1000 and BA-9200 at 1:500 dilutions Vectors 
Labs). ABC kit (PK-6100, Vectors Labs) was applied 
for 25 min with DAB for 4 min (SK-4100) followed by 
PBS washes. Stained slides were scanned using a Nano-
zoomer 2.0HT (Hamamatsu Photonics) at 20 × or 40 × .

Computational tumour-infiltrating lymphocyte (TIL) 
analysis was performed on digitally scanned haematox-
ylin and eosin (H&E)-stained whole-slide images (WSI) 
from the Children’s Brain Tumour Network (CBTN) as 
previously described [64]. Briefly, a pre-trained Incep-
tion-V4 deep learning model was applied to each WSI, 
returning a model probability of TIL presence within 
50 × 50 micron patches tiling across the entire WSI. 
Image patches that did not contain tissue were filtered 
out using a color standard deviation threshold of 18 
(computed on an 8-bit [0,255] color scale), and a mean 
TIL score was computed as the average TIL probability 
on the remaining patches for each WSI. Upon manual 
review, WSI with poor scanning quality and/or with a 
high false positive rate of TIL detection were removed 
from the analysis, including medulloblastoma and other 
tumours arising in the cerebellum/posterior fossa. One 
outlier sample was removed (Grubbs test).
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HLA‑typing and neoantigen prediction
We used the Optitype [65] tool available on the CAVAT-
ICA platform to determine HLA-A, B and C types from 
the TARGET and CBTN RNA-seq datasets. To pre-
dict neoantigens from gene mutations, we used Mutant 
Peptide eXtractor and Informer (MuPeXI) tool using 
MuTect2 variant caller as input [66]. We predicted 
8-11mer peptides for all HLA class I types. We deter-
mined strong or weak binding peptide-MHC complexes 
as previously described (percentile rank ≤ 0.5 for strong 
binding, > 0.5 and ≤ 2 for weak binding peptides) [67]. We 
included peptides predicted from mutations that over-
lapped between MuTect2 and Strelka2.

T‑ and B‑cell repertoire analysis
To recover T- and B-cell clonotypes, we used MiXCR 
v2.1.12 [68] with default parameters for RNA-seq data 
processing. We applied the framework iNterpolation/
EXTrapolation (iNEXT) to study immune repertoire 
diversity [69]. This method was primarily developed 
for diversity estimates in ecology and aimed to bring 
together asymptotic estimates and rarefaction/extrapo-
lation methods of estimation for samples with different 
sizes. Three most popular diversity indices have already 
been translated to immune repertoire studies; richness, 
the total number of species, Shannon index (entropy), 
which puts moderate weight on abundance and Simp-
son index, which measures diversity of abundant species. 
The robustness of these indices is dependent on sample 
size and could be biased in under-sampled experiments, 
which is a known problem in biodiversity studies and 
attempts have been reported to reduce such empirical 
biases [70]. Chao et  al. provided a more accurate esti-
mation of diversity by integrating slopes obtained from 
accumulation curves into entropy formula followed by 
bootstrapping method for variance [70]. We applied 
similar principles on RNA-seq datasets to infer immune 
diversity. We found that the estimates were severely 
affected in samples with less than three clonotypes recov-
ered from bulk RNA-seq or in samples with multiple clo-
notypes of the same clonal fractions and excluded them 
from our analysis. Note that these samples may be (A) 
samples with low number of immune cells and therefore 
low number of clonotypes that could not be reflected 
on shallow RNA-seq data, or (B) samples with sufficient 
immune infiltration, but highly uneven clonal distribu-
tion, therefore only highly abundant clonotypes were 
seen at shallow coverage, yet the true diversity could not 
be robustly estimated.

For B-cell repertoire, we used constant regions of 
immunoglobulin heavy chain (IGH C segments) to 
study the distribution of immunoglobulin isotypes. 
Due to somatic hypermutation in the B-cell repertoire, 

we removed sequences with ≤ 2 reads. As B-cell clones 
originating from a naïve B-cell may have mismatches in 
CDR3 sequences via somatic hypermutation events, we 
clustered IGH CDR3 octamers allowing for one mis-
match, as described previously [71]. We considered 
sequences shorter than 8 amino acids as individual CDR3 
sequences. Only samples with > 3 CDR3 sequences were 
included from this analysis and we used the gini index of 
inequality as a measure for uneven distribution of B-cell 
clusters.

TCR sequencing
To validate the T-cell diversity estimates from RNA-seq, 
we applied CapTCR-seq [72] hybrid capture protocol to 
RNA-seq libraries of adult nasopharyngeal carcinoma 
(n = 33), paediatric samples from the PRecision Oncology 
For Young peopLE (PROFYLE) programme (www. profy 
le. ca) (n = 10) and ten paediatric GBM samples (ICGC). 
We compared estimated values of TCRβ richness, Shan-
non and Simpson diversities from bulk RNA-seq data 
with observed richness, Shannon and Simpson diversities 
from CapTCR-seq experiment.

Statistics and visualization
Statistical tests, p-values and other details are noted in 
text and figure legends. For tumour subtypes, we used 
one-sided Fisher’s exact test (alternative = ‘greater’ in R) 
comparing each subtype to all others within each immune 
cluster. We used analysis of covariance (ANCOVA) to 
compare continuous variables such as TMB or age at 
diagnosis across immune clusters adjusting for cancer 
entities. For survival analysis, we defined overall sur-
vival (OS) as follows. For NCI TARGET, we used ‘Overall 
Survival Time in Days’ and ‘vital status’ reported in the 
metadata. For CBTN, we used ‘Last Known Status’ with 
‘Deceased-due to disease’ recoded as ‘Event’. We calcu-
lated OS time using ‘Age at Collection’ of the first col-
lected specimen (‘Initial CNS Tumor’) and ‘Age At Last 
Known Status’ of the last collected specimen, as reported 
in the metadata. For ICGC, we defined OS as the time 
between the date of first diagnosis and date of death or 
last follow-up. We defined progression-free survival 
(PFS) as follows. For NCI TARGET, we used ‘Event Free 
Survival Time in Days’ and ‘First Event’ as reported in 
the metadata with ‘Event’, ‘Death’, ‘Progression’, ‘Relapse’ 
and ‘Second Malignant Neoplasm’ recoded as ‘Event’. For 
CBTN cases with one surgical resection, we used ‘Last 
Known Status’ with ‘Deceased-due to disease’ recoded as 
‘Event’. For these cases, we calculated PFS time using ‘Age 
at Collection’ and ‘Age At Last Known Status’ of the col-
lected specimen, as reported in the metadata. For cases 
with multiple surgical resections, we calculated PFS time 
using ‘Age at Collection’ of the first collected specimen 

http://www.profyle.ca
http://www.profyle.ca
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(‘Initial CNS Tumor’) and ‘Age at Collection’ of the sec-
ond collected specimen (‘Progressive’ or ‘Recurrence’), as 
reported in the metadata. For ICGC, we calculated PFS 
as the time between date of first diagnosis and date of 
first relapse/progression or death (if death was the first 
event), or date of last follow-up (if no event).

We used log-rank tests for Kaplan–Meier analyses. We 
used Cox proportional hazards models to adjust for can-
cer entities and gender in multivariable analyses. We used 
Student’s t test to compare scaled values across groups 
and rank sum test to compare values with non-normal 
distribution. We applied the Cochran-Mantel–Haenszel 
(CMH) test to compare samples with mutations in onco-
genic pathways across immune clusters controlling for 
the effects of cancer entities. In all boxplots, boxes show 
median and IQR and whiskers represent 1.5 times IQR. 
Boxplots are shown for groups with more than three 
datapoints. We annotated statistical significance levels 
as follows: *p < 0.05, **p < 0.01 and ***p < 0.001. We per-
formed all analyses and visualizations in R v4.0. We used 
Adobe Illustrator v24.0.1 for aesthetic edits and figure 
alignments.

Results
Establishment of paediatric nervous system tumour cohort 
for immunogenomic analysis
To study immune attributes across paediatric nervous 
system tumours (pedNST), we compiled a cohort of bulk 
RNA-seq data from three consortia: the Children’s Brain 
Tumour Network (CBTN), the National Cancer Insti-
tute Therapeutically Applicable Research To Generate 
Effective Treatments initiative (NCI TARGET) [23] and 
the International Cancer Genome Consortium (ICGC) 
[24]. To better represent primary pedNST and to enable 
comparison at the transcriptional level, we performed 
unsupervised clustering on the CBTN RNA-seq data-
set (n = 581, Additional file  1: Fig. S1A-C). We further 
annotated CBTN medulloblastoma and ATRT tumour 

subtypes using unsupervised clustering for downstream 
analysis (Additional file  1: Fig. S1D-E, ‘Methods’). We 
included 195 primary samples from the ICGC [21] with 
matched RNA-seq, whole genome sequencing (WGS) 
and DNA methylation data and 149 primary neuroblas-
tomas from the NCI TARGET [23] with matched RNA-
seq and whole exome sequencing (WES) data [23].

The final, aggregated non-overlapping paediatric data-
set for immunogenomic analysis consisted of 925 sam-
ples with primary locations in the central nervous system 
(CNS) or peripheral nervous system: embryonal tumours 
with multilayered rosettes (ETMR, n = 9), neurofibroma 
(NFB, n = 11), choroid plexus tumours (CP, n = 16), men-
ingioma (MNG, n = 13), schwannoma (SCHW, n = 14), 
craniopharyngioma (CPH, n = 27), atypical teratoid/
rhabdoid tumours (ATRT, n = 30), ependymoma (EPN, 
n = 65), paediatric high-grade glioma (pedHGG, n = 83), 
neuroblastoma (NBL, n = 151), medulloblastoma (MB, 
n = 208), and paediatric low-grade glioma (pedLGG, 
n = 298) (Fig.  1A) (Additional file  2: Table  S1). We 
included data from 79 patient-derived xenograft (PDX) 
models as part of the Innovative Therapies for Children 
with Cancer Pediatric Preclinical Proof-of-Concept 
Platform (ITCC-P4) project as negative controls lacking 
immune or stromal infiltration [73, 74] (Fig. 1B).

Immune infiltration analysis reveals high variability 
across and within cancer types
To determine the overall levels of immune infiltration 
across pedNST, we first assessed the performance of 
the deconvolution tool ESTIMATE [38] using in silico 
simulations and converted immune scores to ‘immune 
read percentage’ using a non-linear regression model 
(Additional file 1: Fig. S2B). To enable comparison with 
adult brain tumours and cancers in which ICI agents 
have been clinically studied [75–79], we performed 
a parallel analysis of 2452 primary adult tumour sam-
ples from The Cancer Genome Atlas (TCGA) [25, 80]: 

(See figure on next page.)
Fig. 1 Transcriptional analysis of 925 paediatric nervous system tumours (pedNST) reveals four distinct immune clusters. A Overview of cohorts 
and sample size in the present study (PDX: patient-derived xenografts, ETMR: embryonal tumour with multilayered rosettes, NFB: neurofibroma, 
MNG: meningioma, SCHW: schwannoma, CP: choroid plexus tumours, CPH: craniopharyngioma, ATRT: atypical teratoid/rhabdoid tumour, EPN: 
ependymoma, pedHGG: paediatric high-grade glioma, NBL: neuroblastoma, MB: medulloblastoma, pedLGG: paediatric low-grade glioma). B 
Distribution of percentage immune reads based on ESTIMATE immune score across paediatric and adult cancers. PDX samples serve as a negative 
control for immune infiltration. PRAD: prostate adenocarcinoma, LGG: low-grade glioma, OV: ovarian serous cystadenocarcinoma, SKCM: skin 
cutaneous melanoma, COAD: colorectal adenocarcinoma, GBM: glioblastoma multiforme, LUAD: lung adenocarcinoma. C Heatmap representing 
consensus clustering using enrichment scores derived from six immune-cell-specific genesets across the pedNST cohort. Cell-type scores 
correspond to normalized gene set enrichment scores. D Heatmap illustrating proportion of samples in each immune cluster across cancer entities. 
Barplots show the total number of samples for each row (cancer type) and column (immune cluster). E Heatmap showing fraction of samples 
in each CRI-iAtlas cluster across immune clusters in pedNST. Barplot shows the total number of samples in each CRI-iAtlas cluster. F Boxplot showing 
average tumour-infiltrating lymphocyte (TIL) scores as determined by segmentation analysis of pathological images across the paediatric CNS 
tumour samples (CBTN). Three sample images are shown representing 1% (bottom), 10% (middle) and 15% (top) TIL scores corresponding to lower 
quartile, mean and higher quartile, respectively. Boxes show median and interquartile range (IQR) and whiskers represent 1.5 times IQR. Two-sided 
rank sum test, *p < 0.05. G Barplots showing frequency (top barplot) and fraction (stacked barplot) of tumour subtypes across immune clusters 
(SHH: Sonic Hedgehog, TYR: Tyrosine, MYCN-NA: MYCN non-amplified, MYCN-A: MYCN amplified, WT: wildtype)
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Fig. 1 (See legend on previous page.)
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glioblastoma multiforme (GBM, n = 153), low-grade 
glioma (LGG, n = 507), skin cutaneous melanoma 
(SKCM, n = 102), colorectal adenocarcinoma (COAD, 
n = 298), ovarian serous adenocarcinoma (OV, n = 373), 
prostate adenocarcinoma (PRAD, n = 497), lung adeno-
carcinoma (LUAD, n = 522).

Immune read percentages varied considerably within 
and across pedNST (median 7.2%, range 1.9–47.9%) 
and in similar range compared to adult CNS tumours 
(median 7.8%, range 2.9–41.8%). Common non-CNS 
adult cancers showed higher overall levels of immune 
infiltration (median 10.3%, range 2.5–67.8%). In 
pedNST, the highest values were in extracranial entities 
including neurofibroma, schwannoma and meningioma 
(medians 22.6, 17.8 and 15.3%, respectively). Paediat-
ric brain tumour entities ETMR and medulloblastoma 
had the lowest median immune infiltration of all can-
cers analysed (medians 2.7 and 2.8%) [81–83] (Fig. 1B). 
Choroid plexus tumours had consistently low variation 
of immune read percentage (range 3.1–13%, median 
7.3%). In contrast, ATRT exhibited the widest distribu-
tion of immune infiltration (range 2.3–47.9%, median 
5.5%), consistent with known associations between 
infiltration and ATRT subgroups [84, 85]. Similarly, a 
wide range of immune read percentages were observed 
in craniopharyngioma and neuroblastoma (range 3.9–
40.9%, median 12.6% and 2.6–30.7%, median 8.8%). 
These data revealed notable examples of highly infil-
trated and immune-excluded samples in paediatric 
nervous system tumours and identified general trends 
of immune infiltration.

To investigate whether the wide variability in immune 
infiltration could be recapitulated at the protein level, we 
applied immunohistochemistry (IHC) to a tissue micro-
array (TMA) from an independent cohort of 139 paedi-
atric cancers, obtained from Children’s Oncology Group 
(COG). The median CD8 staining was greatest in ATRT 
followed by neuroblastoma and pedHGG, while medul-
loblastoma and ependymoma had median H-score 
(defined as product of staining intensity and percentage 
of stained cells) of zero (Additional file  1: Fig. S3A-B). 
We found CD4 staining in eight samples (H-score > 0, 3 
ATRTs, 3 ependymoma, 2 medulloblastoma), while other 
samples showed no CD4 staining. CD19 staining was 
variable among cancer types ranging from 3% (medullo-
blastoma) to 51% (neuroblastoma) (Additional file 1: Fig. 
S3A-B). Summing H-scores across all three markers, we 
found highest staining in ATRT followed by neuroblas-
toma (medians 17 and 15) and medulloblastoma showing 
the lowest staining. These results confirm the high vari-
ability of immune cell-type infiltration within and across 
pedNST, as well as generalized trends inferred from gene 
expression.

Consensus gene set clustering reveals four distinct 
immune clusters in pedNST
In light of the variability of immune infiltrates within each 
tumour type, we sought to categorize immune micro-
environments across pedNST. We detected unexpected 
immune signals inferred by various immune deconvo-
lution algorithms when applied to PDX RNA-seq data 
(Additional file 1: Fig. S4A-G, Additional file 2: Table S2), 
which should not yield a (human) immune cell signature. 
This indicated wide discordance and non-specific signals 
across existing immune deconvolution tools. To address 
the non-specific immune signal that may originate from 
tumour cells, we sought to identify immune cell-specific 
genes that lack expression in paediatric nervous system 
cancer cells. We compiled 3041 immune-related genes by 
incorporating data from four sources: ESTIMATE signa-
ture [38], an immune cell compendium [13], the Human 
Protein Atlas (HPA) single cell [55] and tissue specificity 
datasets [86] (Methods). We excluded genes with evi-
dence of expression in paediatric cancer cells using data 
from the PDX models (ITCC-P4), single-cell RNA-seq 
[16, 18, 19] and established cell lines (CBTN). This analy-
sis identified that 791 of the 3041 immune genes are not 
expressed in paediatric nervous system tumour cells. 
We performed consensus analysis using gene sets from 
aforementioned immune deconvolution tools along with 
gene expression profiling of 28 immune cell types [56], 
and the HPA blood-cell-specific dataset [57]. Using this 
approach, 216 genes were assigned to a single cell-type 
in at least two data sources. These included genes spe-
cific for T-cells (n = 41), B-cells (n = 32), NK cells (n = 20), 
monocytes (n = 18), dendritic cells (n = 28) and granu-
locytes (n = 71) (Additional file  2: Table  S3). Consensus 
clustering of normalized enrichment scores for these 
cell-specific genesets identified four distinct immune 
clusters (Fig.  1C,D) that we characterized further and 
designated Paediatric Inflamed, Myeloid Predominant, 
Immune Neutral, and Immune Desert based on differen-
tial expression of aforementioned genesets.

To place these clusters in context of prior immunog-
enomics work in adult tumours, we applied the CRI-
iAtlas, a comprehensive classification method performed 
on TCGA dataset consisting of over 10,000 tumour sam-
ples spanning 33 adult tumour types [14], to pedNST. 
We found that a lower proportion of paediatric brain 
tumours were grouped in ‘Immunologically quiet’ or 
‘Lymphocyte depleted’ clusters compared to adult coun-
terparts (85%, 635/749 vs 98%, 654/668). In contrast, 
16.5% of paediatric extracranial tumours (neuroblastoma, 
neurofibroma and schwannoma, 29/176) harboured 
cold immune microenvironment, compared to 10.5% of 
adult extracranial tumours (888/8458). Across pedNST, 
we found 19% of pedNST (n = 174) belonged to the 
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‘Inflammatory’ or ‘IFN-γ dominant’ clusters, while 7% 
(n = 64) were grouped in ‘Wound healing’. Twenty per-
cent of pedLGG (60/298) were grouped in the ‘Inflam-
matory’ cluster, in contrast to adult LGG, 98% of which 
showed a cold immune microenvironment. Almost all 
pedHGG samples (82/83) were grouped in the ‘Immu-
nologically quiet’ or ‘Lymphocyte depleted’ clusters, 
similar to adult GBM (151/154). Overall, we found 72% 
of pedNST (n = 664) were grouped in the ‘Immunologi-
cally quiet’ or ‘Lymphocyte depleted’ clusters indicating 
a generally cold immune microenvironment in pedNST 
(Fig. 1E).

The Paediatric Inflamed cluster (n = 90, 9.7%) had the 
highest immune read percentage across pedNST. 57.1% 
of schwannoma (n = 8) and 54.5% of neurofibroma (n = 6) 
were clustered in this group followed by 40.7% of crani-
opharyngioma (n = 11) and 30.8% of meningioma (n = 4) 
(Fig. 1D). Five of six cases grouped in the ‘TGF-β domi-
nant’ cluster belonged in this cluster, followed by 42.3% 
of ‘IFN-γ dominant’ samples (n = 11) (Fig. 1E). This clus-
ter was devoid of samples in the ‘Immunologically quiet’ 
or ‘Lymphocyte depleted’ cluster indicating that ~ 10% 
of pedNST samples harbour T-, B- and NK cells, mono-
cytes, granulocytes and dendritic cells.

The Myeloid Predominant cluster (n = 279, 30.1% of 
pedNST) scored highly for monocyte, dendritic cell 
and granulocyte gene sets while harbouring lower lev-
els of lymphoid cell types. 53.8% of meningioma (n = 7) 
and 53% of pedLGG (n = 158) cases clustered in Myeloid 
Predominant followed by 44.5% of craniopharyngioma 
(n = 12) (Fig.  1D). 50% of the samples within the CRI-
iAtlas ‘IFN-γ dominant’ (n = 13) and 40% of the ‘Inflam-
matory’ samples (n = 59) were clustered in this group 
(Fig. 1E), suggesting the inflammatory component of this 
cluster is driven primarily by myeloid cells.

The Immune Neutral cluster (n = 393, 42.5%) had mye-
loid and lymphoid cell infiltration scores near the median 
of the entire pedNST cohort. This cluster contained a 
large fraction of the cancer types with low immune read 
percentage including ETMR (n = 5, 55.6%), medulloblas-
toma (n = 136, 65.4%) and ependymoma (n = 47, 72.3%) 
(Fig.  1D). This cluster included 56.4% of the ‘Immuno-
logically quiet’ (n = 62) and 48.7% of the ‘Lymphocyte 
depleted’ (n = 270) tumours (Fig.  1E), indicating that 
intermediate immune infiltration across pedNST corre-
sponds to cold immune microenvironment compared to 
adult cancers, which may contribute to intrinsic resist-
ance to immune checkpoint inhibitors.

The Immune Desert cluster (n = 163, 17.6%) received 
low immune inference scores for all immune cell types 
(Fig.  1C). This cluster included 32.5% of neuroblastoma 
(n = 49) and 29.8% of medulloblastoma (n = 62) and none 
of the immune infiltrated cancer entities (Fig. 1D). Purity 

scores inferred from copy number alterations [87] in 
156 ICGC samples revealed that samples in this cluster 
were of highest cancer cell content compared to Immune 
Neutral or Myeloid Predominant (Additional file  1: Fig. 
S5A-B).

To validate lymphocyte infiltration levels across the 
immune clusters, we leveraged a deep learning method 
of tissue image analysis for 355 pedCNS samples from 
CBTN with haematoxylin and eosin (H&E)-stained tissue 
slides and matched RNA-seq [64], as well as 195 ICGC 
samples with matched DNA methylation arrays and 
RNA-seq. Consistent with the RNA-seq immune infer-
ence analysis, choroid plexus tumours received the lowest 
tumour-infiltrating lymphocyte (TIL) scores determined 
by H&E tissue analysis (median 0.08), while meningioma 
and neurofibroma scored highest across cancer enti-
ties (medians 0.14 and 0.11, Additional file 1: Fig. S6A). 
TIL scores were variable across CNS tumour sites rang-
ing from a median of 0.07 in cerebral hemispheres to a 
median of 0.18 in case of meninges (Additional file 1: Fig. 
S6B). Paediatric Inflamed showed significantly higher TIL 
score compared to Myeloid Predominant and Immune 
Desert (medians, 0.1, 0.09 and 0.08, respectively, two-
sided rank sum test, p = 0.02 and 0.03, Fig. 1F, Additional 
file  2: Table  S4). This difference was more pronounced 
in samples with immune read percentage > 5% (medians 
0.1 and 0.03 in Paediatric Inflamed and Immune Desert) 
or in those collected from cerebral hemispheres (medi-
ans 0.09 and 0.05), suggesting that high immune infil-
tration and composition of tumour microenvironment 
may influence the H&E-based inference of TILs. These 
findings were recapitulated by immune inference analy-
sis utilizing the ICGC DNA methylation array data [53, 
54]. Paediatric Inflamed tumours displayed higher levels 
of T-cell infiltration (pairwise two-sided Student’s t test 
with Bonferroni correction, p < 0.01, Additional file  1: 
Fig. S6D). Although B-cell estimates were not signifi-
cantly different between Paediatric Inflamed and Myeloid 
Predominant, lower levels of B-cells were estimated in 
Immune Neutral and Immune Desert compared to Mye-
loid Predominant (p < 0.001, Additional file 1: Fig. S6D). 
Similarly, Immune Neutral and Immune Desert showed 
depletion of DNA methylation-based estimates for NK 
cells and monocytes compared to Myeloid Predominant, 
in agreement with our RNA-seq clusters (p < 0.001, Addi-
tional file 1: Fig. S6D). We compared levels of CD8 + T-, 
CD4 + T- effector and regulatory T-cell (Treg) subtypes 
estimated from DNA methylation deconvolution across 
immune clusters. Paediatric Inflamed showed elevated 
levels of CD8 + T-cell and Treg estimates, while depleted 
in CD4 + T effector estimates. Conversely, Myeloid Pre-
dominant showed high levels of Treg and CD4 + T effec-
tor estimates with minimal CD8 + T-cells (Additional 
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file 1: Fig. S6E). These results suggest presence of a lym-
phocyte population in Myeloid Predominant that is 
undetectable in bulk RNA-seq.

As pedNSTs consist of distinct molecular entities and 
subgroups [88, 89], we next investigated associations 
between cancer subtypes and immune clusters (Fig. 1G). 
MYC-like ATRTs appeared to be enriched in Paedi-
atric Inflamed or Myeloid Predominant compared to 
non-MYC-like ATRT, and 8 out of 12 SHH-like ATRT 
tumours clustered into Immune Neutral, although it 
did not reach statistical significance (one-sided Fisher’s 
exact test with Bonferroni correction, p > 0.05) [84]. In 
neuroblastoma (n = 148), MYCN non-amplified neuro-
blastoma cases were enriched in Myeloid Predominant 
(n = 41, p = 0.007), while neuroblastoma MYCN amplified 
showed a trend toward Immune Desert (n = 16, p = 0.1) 
[90, 91]. SHH medulloblastoma showed a trend toward 
Myeloid Predominant and Immune Neutral (n = 4 and 
28, p > 0.05), while 95% of WNT medulloblastoma were 
grouped into Immune Neutral and Immune Desert (19 
out of 20). In pedLGG (n = 298), BRAF wildtype samples 
were enriched in Immune Desert (n = 24, p = 5 ×  10−6), 
BRAF-KIAA1549 fusion-positive tumours were grouped 
into Myeloid Predominant (n = 82, p = 0.005) and BRAF 

p.V600E samples showed a trend toward Paediatric 
Inflamed (n = 7, p = 0.07). In summary, our findings 
reveal associations between tumour-intrinsic character-
istics and the immune microenvironment, although it 
remains to be established whether the microenvironment 
is sculpted by the cancer cells or whether specific cancer 
subtypes thrive in specific microenvironments.

We next investigated whether there were associations 
between patient characteristics or outcome with the 
immune clusters. We found an association between male 
sex and pedNST, more prominently seen in medullo-
blastoma and ependymoma (Additional file 1: Fig. S7A). 
A logistic regression model adjusting for cancer type 
indicated a trend toward an association between male 
genetic sex and Immune Desert (Wald test, p = 0.05) 
(Fig. 2A). There were no significant associations between 
race or age and immune clusters independent of cancer 
type (Fig.  2B, C, Additional file  1: Fig. S7B-C). Kaplan–
Meier analysis indicated significant differences in overall 
survival (OS) and progression-free survival (PFS) among 
the immune clusters (log-rank test, p = 0.001 and 0.02) 
(Fig. 2D, E). We observed poorer OS for Immune Neutral 
and Immune Desert compared to Paediatric Inflamed in 
a Cox proportional hazards model adjusting for cancer 

Fig. 2 Associations of immune clusters with patients’ clinical parameters and survival. A, B barplots showing distributions of gender (A) and race (B) 
across immune clusters in pedNST. ANCOVA, not significant. C boxplot depicting age distribution across immune clusters. ANCOVA, not significant. 
Boxes show median and interquartile range (IQR) and whiskers represent 1.5 times IQR. D, E Kaplan–Meier curves and risk tables for overall survival 
(D) and progression-free survival (E) among immune clusters. Log-rank test p-values are denoted
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type and sex (hazard ratio (HR) = 1.56 and 1.97, confi-
dence interval (CI) 1.13–2.14 and 1.39–2.79, p = 0.006 
and 0.0001) (Additional file  2: Table  S5). Myeloid Pre-
dominant cases showed a trend toward improved PFS 
compared to Paediatric Inflamed (HR = 0.68, CI 0.44–
1.06, p = 0.08) (Additional file 2: Table S6). This trend may 
be a result of low but differential presence of T-cells in 
Myeloid Predominant compared to Paediatric Inflamed 
(Additional file 1: Fig. S6E). Our results suggest that inde-
pendent of cancer type, infiltration of specific immune 
cell populations (Paediatric Inflamed and Myeloid Pre-
dominant) provides a survival advantage over low infil-
tration (Immune Neutral and Desert) that may indicate 
poor immune recognition.

Gene expression analysis reveals differential molecular 
pathways and immunoregulatory genes in immune 
clusters
To understand the cellular pathways underlying each 
immune cluster, we conducted quantitative set analysis 
for gene expression (QuSAGE) [92] comparing samples 
in one cluster against all others while adjusting for data 
source and cohort. Leveraging the Molecular Signatures 
Database (MSigDB) Hallmark genesets [93], we found 
that immune-related pathways such as IFN-α, IFN-γ and 
allograft rejection were significantly enriched in Paedi-
atric Inflamed and Myeloid Predominant and depleted 
in Immune Neutral and Immune Desert (Fig. 3A, Addi-
tional file 2: Table S7). Mitotic spindle and G2M check-
point pathways were significantly enriched in Immune 
Desert indicating a high proliferation rate with low 
amounts of non-malignant cells. To investigate whether 
these associations could be recapitulated at the protein 
level, we leveraged data from 147 samples with matched 
RNA-seq and proteomic profiles [62]. Compared to Pae-
diatric Inflamed, Immune Neutral and Immune Desert 
showed a significantly lower average protein z-score in 
eight immune pathways identified using QuSAGE (pair-
wise two-sided Student’s t test with Bonferroni cor-
rection, p < 0.05, Fig.  3B). These findings reveal active 
immune pathways in Paediatric Inflamed and Myeloid 
Predominant consistent with the inflammatory and 
IFN-γ dominant adult clusters [14].

We further sought to determine key differential genes 
underlying each immune microenvironment. Using dif-
ferential gene expression analysis [94], we found cell-
type-specific genes upregulated in Paediatric Inflamed 
including B-cell (JCHAIN, MZB1 and CD79A), mac-
rophages (MARCO) and granulocyte-specific genes 
(ADGRG3 and FPR2) (Fig.  3C). Consistently, differen-
tially expressed genes comparing Paediatric Inflamed to 
other samples included genes specific to B-cells, plasma 
cells and macrophages (Additional file  1: Fig. S8A). In 

Myeloid Predominant, we found only one significantly 
upregulated gene, CHIT1, which encodes for chitotriosi-
dase secreted by active macrophages [95] (Fig. 3C). The 
lack of other significantly upregulated myeloid-specific 
genes may suggest heterogeneity among myeloid cell 
types in different cancer entities. JCHAIN and CXCL10 
were downregulated along with MMP9 in Immune Neu-
tral (Fig.  3C). Immune-related genes such as JCHAIN, 
CD3 chains, IL6 and cytotoxicity genes GZMK and 
GZMA were significantly downregulated in the Immune 
Desert (Fig.  3C). Altogether, these results reveal core 
immunological pathways and genes driving immune 
clusters.

We sought to determine possible immunoregulatory 
players in pedNST. Comparison of expression levels of 
59 genes with known regulatory functions [96] revealed 
differential expression across immune clusters after 
adjusting for cancer type and the total immune infiltrate 
(Analysis of Covariance (ANCOVA)). Members of CD28 
superfamily receptor (PDCD1, CTLA4, BTLA and ICOS) 
were upregulated in Paediatric Inflamed (p = 6.61 ×  10−9, 
9.98 ×  10−12, 3.04 ×  10−13 and 1.67 ×  10−17, respectively, 
Fig. 3D). Genes encoding PD-L1 and PD-L2 (CD274 and 
PDCD1LG2) were upregulated in Paediatric Inflamed 
(p = 0.03 and 6.34 ×  10−4). Genes involved in regulatory 
T-cell (Tregs) function and activation (IDO1, STAT3 
and FOXP3) were upregulated in Paediatric Inflamed 
(p = 1.63 ×  10−8, 0.002 and 2.31 ×  10−11, respectively). 
These findings reveal high expression levels of immune 
checkpoint genes as well as genes involved in immuno-
suppression in Paediatric Inflamed.

In Myeloid Predominant, TGFB3 encoding for TGF-
β3 was significantly upregulated (ANCOVA, p = 0.007) 
(Fig. 3D). LGALS3 encoding for Galectin-3 with negative 
regulatory functions in macrophages [97] was upregu-
lated in Myeloid Predominant suggesting the prominent 
macrophage influence in this cluster (p = 0.004). Other 
myeloid-specific genes with immunoregulatory func-
tions were upregulated in both Paediatric Inflamed and 
Myeloid Predominant and included IL4I1 [98], CCL2 [99] 
and FGF2 [100] (Fig.  3D). These findings show prefer-
ential expression of myeloid-related regulatory genes in 
Myeloid Predominant.

In Immune Desert, we found that CD276 encod-
ing immune checkpoint protein B7-H3 to be highly 
expressed (p = 9.61 ×  10−4, Fig.  3D). Unexpectedly, 
among immune checkpoint genes, LAG3 was expressed 
at higher levels in Immune Desert (p = 0.004). Further 
inspection of immune checkpoint genes in PDX data 
confirmed high expression of LAG3 (Additional file  1: 
Fig. S8B). Across medulloblastoma samples in Immune 
Desert, WNT subgroup expressed LAG3 at signifi-
cantly higher levels compared to SHH and there was 
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a non-significant trend between WNT and Group3/4 
(two-sided Student’s t test, p = 0.02 and 0.08, Additional 
file 1: Fig. S8C). These results suggest LAG3 expressed 
by tumour cells in pedNST calling for further valida-
tion of its function in the brain and identify B7-H3 as 

a possible mechanism of immune exclusion in subsets 
of pedNST.

In neuroblastoma, profiling expression of five immune 
checkpoint genes revealed ~ 10% of samples had exclu-
sively elevated expression of HAVCR2 gene encoding 

Fig. 3 Pathway and differential gene expression analysis confirm immune features across immune clusters. A Heatmap showing log-fold change 
in gene enrichment scores (derived from QuSAGE) in each immune cluster compared to all others in pedNST. Columns show MSigDB pathways 
with false discovery rate (FDR) < 0.1 in at least three immune clusters. Black box outlines pathways validated by protein in (B). B Ridge plots 
illustrating average z-scores of proteins [62] involved in immune pathways from A across immune clusters in 141 pedCNS samples (CBTN). Fraction 
indicates the number of protein readouts from the number of genes in each pathway. Pairwise two-sided Student’s t test with Bonferroni correction, 
*p < 0.05, **p < 0.01 and ***p < 0.001. Significance levels are shown for comparison to Paediatric Inflamed. C Volcano plots for differentially expressed 
genes (derived from DESeq2) in each immune cluster compared to other samples. Up- or downregulated genes with absolute log-fold change > 1.5 
and FDR < 0.1 are shown in red or blue, respectively. Dashed line shows the log-fold change threshold. Top ten differentially expressed genes 
are annotated. D Heatmap showing median z-score expression of 59 genes with known immunoregulatory functions across immune clusters 
in pedNST
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TIM3 (Additional file  1: Fig. S8D). We confirmed this 
finding using a non-overlapping neuroblastoma dataset 
of 209 immune infiltrated tumours. In this cohort, we 
found 13 cases (6.2%) that showed elevated expression of 
HAVCR2 and low expression of LAG3 (Additional file 1: 
Fig. S8D). Immunohistochemical staining for TIM3 and 
LAG3 proteins using an independent TMA showed that 
TIM3 was detectable in 14 samples without LAG3 stain-
ing (Additional file 1: Fig. S8E). These findings identify an 
HAVCR2 expression in a subset of neuroblastomas sug-
gesting a distinct mode of immunosuppression.

Immune microenvironment associations 
with tumour‑intrinsic genomic alterations and tumour 
mutational burden
We next asked whether immune clusters are associated 
with tumour mutational burden (TMB). We did not find 
a statistically significant difference in the total number 
of non-synonymous single-nucleotide variants (SNV) 
per coding megabase (SNV/Mb) or SNV + Insertion/
deletion (Indel) /Mb (SNV + Indel /Mb) across immune 
clusters (ANCOVA comparing to Paediatric Inflamed, 
Fig.  4A,B, Additional file  2: Tables S9, S10). However, 
when we looked at 63 pedHGG samples, we found that 
Myeloid Predominant and Immune Neutral harboured 
significantly higher TMB compared to Immune Desert 
(two-sided rank sum test, p = 0.02, Fig.  4C). Four of 
6 cases with > 5 SNV + Indel/Mb and germline varia-
tions in MLH1, MSH2, MSH6, PMS2, POLE or POLD1 
belonged to Myeloid Predominant, suggesting higher 
levels of immune infiltration in patients with biallelic 
Mismatch Repair Deficiency (bMMRD) syndrome. Our 
findings otherwise revealed no associations between the 
immune microenvironment and TMB in non-hyper-
mutant pedNST, suggesting TMB, with the exception 
of MMR-associated tumours, may not be an appropri-
ate biomarker for immune checkpoint inhibitors in this 
population.

To elucidate whether antigen presentation may be 
associated with immune clusters, we investigated the 
MHC presentation potential of somatic mutations in 
pedNST, we determined patients’ HLA class I types [65] 
(Additional file  1: Fig. S9) and performed the mutant 
peptide extractor and informer (MuPeXI) [66] analy-
sis. We identified 7591 strong binding and 21,680 weak 
binding peptides, as defined previously [67]. The num-
ber of predicted strong binding peptides was highest in 
neuroblastoma and pedHGG (medians 19 and 17) and 
lowest in craniopharyngioma (median 2.5), consistent 
with its low TMB (median 0.07 SNV + Indel/Mb, Addi-
tional file  1: Fig. S10A-B). Differences in the number of 
strong or weak binding peptides did not reach statisti-
cal significance after adjusting for cancer type and data 

source (ANCOVA, Fig.  4D, Additional file  1: Fig. S10C, 
Additional file  2: Table  S11). Consistent with our TMB 
observation, pedHGG showed a significantly higher 
number of strong or weak binding peptides in Myeloid 
Predominant compared to Immune Neutral or Immune 
Desert (Fig. 4E, Additional file 1: Fig. S10D). While these 
data indicate neopeptides are not independently associ-
ated with immune infiltration across cancer entities in 
the pedNST, higher numbers of neopeptides in pedHGG 
cases clustered in the Myeloid Predominant suggest 
associations with immune infiltration and potentially 
immune recognition in this cancer entity.

We hypothesized that disruptions in oncogenic path-
ways may be associated with distinct immune clusters. 
We identified samples with alterations (SNVs, Indels and 
fusions) in at least one gene in the ten TCGA oncogenic 
pathways [37] (Fig. 4F). Tumours with somatic alterations 
in members of the receptor tyrosine kinase (RTK) path-
way were most frequently found in Myeloid Predominant 
(Cochran-Mantel–Haenszel (CMH) test, p = 6.1 ×  10−5, 
Fig.  4F). Paediatric Inflamed showed a higher percent-
age of samples with mutations in the Mismatch Repair 
(MMR) pathway, although this difference did not reach 
statistical significance across cancer entities (p = 0.41, 
Fig.  4F). Among common driver mutations (Fig.  4G) 
[101], we found that BRAF-altered samples were differ-
entially clustered among immune clusters, with BRAF-
KIAA1549 fusion-positive samples grouped primarily in 
Myeloid Predominant (p = 3 ×  10−6, Fig.  4G). While the 
causal relationship between tumour-intrinsic genomic 
alterations and immune microenvironment remains 
unclear, our results reveal associations of altered molecu-
lar pathways and microenvironmental features.

T‑ and B‑cell repertoire analysis suggest antigen 
presentation and clonal outgrowth in immune infiltrated 
pedNST
Adaptive immune system consisting of T- and B-cells 
is a critical determinant of anti-tumour immunity with 
clonal expansion suggesting antigen exposure. To infer 
potential immune reactivity across pedNST, we sought 
to determine the extent of clonal diversity for T- and 
B-cells. Using an immune repertoire processing frame-
work [68], we recovered a total of 23,842 complementa-
rity-determining region (CDR3β) sequences from 582 
pedNST samples. To validate the diversity estimates, 
we used the CapTCR-seq method [72] to enrich T-cell 
receptor (TCR) sequences in RNA-seq libraries from 
adult and paediatric cancer samples (n = 26). TCRβ 
estimated Shannon diversity inferred from bulk RNA-
seq showed the highest correlation with the observed 
Shannon diversity obtained from CapTCR-seq (Fig.  5A, 
Additional file  1: Fig. S11A-B). Comparing the diversity 
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Fig. 4 No associations between TMB or predicted neopeptides across immune clusters. A, B Boxplots showing TMB defined as SNV per megabase 
(Mb) (A) or SNV + Indel per Mb (B) across immune clusters in pedNST. ANCOVA, not significant. C Boxplot showing TMB for pedHGG samples 
across immune clusters. Two-sided rank sum test, *p < 0.05. D Boxplot showing number of predicted strong binding peptides (defined as binding 
affinity ≤ 0.5) for pedNST samples across immune clusters. ANCOVA, not significant. E Boxplot showing number of predicted strong binding 
peptides for pedHGG samples across immune clusters. Two-sided rank sum test, *p < 0.05. F Heatmap illustrating scaled number of samples 
(z-score) with at least one non-synonymous SNV/Indels in genes involved in oncogenic pathways, as defined by TCGA. Barplot shows the total 
number of samples with alterations in each pathway. Stacked barplot shows proportion of tumour types present in samples with alterations in each 
pathway. Numbers in brackets indicate the number of altered genes in each pathway. G Oncoprint illustrating the distribution of somatic mutations 
in the top 15 most commonly altered genes in pedNST across the four immune clusters. In all boxplots, boxes show median and IQR and whiskers 
represent 1.5 times IQR
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estimates and total number of TCRβ reads showed a lin-
ear correlation (adjusted r2 = 0.72, Fig. 5B). However, 12 
samples displayed lower diversity relative to their num-
ber of TCRβ reads, suggesting a T-cell clonal expansion 
in these samples. Conversely, eight samples harboured 
outlier high diversity indicating several individual clones 
infiltrating these tumours (Fig.  5B). These findings sug-
gest a method of T-cell diversity inference and identifica-
tion of potential polyclonal and clonal repertoires using 
bulk RNA-seq data.

Using estimated Shannon diversity, we analysed 361 
pedNST samples for TCRβ diversity (Additional file  1: 
Fig. S11C, ‘Methods’). Neuroblastoma samples in Pae-
diatric Inflamed showed significantly higher diversity 
compared to neuroblastoma samples in Immune Neu-
tral and Desert (two-sided Student’s t test with Bonfer-
roni correction, p = 0.03 and 2.6 ×  10−6, Fig. 5C). Within 
pedCNS, Paediatric Inflamed had higher diversity com-
pared to Myeloid Predominant and Immune Neutral 
(p = 3.3 ×  10−7 and < 2 ×  10−16, Fig.  5C). To determine 
microenvironmental changes that co-vary with T-cell 
diversity independent of T-cell infiltration, we calculated 
residuals from a linear regression model for TCRβ diver-
sity and reads (Fig. 5B). In Paediatric Inflamed, samples 
with residuals in lower quartile, corresponding to uneven 
T-cell repertoire, had significantly higher dendritic cell 
scores (p = 0.01, Fig. 5D). Conversely, within Myeloid Pre-
dominant, samples with residuals in lower quartile har-
boured significantly higher levels of monocytes (p = 0.03, 
Fig.  5D). These results reveal associations of myeloid 
compartment with clonal T-cell repertoire, suggesting 
the possibility of clonal outgrowth as a consequence of 
interactions with antigen-presenting cells.

We used a similar immune repertoire inference tool 
as for the T-cell repertoire analysis [68] and recovered 
197,769 unique immunoglobulin heavy chain (IGH) 
CDR3 sequences. Across pedNST, we found the high-
est number of IGH isotypes in craniopharyngioma and 

neuroblastoma samples (Additional file  1: Fig. S11D). 
Consistent with findings in adult cancers [71], IGHG1 
constituted the largest proportion of B-cell repertoire 
relative to total number of isotypes (Additional file 1: Fig. 
S11D). We found IGHG1 and IGHG3 were significantly 
enriched in Myeloid Predominant compared to Immune 
Neutral and Immune Desert (two-sided Student’s t test, 
p = 0.03 and 0.008, Fig. 5E), suggesting that potential anti-
body-producing cells infiltrated these tumours.

To determine the extent of B-cell clonal expansion in 
pedNST that may suggest antigen recognition [102], we 
used the gini index as a measure of uneven B-cell clus-
ter distribution in each sample [103] (Additional file  1: 
Fig. S11E, ‘Methods’). Across neuroblastoma samples, 
Immune Desert had significantly lower gini index com-
pared to Paediatric Inflamed (medians 0.29, and 0.53, 
two-sided Student’s t test with Bonferroni correction, 
p = 0.05, Fig.  5F). Within pedCNS, Paediatric Inflamed 
had the higher levels of gini index compared to Myeloid 
Predominant and Immune Neutral (medians 0.36, 0.26 
and 0.23, respectively, p = 0.03 and 0.002, Fig. 5F). Within 
Paediatric Inflamed, samples with clonal T-cell repertoire 
(residuals ≤ 25th) also had clonal B-cell repertoire and 
expressed higher levels of IGHG1 and IGHG3 compared 
to samples with polyclonal T-cell repertoire (residu-
als ≥ 75th) (p = 0.02, 0.01 and 0.01, Fig. 5G). We did not 
find this association in Myeloid Predominant that har-
boured lower levels of T-cells (Fig.  5G), suggesting that 
both the extent and clonality of B-cell infiltration may 
contribute to T-cell clonal expansion.

Lymphoid and Myeloid subtypes provide insights 
into mechanisms of immune evasion
To further characterize T-cell subtypes in the Paediatric 
Inflamed cluster with high levels of lymphocyte infil-
tration, we obtained 40 gene signatures of CD4 + and 
CD8 + T-cell subpopulations from the single-cell profil-
ing of tumour-infiltrating lymphocytes [60]. Consensus 

(See figure on next page.)
Fig. 5 T-cell repertoire analysis reveals associations of T-cell clonal expansion with B-cell repertoire and immune microenvironment in Paediatric 
Inflamed. A Scatterplot depicting a linear correlation between TCRβ Shannon diversity estimated from RNA-seq and measured by capturing all 
TCR sequences from the same RNA-seq libraries in adult and paediatric cancer samples using CapTCR-seq. B Scatterplot showing correlation 
between TCRβ estimated Shannon diversity and total number of TCRβ reads. Blue line shows fitted linear regression. Red and blue dots represent 
polyclonal and clonal T-cell repertoires defined as residuals greater than two absolute standard deviations. Circle plots to the right illustrate two 
examples of polyclonal (top) and clonal (bottom) T-cell repertoires. Each circle is one T-cell clone and circle diameters are proportional to TCRβ 
reads. C Boxplots showing differences in log-transformed estimated TCRβ Shannon diversity across immune clusters for neuroblastoma (left) 
and pedCNS (right). Two-sided Student’s t test with Bonferroni correction, *p < 0.05, **p < 0.01 and ***p < 0.001. D Boxplots comparing levels 
of T-cells, dendritic cells or monocytes, as determined in Fig. 1C, in samples with TCRβ residuals (obtained from the linear regression in B) ≤ 25th 
percentile and ≥ 75th percentile of Paediatric Inflamed (left) or Myeloid Predominant (right). Two-sided Student’s t test, *p < 0.05, NS: not significant. 
E Boxplot showing proportion of specific immunoglobulin isotypes in B-cell repertoires across immune clusters in pedNST. Two-sided Student’s 
t test, *p < 0.05 and **p < 0.01. F Boxplots comparing immunoglobulin clonality (gini index) across immune clusters for neuroblastoma (left) 
and pedCNS (right). Two-sided Student’s t test with Bonferroni correction, *p < 0.05 and **p < 0.01. G Boxplots comparing levels of gini index 
or tumour-type normalized expression of IGHG1 or IGHG3 in samples with TCRβ residuals (obtained from the linear regression in B) ≤ 25th percentile 
and ≥ 75th percentile of Paediatric Inflamed (left) or Myeloid Predominant (right). Two-sided Student’s t test, *p < 0.05, NS: not significant. In all 
boxplots, boxes show median and IQR and whiskers represent 1.5 times IQR



Page 17 of 24Nabbi et al. Genome Medicine           (2023) 15:67  

clustering revealed five distinct T-cell groups (TGs) 
within Paediatric Inflamed with notable patterns 
(Fig.  6A). Nine neuroblastoma samples were character-
ized by elevated enrichment of naïve T cells (TG2). TG3 
consisted of 6 samples with enrichment of Naive and 
NME1 + T cell signatures while depletion of other T cell 
subtypes. TG4 (n = 30) showed intermediate enrichment 
for T-cell signatures, while TG5 had highest enrichment 

of T-cell signatures related to memory (Tm), effector 
memory (Tem), T follicular helper/helper (Tfh/h), Tregs 
and exhausted (Tex) T cells. These data identify subset 
of samples within Paediatric Inflamed that are infiltrated 
with naïve (TG2/TG3) or differentiated (TG4/TG5) T 
cells.

In Paediatric Inflamed, Cox proportional haz-
ards model revealed that TG5, highly infiltrated with 

Fig. 5 (See legend on previous page.)
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differentiated T cells, had worse PFS compared to TG1 
(HR = 9, 95% CI 1.5–54, p = 0.02, Additional file  2: 
Table S12). TG5 also showed lower T-cell diversity com-
pared to TG2 and TG3, which were enriched with T 
cell naïve and proliferating NME1 + T-cell signatures 
(Fig.  6A) (Student’s t test with Bonferroni correction, 
p = 0.002, Fig.  6B, left). While TG2 harboured signifi-
cantly higher TMB compared to TG1 (Student’s t test, 
p = 0.02), TG5 did not show any significant difference in 
TMB compared to other groups (Fig. 6B, right). TG5 har-
boured higher infiltration of T, NK and myeloid cell infil-
tration suggesting antigen recognition by myeloid cells 
followed by clonal expansion and T-cell differentiation 
(Fig. 6C). TG5 showed higher expression of HLA class I 
genes (HLA-A, HLA-B, HLA-C), inhibitory cytokines and 
chemokines (CXCL8, CXCL1, IL6), genes encoding tran-
scription factor AP-1 subunits (FOS, FOSB, JUN, JUNB, 
ATF3), markers of T-cell activation (CD86, CD69) and 
Toll-like receptors (TLR2, TLR4) (Fig.  6D). Conversely, 
TG2 showed higher levels of B-cell marker genes (CD19, 
CD22), immune checkpoint gene (BTLA) and Fc recep-
tors (FCER2, FCRL2) (Fig. 6D) suggesting a B-cell-medi-
ated mechanism of T-cell suppression. These findings 
suggest two immunosuppression mechanisms in Paedi-
atric Inflamed: suppression of T-cell effector functions 
(TG5) and inhibition of T-cell activation and differentia-
tion (TG2).

To delineate myeloid cell subtypes in Myeloid Predomi-
nant, we performed consensus clustering using single-
cell signatures for tumour-infiltrating myeloid cells [61, 
104] (‘Methods’). MG1 consisted of 22 samples with high 
enrichment of mast cells, conventional dendritic cells 
type 2 (cDC2), monocytes and macrophages (Fig.  6E). 
MG2 (n = 89) showed low enrichment of dendritic cells 
but high levels of PLTP-expressing macrophages. MG3 
(n = 70) was characterized by elevated enrichment of 
plasmacytoid and conventional dendritic cells (pDC and 
cDC1), and tumour-associated macrophages (TAM). 
MG4 (n = 75) showed depletion of mast and mac-
rophage signatures with moderate enrichment of mono-
cytes and cDC1 signatures, while MG5 (n = 23) had the 

lowest enrichment of all myeloid signatures (Fig.  6E). 
Scoring microglia-specific gene signatures [62, 63] in 
CNS tumours showed pedLGG samples had the highest 
levels of microglia geneset enrichment, primarily in MG3 
(Fig.  6F). These findings reveal two subgroups within 
Myeloid Predominant, characterized by high levels of 
mast cells, macrophages and monocytes (MG1) and high 
levels of pDC and TAMs (MG3).

Cox proportional hazards model adjusting for gen-
der and cohort revealed that low Mast/Macro groups 
(MG3, MG4 and MG5) had a trend toward improved 
PFS compared to MG1 (HR = 0.4, 0.38 and 0.37, 95% CI 
0.14–1.14, 0.14–1.02 and 0.12–1.12, p = 0.09, 0.05 and 
0.08, respectively, Additional file 2: Table S13). In MG1, 
differential gene expression analysis showed genes asso-
ciated with cytotoxic T cells (FGFBP2) and leukocyte 
trafficking (TSPAN8) [105] were expressed at higher lev-
els compared to MG3 and MG5 (Fig. 6G). PENK, encod-
ing an opioid receptor proenkephalin and a precursor 
for neuropeptides involved in immune-neural cross-
talk [106] was expressed at higher levels (Fig. 6G). MG1 
also showed high expression of ANGPTL7, a regulator 
of angiogenesis [107], and F2RL2, encoding proteinase-
activated receptor 3 (PAR3), that may trigger myeloid 
infiltration [108]. IL34, a brain-specific ligand for CSF1R, 
was expressed at higher levels in MG1 suggesting a role 
in monocyte-macrophage differentiation in MG1 [109, 
110]. In MG3, genes involved in endothelial regulation 
(ESM1, APLN, ALCAM) and ligands for αVβ3 integ-
rin (EDIL3 and POSTN) were expressed at higher levels 
compared to MG1 and MG5 (Fig. 6G), the latter of which 
recruit tumour-associated macrophages (TAM) in adult 
glioblastoma [111, 112]. Notably, MG3 exhibited higher 
expression of Histamine receptor H1 (HRH1) and HNMT 
involved in histamine metabolism (Fig.  6G) suggesting 
immune evasion and T-cell dysfunction [113]. While fur-
ther validation is warranted, these findings suggest cel-
lular interactions influencing the myeloid compartment 
(periostin-integrins, IL34-CSFR1) and immune exclu-
sion and evasion (histamine and collagens) in Myeloid 
Predominant.

Fig. 6 Analysis of immune-cell subtypes in Paediatric Inflamed and Myeloid Predominant provides insights into mechanisms 
of immunosuppression. A Heatmap showing scaled gene set enrichment scores for 40 T-cell subtypes as annotated in [60] in the Paediatric 
Inflamed (Tn: Naïve T-cells, Th: T helper, ISG: Interferon-stimulated genes, Tm: memory T-cells, Trm: Tissue-resident memory T-cells, Tem: effector 
memory T-cells, Temra: effector memory re-expressing CD45RA T-cells, Treg: regulatory T-cells, Tfh: follicular helper T-cells, Th17: T helper 17, Tex: 
exhausted T-cells, KIR: Killer immunoglobulin-like receptor). B Boxplots showing log-transformed TCRβ estimated Shannon diversity (left) and TMB 
(right) across T-cell groups (TG). Pairwise two-sided Student’s t test with Bonferroni correction, *p < 0.05, **p < 0.01 and ***p < 0.001 (left). Two-sided 
rank sum test, *p < 0.05 (right). C Boxplots showing differences in immune-cell infiltration, as determined in Fig. 1C, across T-cell groups (TG). 
Pairwise two-sided Student’s t test with Bonferroni correction, *p < 0.05, **p < 0.01 and ***p < 0.001. D Heatmap illustrating median tumour-type 
normalized expression of selected genes in TG2 and TG5. E Heatmap depicting scaled gene set enrichment scores for 9 myeloid cell subtypes 
as annotated in [61, 104] (DC: dendritic cell, Mono: monocyte, Mac/Macro: macrophage, TAM: tumour-associated macrophage). F Heatmap showing 
scaled gene set enrichment scores for microglia [62, 63] in the pedCNS subset of Myeloid Predominant. G Heatmap illustrating median tumour-type 
normalized expression of selected genes in MG1, MG3 and MG5. In all boxplots, boxes show median and IQR and whiskers represent 1.5 times IQR

(See figure on next page.)



Page 19 of 24Nabbi et al. Genome Medicine           (2023) 15:67  

Fig. 6 (See legend on previous page.)
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Discussion
We report universal immune microenvironment groups 
across 12 cancer entities highlighting tumour-agnostic 
immunological similarities in paediatric primary nerv-
ous system tumours. Across our compendium, we 
found that ~ 72% of samples harboured generally cold 
immune microenvironments in higher frequency com-
pared to adult tumour microenvironments [14]. Within 
our cohort, we found that 10% of samples showed an 
inflamed microenvironment harbouring high levels of 
lymphoid and myeloid cell infiltration and diverse T- 
and B-cell repertoire. In this cohort of non-hypermutant 
cancers, TMB was not independently associated with an 
inflamed microenvironment. This finding is in contrast to 
bMMRD cancers where samples with high CD8 + T-cell 
infiltration had higher SNV/Mb [114]. Although we could 
not directly study the associations between TMB and 
ICI response, our findings do not support TMB as a bio-
marker for use in non-hypermutant paediatric cancers. 
The dynamic range of cellular interactions in immune-
infiltrated tumours, some of which we suggested in the 
presented association studies, reflects the existing chal-
lenge in defining a robust biomarker of anti-tumour 
immune response in paediatric tumours.

Analysis of immunoregulatory genes and immune 
cell subtypes provided insights into the ligand-receptor 
interactions with translational implications. In Paediat-
ric Inflamed, a number of upregulated genes overlapped 
with those differentially expressed in post-treatment 
samples collected from melanoma patients respond-
ing to nivolumab [115]. These include immune check-
point genes (PDCD1, TIGIT, CTLA4 and BTLA) as well 
as genes involved in T-cell cytotoxic functions (IL4I1, 
FASLG, TNFRSF9, TNFRSF4, CD244, CD27, CD80 and 
ICOS) and suggest samples in this cluster may be good 
candidates for ICI therapy. The Myeloid Predominant 
cluster showed elevated expression of two immunoreg-
ulatory genes with myeloid-specific functions: TGFB1 
[116, 117] and SIRPA, encoding for SIRPα that negatively 
regulates phagocytosis [118]. Blocking this interaction 
with anti-CD47 promotes cell killing in preclinical mod-
els [9] and a phase I clinical study, the efficacy testing is 
ongoing (NCT02216409). Our results suggest disrupting 
cellular interactions involving the lymphoid and mye-
loid compartments may be beneficial among a subset of 
pedNST to reshape the tumour microenvironment and 
elicit anti-tumour immunity.

Although this study provides insights into immunologi-
cal aspects of paediatric nervous system tumours, there 
are important limitations to note. We may have missed 
specific regions with significant immune infiltration due 
to biased sampling. The IHC analysis on tissue microar-
rays may not capture tumour heterogeneity accurately. 

Immune deconvolution analysis, based on bulk RNA-seq 
data, can be prone to overestimation due to overlapping 
gene expression in different immune cell types. Due to 
this limitation, we could not confirm the cell origin of 
LAG3 and TIM3 gene expression in the Immune Desert, 
which may have implications for immune modulation. 
Higher-resolution techniques like single-cell and spatial 
RNA and protein analysis can offer a more comprehen-
sive understanding of the tumour microenvironment.

Conclusions
We identified distinct immune microenvironment clus-
ters across paediatric nervous system tumours and pro-
posed microenvironmental mechanisms of immune 
dysfunction and suppression. With immunotherapy 
becoming more widely available in the paediatric oncol-
ogy armamentarium, our findings highlight the value of 
immunogenomic approaches to guide patient stratifica-
tion and inform precision oncology programmes.
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