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Evaluating the use of paralogous protein 
domains to increase data availability 
for missense variant classification
Adam Colin Gunning1,2* and Caroline Fiona Wright1*   

Abstract 

Background Classification of rare missense variants remains an ongoing challenge in genomic medicine. Evidence 
of pathogenicity is often sparse, and decisions about how to weigh different evidence classes may be subjective. We 
used a Bayesian variant classification framework to investigate the performance of variant co-localisation, missense 
constraint, and aggregating data across paralogous protein domains (“meta-domains”).

Methods We constructed a database of all possible coding single nucleotide variants in the human genome 
and used PFam predictions to annotate structurally-equivalent positions across protein domains. We counted 
the number of pathogenic and benign missense variants at these equivalent positions in the ClinVar database, 
calculated a regional constraint score for each meta-domain, and assessed this approach versus existing missense 
constraint metrics for classifying variant pathogenicity and benignity.

Results Alternative pathogenic missense variants at the same amino acid position in the same protein provide 
strong evidence of pathogenicity (positive likelihood ratio, LR+  = 85). Additionally, clinically annotated pathogenic 
or benign missense variants at equivalent positions in different proteins can provide moderate evidence of patho-
genicity (LR+  = 7) or benignity (LR+  = 5), respectively. Applying these approaches sequentially (through PM5) 
increases sensitivity for classifying pathogenic missense variants from 27 to 41%. Missense constraint can also provide 
strong evidence of pathogenicity for some variants, but its absence provides no evidence of benignity.

Conclusions We propose using structurally equivalent positions across related protein domains from different genes 
to augment evidence for variant co-localisation when classifying novel missense variants. Additionally, we advocate 
adopting a numerical evidence-based approach to integrating diverse data in variant interpretation.

Keywords Variant classification, Missense variant, Protein domain, Bayesian, Genomic medicine

Background
The classification of sequence variants implicated in rare 
monogenic diseases has improved markedly since the 
publication of the American College of Medical Genet-
ics and Genomics and the Association for Molecular 
Pathology (ACMG/AMP) guidelines in 2015 [1]. The 
guidelines separated evidence into different categories, 
including population data, computational and predic-
tive data, functional data, genetic data (allelic, segrega-
tion and de novo), other databases (including disease and 
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locus-specific databases), and other data (e.g. phenotype). 
Each line of evidence was given a particular weighting — 
from Very Strong (VS) and Strong (S) through to Mod-
erate (M) and supPorting (P) — and a criterion code, 
which could be combined in specified ways to reach an 
overall variant classification ranging from benign (B) 
and likely benign (LB) through uncertain (U) to likely 
pathogenic (LP) and pathogenic (P). Since the guidelines 
were published, a number of supplementary papers have 
been published providing guidance on specific classifica-
tion criteria, such as PVS1 [2], PP1 [3], PS3 [4], PP5 [5] 
and PP3 [6–8]. Other studies have given guidance on 
the combination of evidence [9–12], as well as national 
[13] and disease-specific [6] guidance. The aim of these 
publications is to make variant classification more objec-
tive, evidence-based and consistent, to ensure robust 
reporting of genetic results. However, the guidelines still 
give some room for subjectivity and a number of studies 
have identified inconsistencies in variant classification 
[14–16].

One of the biggest challenges in variant classification 
remains the assessment of rare missense variants that 
may affect protein structure, function and/or stabil-
ity. Prior observation of a pathogenic missense variant 
at the same position in the same protein can be used as 
evidence of pathogenicity through the current PM5 (dif-
ferent missense) or PP5 (same missense) criteria, based 
on either literature or variant databases [17]. However, 
every individual has > 100 very rare missense variants in 
their genome [18], so in many cases a missense variant 
of interest will be novel. Numerous in silico pathogenic-
ity prediction tools have been developed to aid missense 
variant classification, based on a variety of features that 
underlie pathogenicity [19–21], and evidence from these 
tools can be applied through a mirrored pair of variant 
classification codes, PP3 (supporting pathogenicity) or 
BP4 (supporting benignity) [6, 8]. Protein domain loca-
tion and 3D structure may also be used to determine the 
functional importance of particular residues or hotspots 
[22] and the evidence applied through the PM1 criterion 
[23]. Missense constraint (i.e. intolerance to missense 
variation) can also be used as evidence through the PP2 
criterion and may be gene-wide, such as the gnomAD 
missense-Z or observed/expected (missense_o/e) scores 
[24, 25] or sub-genic, such as the constrained coding 
regions (CCR) model [26] or MPC score [27]. Although 
the performance of missense pathogenicity predictors 
has been evaluated in the context of a Bayesian variant 
classification framework [8, 10], the performance of these 
other metrics — or their combinations — has not been 
formally assessed.

 Constraint to variation has been widely used in vari-
ant prioritisation [27–29], but it is limited by the number 

of variants observed over a given region. This problem 
can potentially be overcome by aggregating data from 
multiple regions of the genome that are functionally 
equivalent — for example, paralogous protein domains 
[30–36]. Paralogs are homologous genes within the 
human genome which arose via gene duplication, whose 
protein products often retain overlapping functions 
and similar 3-dimensional protein structures. Applying 
information across homologous regions of DNA is not a 
novel idea, and can be seen as an extension of conserva-
tion analysis, which uses comparison of orthologous pro-
teins between different species to determine sequence 
similarity. The equivalent approach for constraint uses 
aggregation of variation data across paralogous pro-
teins across the human genome to evaluate intolerance 
to variation, either at a structurally equivalent “meta-
position” or throughout a “meta-domain”. Here we use 
meta-domains to aggregate data from paralogous pro-
tein domains across the genome based on PFam domain 
predictions [37, 38], and assess the performance of this 
approach to increasing data availability against two spe-
cific variant classification criteria [1]: PM5 (“Novel mis-
sense change at an amino acid residue where a different 
missense change, determined to be pathogenic, has been 
seen before”) and PP2 (“Missense variant in a gene that 
has a low rate of benign missense variation and where 
missense variants are a common mechanism of disease”) 
(Fig. 1).

Methods
Database creation
A database containing codon-level information for every 
protein-coding position in the human genome was 
created and annotated with data from Ensembl, Uni-
prot, PFam, gnomAD and ClinVar. Existing annotated 
links between Ensembl Genes 93 and Uniprot protein 
sequences were accessed through Ensembl Biomart and 
confirmed through a direct comparison of the amino 
acid sequences. For further downstream annotation, 
only transcripts for which a link between Uniprot and 
Ensembl could be found were included. Exon genomic 
coordinates (GRCh38) from Ensembl BioMart were used 
to map amino acid codon positions to genomic co-ordi-
nates by assigning each coding position in the exon to 
each sequential amino acid, allowing for codons to span 
exon/exon boundaries. The sum of the available genetic 
data aggregated from all paralogous protein domains, as 
defined by PFam, will henceforth be referred to as the 
“meta-domain” (Fig. 1).

To determine structurally equivalent positions across 
paralogous domains, protein domain annotations were 
added by downloading data from the PFam FTP server 
(date accessed: 22/06/2018) (Additional file  1: Fig. S1). 
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The Stockholm alignment for a particular PFam domain 
contains a series of sequences derived from annotations 
of that PFam domain. The alignment contains the amino 
acid sequence of each domain, with ‘insertions’ and ‘dele-
tions’, where the algorithm has predicted the insertion of 
an additional amino acid into the domain or a deletion 
of an amino acid from the domain. Once the insertions 
and deletions are considered the domains are all of iden-
tical length. Each position within the PFam Stockholm 
formatted alignments was then numbered, with deletions 
skipped, and insertions annotated with an incremen-
tal suffix from the preceding non-insertion position (in 
a similar fashion to the annotation of introns in cDNA 
nomenclature). The sum of the available genetic data 
aggregated from all functionally equivalent positions in 
paralogous protein domains, as defined by PFam, will 
henceforth be referred to as the “meta-position” (Fig. 1).

Meta‑position variant annotation
For every codon in the database, an exhaustive list of 
all possible single nucleotide variants (SNVs) was cre-
ated by simulating the three possible nucleotide changes 
possible at each and every codon position, and the pre-
dicted consequence of the SNV (missense, synonymous, 
nonsense) annotated manually based on the amino acid 
change. Allele number (AN) and allele count (AC) from 

gnomAD v3.0 [24] (date accessed: 25/10/2019) were 
annotated against each simulated variant; only SNVs 
with a filtering annotation of PASS were selected. REVEL 
scores were annotated against all missense variants in the 
database using the dbNSFP v4.2a database [39, 40] (date 
accessed: 10/08/2021), which contains REVEL scores 
linked to GRCh38 genomic coordinates. In each case, 
REVEL scores were annotated using the chromosome, 
position (GRCh38), REF amino acid and ALT amino acid 
of the missense change. Variant pathogenicity in the Clin-
Var database [41] was annotated by downloading variants 
from the ClinVar FTP server [date accessed: 03/01/2022], 
and filtering to include only missense SNVs with uncon-
flicting assertions of pathogenicity (P and LP) or benig-
nity (B and LB).

Meta‑position pathogenic variant classification [PM5]
The number of ClinVar P/LP and B/LB variants at 
each meta-position was counted, and those with only 
one variant were marked as ‘unique’. Meta-positions 
with two or more ClinVar variants were assigned as 
‘benign’ or ‘pathogenic’ if all assertions were B/LB or 
P/LP respectively, and ‘conflicting’ based on two alter-
native rules: a “no-conflict rule”, where any meta-posi-
tions with both pathogenic and benign variants were 
considered conflicting; and a “majority-rule”, where 

Fig. 1 Outline of the use of meta-domain data in two variant assessment criteria (PM5 and PP2). Seven different proteins are depicted that share 
a common protein domain (in red). The occurrence of clinically annotated variants at a meta-position is applied under PM5, and the genetic 
constraint across a meta-domain is applied in PP2. The analysis also includes the use of these approaches to support the benignity of the variant 
(grey dotted boxes), which is not implemented in the current guidelines
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a meta-position was assigned to the most common 
pathogenicity assertion and only considered conflict-
ing if the number of B/LB and P/LP variants was equal. 
A full list of variants with classifications is provided 
in Additional file  2: Table  S1. An additional analy-
sis including only ClinVar pathogenic variants with a 
REVEL score ≥ 0.7 and benign variants with a REVEL 
score ≤ 0.2 was performed to evaluate the value of using 
a pathogenicity predictor to filter variants included in 
the analysis. For both no-conflict and majority-rules, 
the performance of meta-positions for pathogenic vari-
ant classification was evaluated as follows: true posi-
tives (TP) and false positives (FP) were pathogenic and 
benign variants, respectively, at positions assigned as 
pathogenic; false negatives (FN) and true negatives 
(TN) were pathogenic and benign variants, respec-
tively, at positions assigned as benign, conflicting or 
unique. The classifications for the contingency table are 
also shown in Additional file 1: Table S2. For compari-
son, we also assessed the performance of standard PM5 
as follows: TP and FP were pathogenic and benign vari-
ants, respectively, with a different pathogenic missense 
variant reported at the same amino acid position in the 
same protein; TN and FN were benign and pathogenic 
variants, respectively, which had either a benign variant 
or no alternative variant or both pathogenic and benign 
variants reported at the same amino acid position in 
the same protein.

Meta‑position benign variant classification (PM5(benign))
Although there is no paired benign equivalent to PM5 
in the current guidelines, we also wished to evaluate 
whether the presence of an alternative benign missense 
variant reported at the same position could be used in 
variant classification. For both no-conflict and majority-
rules, the performance of meta-positions for benign vari-
ant classification was evaluated in a similar but inversed 
manner: TP and FP were benign and pathogenic variants, 
respectively, at positions assigned as benign; FN and TN 
were benign and pathogenic variants, respectively, at 
positions assigned as pathogenic, conflicting or unique. 
For comparison, we also assessed the performance of 
PM5(benign) as follows: TP and FP were benign and 
pathogenic variants, respectively, with a different benign 
missense variant reported at the same amino acid posi-
tion in the same protein; TN and FN were pathogenic 
and benign variants, respectively, which had either a 
pathogenic variant or no alternative variant or both path-
ogenic and benign variants reported at the same amino 
acid position in the same protein. The classifications for 
the contingency table are also shown in Additional file 1: 
Table S3.

Meta‑domain constraint calculation
A regional meta-domain constraint score for PFam 
domains was created using both a raw and background-
adjusted missense/synonymous (m/s) metric, as has been 
done previously [30]. The m/s rate (also known as  dN/dS) 
was calculated by counting the number of missense and 
synonymous variants observed in the gnomAD v3.0 data-
set across all instances of a PFam domain in the human 
genome, then adjusted for the sequence composition of 
surrounding regions to take account of all possible varia-
tion at each position:

where ‘obs’ represents the observed variation within the 
gnomAD database, and ‘poss’ represents the possible 
variation based on the sequence composition. Positional 
scores were aggregated across regions, and a single score 
was calculated for each PFam domain based on the vari-
ants observed in all members of the domain (including 
multiple domains in the same protein as well as domains 
in different proteins). PFam positions marked as ‘inser-
tions’ were excluded. Where a genomic region was pre-
sent in multiple transcripts or multiple genes, each 
genomic coordinate was only included in the calculation 
of a protein domain’s score once, but a single genomic 
coordinate could be included in the calculation for multi-
ple different domains.

Meta‑domain pathogenic variant classification (PP2)
The distribution of meta-domain constraint scores was 
evaluated and used to determine thresholds for assign-
ing variant pathogenicity or benignity. The thresholds 
for assigning pathogenicity from the meta-domain con-
straint score (adjusted m/s ≤ 0.34) was set as the high-
est score needed to reach a positive likelihood ratio 
(LR+) of ≥ 4.33, based on previously published thresh-
olds required for evidence to be applied at the moderate 
level [10]. For comparison, we also assessed the perfor-
mance of two existing gene-wide constraint measures 
(gnomAD missense_Z and missense_o/e) [24, 25] and 
a single regional constraint score (Constraint Coding 
Regions, CCR) [26], using the recommended thresholds 
for assignment of pathogenicity. The performance of con-
straint for pathogenic variant classification was evalu-
ated as follows: TP and FP were pathogenic and benign 
variants, respectively, that met or exceeded the set patho-
genic threshold; FN and TN were pathogenic and benign 
variants, respectively, that did not meet the tool-specific 
threshold.

adjusted m/s =

missenseobs
missenseposs

synonymousobs
synonymousposs
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Meta‑domain benign variant classification (PP2(benign))
We also wished to evaluate whether the absence of con-
straint could be used to assess benignity. Since there is 
no paired benign equivalent to PP2 in the current guide-
lines, thresholds for assigning benignity were set to give 
a similar sensitivity as the standard pathogenic analysis, 
i.e. by selecting a score at the same number of stand-
ard deviations from the mean as the pathogenic thresh-
old. This could be done for all tools except CCR, which 
gives scores as a centile rank in a bimodal distribution, 
so the lower threshold was simply set to the high thresh-
old subtracted from 100. The performance of constraint 
for benign variant classification was evaluated as follows: 
TP and FP were benign and pathogenic variants, respec-
tively, that met or exceeded the set benign threshold; FN 
and TN were benign and pathogenic variants, respec-
tively, that did not meet the tool-specific threshold.

Results
Alternative pathogenic missense variants at the same 
amino acid position in the same protein provide strong 
evidence of pathogenicity
Across 37,648 pathogenic and 49,122 benign missense 
variants included in our analysis, 86% were unique, i.e. 
had no other variant at the same amino acid position 
in the same protein. In non-unique positions, we found 
that the standard PM5 analysis had a sensitivity of 0.274 
and a positive likelihood ratio of 85 (Table 1), consistent 
with the evidence being applied with a strong weighting 

(LR+  ≥ 18.71) rather than the moderate weighting 
(LR+  ≥ 4.33) originally suggested in the current guide-
lines [1, 10]. When ClinVar variants were additionally fil-
tered according to their REVEL scores (with pathogenic 
variants only being counted with a REVEL score ≥ 0.7, 
and benign variants only being counted with a REVEL 
score ≤ 0.2), the proportion of unique variants increased 
to 89% and the positive likelihood ratio for pathogenicity 
at non-unique positions increased to 148.

Clinically annotated pathogenic or benign missense 
variants at the equivalent domain position in different 
proteins provide moderate evidence of pathogenicity 
or benignity respectively
Restricting our analysis to ClinVar variants located 
within PFam domains resulted in a reduction to 27,438 
(73%) pathogenic and 18,664 (38%) benign variants, con-
sistent with a significant enrichment of pathogenic ver-
sus benign missense variants in protein domains versus 
outside domain regions (chi-squared P < 0.0001). The 
inclusion of additional data from structurally equivalent 
meta-positions across different proteins substantially 
decreased the proportion of variants that were unique 
to 54% and increased the sensitivity of the analysis to 
0.397 (no-conflict) or 0.486 (majority-rule) whilst slightly 
decreased the specificity to 0.946 (no-conflict) and 0.928 
(majority-rule) (Table  1). The  positive likelihood ratio 
also decreased to around 7, consistent with the evidence 
being applied with a moderate weighting under PM5.

Table 1 Performance of PM5 pathogenic (top) and benign (bottom) analysis for co-localising clinically annotated variants

Shading in the LR+ and points columns indicates the strength reached for classification purposes according to Tavtigian et al. (2018) and Tavtigian et al. (2020) 
(red = strong; amber = moderate). PFam only ClinVar missense variants in PFam domains, PATH Number of pathogenic variants, BEN Number of benign variants, TP True 
positive, FN False negative, TN True negative, FP False positive, SENS Sensitivity, SPEC Specificity, PPV Positive predictive value, LR+  Positive likelihood ratio, UNIQUE 
Number of position with only a single variant or no co-localising variants, CONF Positions with conflicting classifications
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Interestingly, all PM5(benign) analyses resulted in posi-
tive likelihood ratios consistent with evidence for benig-
nity being applied at the moderate level (Table 1). As with 
the standard pathogenicity analysis, the use of meta-
domains greatly increased the sensitivity (from 0.027 in 
the standard analysis to 0.237 using the meta-position 
majority-rule approach) and slightly decreased the speci-
ficity (from 0.997 to 0.957). None of the results changed 
substantively when variants were additionally filtered 
according to the REVEL scores, though the number of 
conflicting positions decreased substantially.

Missense constraint can provide strong evidence 
of pathogenicity in a small proportion of variants, 
but the absence of constraint provides no evidence 
of benignity
An example of the meta-domain constraint scores is 
provided for six related proteins (GATA1-6) contain-
ing two paralogous domains (Fig.  2a). Notably, ClinVar 
pathogenic variants cluster around the more constrained 
domains (PF00320), whilst benign variants cluster 
around the less constrained domains (PF05349). Across 
all PFam domains, meta-domain constraint values are 
approximately normally distributed, allowing us to select 
thresholds for variant classification across all domains for 
comparison with alternative constraint metrics (Fig. 2b).

For existing gnomAD gene-wide constraint metrics 
[24, 25], missense_o/e outperforms missense_Z, achiev-
ing a positive likelihood ratio of 19.060 but with a low 
sensitivity (0.032), which is consistent with the evidence 
being applied with a strong weighting under PP2, ver-
sus 2.568, which is only consistent with evidence being 
applied at supporting (LR+  ≥ 2.08) (Table  2). The pub-
lished regional constraint measure, CCR [26], performs 
better than missense_o/e with a positive likelihood 
ratio of 49.121, again consistent with the evidence being 
applied with a strong weighting, but with a low sensitivity 
(0.025) due to the small coverage of CCRs. The very high 
specificity and low sensitivity of the missense_o/e and 
CCR scores indicate that the recommended thresholds 
for these tools may be too stringent, and a better balance 
between sensitivity and specificity could potentially be 
achieved using a lower threshold — particularly for CCR 
— whilst still meeting the LR+ requirements for clas-
sification purposes (Fig.  3). The new meta-domain con-
straint score (adjusted m/s) performs comparably, with 
positive likelihood ratios of 4.326 and 4.583, respectively, 
consistent with a moderate evidence weighting.

The analysis of using missense constraint as evidence 
of benignity indicated that none of the tools performs 
well (Table  2), with only gnomAD missense_o/e and 
missense_Z reaching a positive likelihood ratio sufficient 
to be used even as supporting evidence (2.471 and 2.192, 

respectively), with very low sensitivities of 0.019 and 
0.025, respectively.

Discussion
We have assessed the performance of two related aspects 
of variant classification, co-localised clinically annotated 
variation (PM5) and genetic constraint (PP2), as evidence 
for either pathogenicity or benignity using a Bayesian 
framework [8, 10]. We further extended the analysis to 
assess the benefit of aggregating data across equivalent 
domains in different proteins, using structurally equiva-
lent meta-positions to augment variant co-occurrence 
and meta-domains to calculate regional constraints.

We show that the presence of an alternative pathogenic 
missense variant at the same position in the same pro-
tein provides strong evidence of pathogenicity and that a 
pathogenic missense variant at the same meta-position in 
a different protein provides moderate evidence of patho-
genicity. We suggest that these approaches could be com-
bined using a cascading approach (Fig.  4), which would 
allow PM5 to be applied at a reduced weighting to an 
additional 14% of variants for which the standard PM5 
analysis is not applicable, increasing the sensitivity from 
0.27 to 0.41. Consistent with other studies [42], we also 
note the higher likelihood ratio when restricting ClinVar 
variants to those with high REVEL scores, further sup-
porting the graded use of PM5. It should be noted that 
there was no manual classification of ClinVar variants in 
our analysis, which is contrary to the current stipulations 
of the guidelines specifying that variants at the same 
position must be classified manually and established to be 
pathogenic. However, our results suggest that this oner-
ous manual classification step is not necessarily required, 
as the evidence already performs above the level imple-
mented within the current framework; the performance 
of this approach without the need for manually variant 
classification suggests that it could form part of a wider 
in silico approach using a machine-learning classification 
framework.

We further show that two constraint metrics (gno-
mAD missense_o/e and CCR) provide strong evidence 
of pathogenicity, with the CCR providing the best per-
formance across the different approaches taken to cal-
culating constraint, albeit for a very small number of 
variants. As before, there is a trade-off between sen-
sitivity and precision, and a cascade approach could 
maximise the utility of the data — using small regional 
approaches to constraint where possible [43], followed 
by meta-domain or gene-level constraint. The lower 
performance of the meta-domain constraint metrics is 
likely due to the aggregation of data across a range of 
genes, only some of which are linked with disease, which 
would potentially be improved by limiting to conserved 
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positions. Although within-species constraint and 
inter-species conservation are highly correlated, they 
are derived using orthogonal datasets and thus can be 
treated as independent sources of evidence and used 

additively in variant classification. Moreover, although 
domains potentially provide evolutionarily informed 
regions over which to aggregate human variation data 
and calculate constraint, combining data across proteins 

Fig. 2 Score distribution and thresholds for meta-domain constraint. a Example of domain structure and meta-domain constraint for six related 
proteins, GATA1-6. The density plot shows the distribution of the adjusted m/s constraint scores for all PFam domains, and the coloured vertical 
lines correspond to the specific domains within the GATA1-6 proteins (GATA zinc finger domain, PF00320 = green; GATA-type transcription activator 
N-terminal domain, PF05349 = orange), all of which have been implicated in monogenic diseases. Below the density plot, a separate (N-terminal 
aligned) plot is shown for each protein, showing locations of the PFam domains (coloured as above), and ClinVar benign/likely benign (green) 
and pathogenic/likely pathogenic variants (red). b Histogram showing the distribution of adjusted m/s scores in the ClinVar pathogenic and benign 
missense variant dataset. Vertical lines indicate pathogenic (red) and benign (green) thresholds for the PP2 analysis
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that are under very different evolutionary pressures will 
necessarily result in reversion to the mean. The meth-
odology also assumes a functional link between amino 
acids at the same structural position within a domain, 
which is not always true across proteins that perform 
different functions. Any approach that aggregates data 
over protein domains is necessarily limited to the ~ 31% 
of amino acids of the human proteome predicted to lie 
within known structured  protein domains, and there-
fore the results are not amenable to every variant. None-
theless, genetic constraint at meta-positions has been 
shown to outperform other variant prioritisation meth-
ods [36], and meta-domains have potential utility for 
aiding the interpretation of variants in related families of 
genes associated with disease by highlighting where vari-
ation is less well tolerated (see example in Fig. 2a).

The lack of benign sources of evidence is a potential 
weakness of the current variant classification guide-
lines. In order to implement a truly Bayesian approach, 
it must be possible for evidence to support the benig-
nity of a variant as well as its pathogenicity. This may be 
more complicated than simply implementing the nega-
tive likelihood ratio from an analysis, especially where 
intermediary ranges are present and the pathogenic and 
benign methodologies are implemented separately. We 
therefore evaluated the potential for co-localising benign 
variants and lack of constraint (due to higher-than-
expected missense variation) to be used as evidence for 
benignity. In both cases, the benign analysis performed 
less well than the pathogenic analysis, which may in part 
be explained by the relative depletion of benign variants 

within domains. Nonetheless, PM5(benign) reached pos-
itive likelihood ratios consistent with moderate evidence 
levels and may therefore be a useful addition to variant 
classification (Fig. 4). However, we suggest that this evi-
dence should only be applied with caution. The presence 
of benign missense variation at a particular position can-
not be taken to indicate that a pathogenic missense vari-
ant could not occur at the same location. Most notably, 
lack of constraint cannot be used as evidence to support 
benignity.

The limitations of each of the methodologies exam-
ined here are varied and must be considered when 
applying the evidence through variant classification. 
Most importantly, each of the pieces of evidence ana-
lysed here was assessed in isolation, and yet may draw 
heavily on other evidence sources. Each of the evidence 
criteria in the guidelines has been assessed under the 
assumption that they are completely independent data 
sources, as is necessary for application in a Bayesian 
framework. This is known to be a fallacy, and often 
the evidence used is highly circular, relying on similar 
sources. For example, all of the constraint algorithms 
draw their datasets from gnomAD, which is also imple-
mented in the guidelines through the PM2 criterion. 
If the constraint is considered on a spectrum, with 
PM2 essentially being a base-level constraint meas-
ure, through regional constraint and gene-wide con-
straint, it follows that the regional constraint measures 
will show more circularity with the PM2 metric, with 
smaller regions being more affected. Whilst it could be 
posited that the meta-constraint scores will be equally 

Table 2 Performance of PP2 pathogenic (top) and benign (bottom) analysis for five genetic constraint metrics

Shading in the LR+ and points columns indicates the strength reached for classification purposes according to Tavtigian et al. (2018) and Tavtigian et al. (2020) 
(red = strong; amber = moderate; green = supporting; blue = below minimum evidence weighting). gnomAD missense_o/e, observed/expected missense variants from 
gnomAD, CCR  Constrained coding regions from Havrilla et al. (2019), THRESH Tool-specific threshold, PATH Number of pathogenic variants, BEN Number of benign 
variants, TP True positive, FN False negative, TN True negative, FP False positive, SENS Sensitivity, SPEC Specificity, PPV Positive predictive value, LR+  Positive likelihood 
ratio, AUC  Area under the ROC curve (calculated in R using the pROC library)



Page 9 of 12Gunning and Wright  Genome Medicine          (2023) 15:110  

affected by this circularity, by drawing on many regions 
of the genome considered functionally equivalent, the 
effects of any individual variant present within the gno-
mAD dataset will be diluted linearly with the number 
and size of the regions being assessed. Further work is 
needed to evaluate and address this circularity.

Another limitation is that the meta-domain approach 
relies on domain predictions that may be incorrect or 
incomplete. PFam predictions rely on sequence-based 
data, which may insufficiently capture the complete 
diversity of proteins, potentially omitting the iden-
tification of novel protein families or domains with 
low sequence homology. Additionally, the accuracy of 
PFam’s predictions can exhibit variability, contingent 

upon the specific protein families under examination 
and the availability of high-quality reference sequences, 
and the predictions may be less reliable for divergent 
or inadequately characterised protein families. Whilst 
other domain predictions are likely to suffer from 
the same issues, the limitation could potentially be 
addressed by using 3-dimensional protein structures, 
such as those predicted by AlphaFold [44–46].

Finally, the use of ClinVar variants for benchmarking 
is a potential weakness in our method, due to classifi-
cation errors in the database. We attempted to mini-
mise these errors by excluding variants with uncertain 
or conflicting interpretations, but would welcome 
the development of large truth sets of pathogenic and 
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Fig. 3 Positive likelihood ratio curves for constraint metrics. The effect on the positive likelihood ratio (y-axis) based on the tool threshold (x-axis) 
for a gnomAD missense_oe, b gnomAD missense_Z, c small constrained coding regions (CCR) and d adjusted m/s meta-domain constraint. Each 
analysis was done 1000 times with equal steps between the minimum and maximum values. Vertical shading indicates tool-specific thresholds 
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benign variants for further assessment of variant clas-
sification approaches.

Conclusions
We advocate using an objective approach to evaluat-
ing evidence used in variant classification, that weighs 
the value of different types of data in an evidence-based 
manner. Within the context of the current ACMG/AMP 
variant classification guidelines [1], our analysis suggests 
that the standard PM5 criterion can be applied as strong 
evidence if a co-localised alternative missense variant in 
the same protein has been reported as pathogenic or likely 
pathogenic (with no conflicting reports). We further sug-
gest that, where this is not available, PM5 could be applied 
as moderate evidence where a pathogenic missense vari-
ant has been reported at a functionally equivalent position 
in the same domain of a different protein. However, given 
the large differences in likelihood ratios between different 
analyses, we hope that future guidelines will take a more 
numerical and explicitly Bayesian approach to the use of 
evidence in variant classification. A methodology whereby 
evidence for pathogenicity or benignity could be applied 
directly (i.e. by combining likelihood ratios with a prior 
probability to calculate a posterior probability of vari-
ant pathogenicity) would provide a more evidence-based 
approach to variant classification, and remove threshold-
ing effects whereby very minor changes in scores can have 
major impacts on variant assessment.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s13073- 023- 01264-6.

Additional file 1: Figure S1. Pfam Stockholm Alignment and residue 
numbering. Table S2. Examples of meta-position classification. Table S3. 
Classification of variants for the PM5 and PM5(benign).

Additional file 2: Table S1. Full list of ClinVar variants with classifications.

Acknowledgements
The authors wish to acknowledge helpful input from Emma Baple, Sian Ellard, 
and Janet Thornton. This work formed part of ACG’s thesis submitted to the 
University of Exeter for the degree of Doctor of Philosophy in Medical Studies.

Authors’ contributions
ACG performed all the analyses described in the manuscript. CFW supervised 
the work and drafted the initial manuscript. All authors read and approved the 
final manuscript.

Funding
This work was funded by Wellcome through the Transforming Genetic Medi-
cine Initiative [WT200990/Z/16/Z and WT200990/A/16/Z]. For the purpose of 
open access, the authors have applied a CC-BY public copyright licence to any 
author-accepted manuscript version arising from this submission. This study 
was supported by the National Institute for Health and Care Research Exeter 
Biomedical Research Centre. The views expressed are those of the author(s) 
and not necessarily those of the NIHR or the Department of Health and Social 
Care.

Availability of data and materials
The full database is available on Zenodo https:// zenodo. org/ doi/ 10. 5281/ 
zenodo. 10159 779.

Fig. 4 Flow diagram of the proposed logic for applying variant co-localisation data. Standard PM5 based on variants at the same position 
in the same protein (left) is augmented by variants at equivalent meta-positions in domains across different proteins (right). Numbers 
represent the number of variants at each step if the logic were applied to the pathogenic variants selected for this study. The analysis allows 
for the classification of an additional 5281 variants missed by the standard analysis, increasing the sensitivity from 0.27 to 0.41

https://doi.org/10.1186/s13073-023-01264-6
https://doi.org/10.1186/s13073-023-01264-6
https://zenodo.org/doi/10.5281/zenodo.10159779
https://zenodo.org/doi/10.5281/zenodo.10159779


Page 11 of 12Gunning and Wright  Genome Medicine          (2023) 15:110  

Declarations

Ethics approval and consent to participate
All data used are publicly available.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 25 July 2023   Accepted: 22 November 2023

References
 1. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards 

and guidelines for the interpretation of sequence variants: a joint con-
sensus recommendation of the American College of Medical Genetics 
and Genomics and the Association for Molecular Pathology. Genet Med. 
2015;17:405–24. https:// doi. org/ 10. 1038/ gim. 2015. 30.

 2. Abou Tayoun AN, Pesaran T, DiStefano MT, Oza A, Rehm HL, Biesecker LG, 
et al. Recommendations for interpreting the loss of function PVS1 ACMG/
AMP variant criterion. Hum Mutat. 2018;39:1517–24. https:// doi. org/ 10. 
1002/ humu. 23626.

 3. Jarvik GP, Browning BL. Consideration of cosegregation in the 
pathogenicity classification of genomic variants. Am J Hum Genet. 
2016;98:1077–81. https:// doi. org/ 10. 1016/j. ajhg. 2016. 04. 003.

 4. Brnich SE, Abou Tayoun AN, Couch FJ, Cutting GR, Greenblatt MS, Heinen 
CD, et al. Recommendations for application of the functional evidence 
PS3/BS3 criterion using the ACMG/AMP sequence variant interpreta-
tion framework. Genome Med. 2019;12:3. https:// doi. org/ 10. 1186/ 
s13073- 019- 0690-2.

 5. Biesecker LG, Harrison SM, ClinGen Sequence Variant Interpretation Work-
ing Group. The ACMG/AMP reputable source criteria for the interpreta-
tion of sequence variants. Genet Med. 2018;20:1687–8. https:// doi. org/ 10. 
1038/ gim. 2018. 42.

 6. Cubuk C, Garrett A, Choi S, King L, Loveday C, Torr B, et al. Clinical likeli-
hood ratios and balanced accuracy for 44 in silico tools against multiple 
large-scale functional assays of cancer susceptibility genes. Genet Med. 
2021;23:2096–104. https:// doi. org/ 10. 1038/ s41436- 021- 01265-z.

 7. Tian Y, Pesaran T, Chamberlin A, Fenwick RB, Li S, Gau C-L, et al. REVEL 
and BayesDel outperform other in silico meta-predictors for clinical 
variant classification. Sci Rep. 2019;9:12752. https:// doi. org/ 10. 1038/ 
s41598- 019- 49224-8.

 8. Pejaver V, Byrne AB, Feng B-J, Pagel KA, Mooney SD, Karchin R, et al. 
Calibration of computational tools for missense variant pathogenicity 
classification and ClinGen recommendations for PP3/BP4 criteria. Am J 
Hum Genet. 2022;109:2163–77. https:// doi. org/ 10. 1016/j. ajhg. 2022. 10. 
013.

 9. Houge G, Laner A, Cirak S, de Leeuw N, Scheffer H, den Dunnen JT. 
Stepwise ABC system for classification of any type of genetic variant. Eur J 
Hum Genet. 2022;30:150–9. https:// doi. org/ 10. 1038/ s41431- 021- 00903-z.

 10. Tavtigian SV, Greenblatt MS, Harrison SM, Nussbaum RL, Prabhu SA, 
Boucher KM, et al. Modeling the ACMG/AMP variant classification guide-
lines as a Bayesian classification framework. Genet Med. 2018;20:1054–60. 
https:// doi. org/ 10. 1038/ gim. 2017. 210.

 11. Tavtigian SV, Harrison SM, Boucher KM, Biesecker LG. Fitting a naturally 
scaled point system to the ACMG/AMP variant classification guidelines. 
Hum Mutat. 2020;41:1734–7. https:// doi. org/ 10. 1002/ humu. 24088.

 12. Garrett A, Durkie M, Callaway A, Burghel GJ, Robinson R, Drummond 
J, et al. Combining evidence for and against pathogenicity for variants 
in cancer susceptibility genes: CanVIG-UK consensus recommenda-
tions. J Med Genet. 2021;58:297–304. https:// doi. org/ 10. 1136/ jmedg 
enet- 2020- 107248.

 13. Ellard S, Baple E, Callaway A, Berry I, Forrester N, Clare. ACGS Best Practice 
Guidelines for Variant Classification in Rare Disease 2020. 2020.

 14. Lahiri S, Reys B, Wunder J, Pirzadeh-Miller S. Genetic variants with discord-
ant classifications: An assessment of genetic counselor attitudes and 
practices. J Genet Couns. 2023;32:100–10. https:// doi. org/ 10. 1002/ jgc4. 
1626.

 15. Amendola LM, Jarvik GP, Leo MC, McLaughlin HM, Akkari Y, Amaral 
MD, et al. Performance of ACMG-AMP Variant-Interpretation Guide-
lines among Nine Laboratories in the Clinical Sequencing Exploratory 
Research Consortium. Am J Hum Genet. 2016;98:1067–76. https:// doi. 
org/ 10. 1016/j. ajhg. 2016. 03. 024.

 16. Harrison SM, Dolinsky JS, Knight Johnson AE, Pesaran T, Azzariti DR, Bale 
S, et al. Clinical laboratories collaborate to resolve differences in variant 
interpretations submitted to ClinVar. Genet Med. 2017;19:1096–104. 
https:// doi. org/ 10. 1038/ gim. 2017. 14.

 17. Lecoquierre F, Duffourd Y, Vitobello A, Bruel A-L, Urteaga B, Coubes C, 
et al. Variant recurrence in neurodevelopmental disorders: the use of 
publicly available genomic data identifies clinically relevant pathogenic 
missense variants. Genet Med. 2019;21:2504–11. https:// doi. org/ 10. 1038/ 
s41436- 019- 0518-x.

 18. Gudmundsson S, Singer-Berk M, Watts NA, Phu W, Goodrich JK, Solomon-
son M, et al. Variant interpretation using population databases: Lessons 
from gnomAD. Hum Mutat. 2022;43:1012–30. https:// doi. org/ 10. 1002/ 
humu. 24309.

 19. Gunning AC, Fryer V, Fasham J, Crosby AH, Ellard S, Baple EL, et al. Assess-
ing performance of pathogenicity predictors using clinically relevant 
variant datasets. J Med Genet. 2021;58:547–55. https:// doi. org/ 10. 1136/ 
jmedg enet- 2020- 107003.

 20. Livesey BJ, Marsh JA. Interpreting protein variant effects with compu-
tational predictors and deep mutational scanning. Dis Model Mech. 
2022;15. https:// doi. org/ 10. 1242/ dmm. 049510.

 21. Wu Y, Li R, Sun S, Weile J, Roth FP. Improved pathogenicity prediction for 
rare human missense variants. Am J Hum Genet. 2021;108:1891–906. 
https:// doi. org/ 10. 1016/j. ajhg. 2021. 08. 012.

 22. Ittisoponpisan S, Islam SA, Khanna T, Alhuzimi E, David A, Sternberg 
MJE. Can predicted protein 3D structures provide reliable insights 
into whether missense variants are disease associated? J Mol Biol. 
2019;431:2197–212. https:// doi. org/ 10. 1016/j. jmb. 2019. 04. 009.

 23. Caswell RC, Gunning AC, Owens MM, Ellard S, Wright CF. Assessing the 
clinical utility of protein structural analysis in genomic variant classifica-
tion: experiences from a diagnostic laboratory. Genome Med. 2022;14:77. 
https:// doi. org/ 10. 1186/ s13073- 022- 01082-2.

 24. Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, Wang Q, 
et al. The mutational constraint spectrum quantified from variation in 
141,456 humans. Nature. 2020;581:434–43. https:// doi. org/ 10. 1038/ 
s41586- 020- 2308-7.

 25. Wang Q, Pierce-Hoffman E, Cummings BB, Alföldi J, Francioli LC, Gauthier 
LD, et al. Landscape of multi-nucleotide variants in 125,748 human 
exomes and 15,708 genomes. Nat Commun. 2020;11:2539. https:// doi. 
org/ 10. 1038/ s41467- 019- 12438-5.

 26. Havrilla JM, Pedersen BS, Layer RM, Quinlan AR. A map of constrained 
coding regions in the human genome. Nat Genet. 2019;51:88–95. https:// 
doi. org/ 10. 1038/ s41588- 018- 0294-6.

 27. Samocha KE, Kosmicki JA, Karczewski KJ, O’Donnell-Luria AH, Pierce-
Hoffman E, MacArthur DG, et al. Regional missense constraint improves 
variant deleteriousness prediction. bioRxiv. 2017;148353. https:// doi. org/ 
10. 1101/ 148353.

 28. Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, et al. 
Analysis of protein-coding genetic variation in 60,706 humans. Nature. 
2016;536:285–91. https:// doi. org/ 10. 1038/ natur e19057.

 29. Gardner EJ, Neville MDC, Samocha KE, Barclay K, Kolk M, Niemi MEK, et al. 
Reduced reproductive success is associated with selective constraint 
on human genes. Nature. 2022;603:858–63. https:// doi. org/ 10. 1038/ 
s41586- 022- 04549-9.

 30. Wiel L, Venselaar H, Veltman JA, Vriend G, Gilissen C. Aggregation of 
population-based genetic variation over protein domain homologues 
and its potential use in genetic diagnostics. Hum Mutat. 2017;38:1454–
63. https:// doi. org/ 10. 1002/ humu. 23313.

 31. Wiel L, Baakman C, Gilissen D, Veltman JA, Vriend G, Gilissen C. 
MetaDome: Pathogenicity analysis of genetic variants through aggrega-
tion of homologous human protein domains. Hum Mutat. 2019;40:1030–
8. https:// doi. org/ 10. 1002/ humu. 23798.

https://doi.org/10.1038/gim.2015.30
https://doi.org/10.1002/humu.23626
https://doi.org/10.1002/humu.23626
https://doi.org/10.1016/j.ajhg.2016.04.003
https://doi.org/10.1186/s13073-019-0690-2
https://doi.org/10.1186/s13073-019-0690-2
https://doi.org/10.1038/gim.2018.42
https://doi.org/10.1038/gim.2018.42
https://doi.org/10.1038/s41436-021-01265-z
https://doi.org/10.1038/s41598-019-49224-8
https://doi.org/10.1038/s41598-019-49224-8
https://doi.org/10.1016/j.ajhg.2022.10.013
https://doi.org/10.1016/j.ajhg.2022.10.013
https://doi.org/10.1038/s41431-021-00903-z
https://doi.org/10.1038/gim.2017.210
https://doi.org/10.1002/humu.24088
https://doi.org/10.1136/jmedgenet-2020-107248
https://doi.org/10.1136/jmedgenet-2020-107248
https://doi.org/10.1002/jgc4.1626
https://doi.org/10.1002/jgc4.1626
https://doi.org/10.1016/j.ajhg.2016.03.024
https://doi.org/10.1016/j.ajhg.2016.03.024
https://doi.org/10.1038/gim.2017.14
https://doi.org/10.1038/s41436-019-0518-x
https://doi.org/10.1038/s41436-019-0518-x
https://doi.org/10.1002/humu.24309
https://doi.org/10.1002/humu.24309
https://doi.org/10.1136/jmedgenet-2020-107003
https://doi.org/10.1136/jmedgenet-2020-107003
https://doi.org/10.1242/dmm.049510
https://doi.org/10.1016/j.ajhg.2021.08.012
https://doi.org/10.1016/j.jmb.2019.04.009
https://doi.org/10.1186/s13073-022-01082-2
https://doi.org/10.1038/s41586-020-2308-7
https://doi.org/10.1038/s41586-020-2308-7
https://doi.org/10.1038/s41467-019-12438-5
https://doi.org/10.1038/s41467-019-12438-5
https://doi.org/10.1038/s41588-018-0294-6
https://doi.org/10.1038/s41588-018-0294-6
https://doi.org/10.1101/148353
https://doi.org/10.1101/148353
https://doi.org/10.1038/nature19057
https://doi.org/10.1038/s41586-022-04549-9
https://doi.org/10.1038/s41586-022-04549-9
https://doi.org/10.1002/humu.23313
https://doi.org/10.1002/humu.23798


Page 12 of 12Gunning and Wright  Genome Medicine          (2023) 15:110 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

 32. Ware JS, Walsh R, Cunningham F, Birney E, Cook SA. Paralogous annota-
tion of disease-causing variants in long QT syndrome genes. Hum Mutat. 
2012;33:1188–91. https:// doi. org/ 10. 1002/ humu. 22114.

 33. Lal D, May P, Perez-Palma E, Samocha KE, Kosmicki JA, Robinson EB, et al. 
Gene family information facilitates variant interpretation and identifica-
tion of disease-associated genes in neurodevelopmental disorders. 
Genome Med. 2020;12:28. https:// doi. org/ 10. 1186/ s13073- 020- 00725-6.

 34. MacGowan SA, Madeira F, Britto Borges T, Schmittner MS, Cole C, Barton 
GJ. Human missense variation is constrained by domain structure and 
highlights functional and pathogenic residues. BioRxiv. 2017. https:// doi. 
org/ 10. 1101/ 127050.

 35. Richardson TG, Shihab HA, Rivas MA, McCarthy MI, Campbell C, Timpson 
NJ, et al. A protein domain and family based approach to rare variant 
association analysis. PLoS ONE. 2016;11: e0153803. https:// doi. org/ 10. 
1371/ journ al. pone. 01538 03.

 36. Zhang X, Theotokis PI, Li N, the SHaRe Investigators, Wright C, Samocha 
KE, et al. Genetic constraint at single amino acid resolution improves mis-
sense variant prioritisation and gene discovery. medRxiv. 2022. https:// 
doi. org/ 10. 1101/ 2022. 02. 16. 22271 023.

 37. Finn RD, Mistry J, Tate J, Coggill P, Heger A, Pollington JE, et al. The 
Pfam protein families database. Nucleic Acids Res. 2010;38 Database 
issue:D211–22. https:// doi. org/ 10. 1093/ nar/ gkp985.

 38. El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, et al. The 
Pfam protein families database in 2019. Nucleic Acids Res. 2019;47:D427–
32. https:// doi. org/ 10. 1093/ nar/ gky995.

 39. Ioannidis NM, Rothstein JH, Pejaver V, Middha S, McDonnell SK, Baheti S, 
et al. REVEL: an ensemble method for predicting the pathogenicity of rare 
missense variants. Am J Hum Genet. 2016;99:877–85. https:// doi. org/ 10. 
1016/j. ajhg. 2016. 08. 016.

 40. Liu X, Li C, Mou C, Dong Y, Tu Y. dbNSFP v4: a comprehensive database 
of transcript-specific functional predictions and annotations for human 
nonsynonymous and splice-site SNVs. Genome Med. 2020;12:103. https:// 
doi. org/ 10. 1186/ s13073- 020- 00803-9.

 41. Landrum MJ, Chitipiralla S, Brown GR, Chen C, Gu B, Hart J, et al. ClinVar: 
improvements to accessing data. Nucleic Acids Res. 2020;48:D835–44. 
https:// doi. org/ 10. 1093/ nar/ gkz972.

 42. Loong L, Cubuk C, Choi S, Allen S, Torr B, Garrett A, et al. Quantifying pre-
diction of pathogenicity for within-codon concordance (PM5) using 7541 
functional classifications of BRCA1 and MSH2 missense variants. Genet 
Med. 2022;24:552–63. https:// doi. org/ 10. 1016/j. gim. 2021. 11. 011.

 43. Fife JD, Cassa CA. Estimating clinical risk in gene regions from popula-
tion sequencing cohort data. Am J Hum Genet. 2023. https:// doi. org/ 10. 
1016/j. ajhg. 2023. 05. 003.

 44. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. 
Highly accurate protein structure prediction with AlphaFold. Nature. 
2021;596:583–9. https:// doi. org/ 10. 1038/ s41586- 021- 03819-2.

 45. Tunyasuvunakool K, Adler J, Wu Z, Green T, Zielinski M, Žídek A, et al. 
Highly accurate protein structure prediction for the human proteome. 
Nature. 2021;596:590–6. https:// doi. org/ 10. 1038/ s41586- 021- 03828-1.

 46. Schmidt A, Röner S, Mai K, Klinkhammer H, Kircher M, Ludwig KU. Predict-
ing the pathogenicity of missense variants using features derived from 
AlphaFold2. Bioinformatics. 2023;39. https:// doi. org/ 10. 1093/ bioin forma 
tics/ btad2 80.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1002/humu.22114
https://doi.org/10.1186/s13073-020-00725-6
https://doi.org/10.1101/127050
https://doi.org/10.1101/127050
https://doi.org/10.1371/journal.pone.0153803
https://doi.org/10.1371/journal.pone.0153803
https://doi.org/10.1101/2022.02.16.22271023
https://doi.org/10.1101/2022.02.16.22271023
https://doi.org/10.1093/nar/gkp985
https://doi.org/10.1093/nar/gky995
https://doi.org/10.1016/j.ajhg.2016.08.016
https://doi.org/10.1016/j.ajhg.2016.08.016
https://doi.org/10.1186/s13073-020-00803-9
https://doi.org/10.1186/s13073-020-00803-9
https://doi.org/10.1093/nar/gkz972
https://doi.org/10.1016/j.gim.2021.11.011
https://doi.org/10.1016/j.ajhg.2023.05.003
https://doi.org/10.1016/j.ajhg.2023.05.003
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1038/s41586-021-03828-1
https://doi.org/10.1093/bioinformatics/btad280
https://doi.org/10.1093/bioinformatics/btad280

	Evaluating the use of paralogous protein domains to increase data availability for missense variant classification
	Abstract 
	Background 
	Methods 
	Results 
	Conclusions 

	Background
	Methods
	Database creation
	Meta-position variant annotation
	Meta-position pathogenic variant classification [PM5]
	Meta-position benign variant classification (PM5(benign))
	Meta-domain constraint calculation
	Meta-domain pathogenic variant classification (PP2)
	Meta-domain benign variant classification (PP2(benign))

	Results
	Alternative pathogenic missense variants at the same amino acid position in the same protein provide strong evidence of pathogenicity
	Clinically annotated pathogenic or benign missense variants at the equivalent domain position in different proteins provide moderate evidence of pathogenicity or benignity respectively
	Missense constraint can provide strong evidence of pathogenicity in a small proportion of variants, but the absence of constraint provides no evidence of benignity

	Discussion
	Conclusions
	Anchor 22
	Acknowledgements
	References


