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Single-cell transcriptomic analysis reveals 
tumor cell heterogeneity and immune 
microenvironment features of pituitary 
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Abstract 

Background Pituitary neuroendocrine tumors (PitNETs) are one of the most common types of intracranial tumors. 
Currently, the cellular characteristics of normal pituitary and various other types of PitNETs are still not completely 
understood.

Methods We performed single-cell RNA sequencing (scRNA-seq) on 4 normal samples and 24 PitNET samples 
for comprehensive bioinformatics analysis. Findings regarding the function of PBK in the aggressive tumor cells were 
validated by siRNA knockdown, overexpression, and transwell experiments.

Results We first constructed a reference cell atlas of the human pituitary. Subsequent scRNA-seq analysis of PitNET 
samples, representing major tumor subtypes, shed light on the intrinsic cellular heterogeneities of the tumor cells 
and tumor microenvironment (TME). We found that the expression of hormone-encoding genes defined the major 
variations of the PIT1-lineage tumor cell transcriptomic heterogeneities. A sub-population of TPIT-lineage tumor cells 
highly expressing GZMK suggested a novel subtype of corticotroph tumors. In immune cells, we found two clusters 
of tumor-associated macrophages, which were both highly enriched in PitNETs but with distinct functional character-
istics. In PitNETs, the stress response pathway was significantly activated in T cells. While a majority of these tumors are 
benign, our study unveils a common existence of aggressive tumor cells in the studied samples, which highly express 
a set of malignant signature genes. The following functional experiments confirmed the oncogenic role of selected 
up-regulated genes. The over-expression of PBK could promote both tumor cell proliferation and migration, and it 
was also significantly associated with poor prognosis in PitNET patients.
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Background
Pituitary is a functionally critical endocrine gland in 
humans that produces hormones to regulate multiple 
essential physiological processes. The anterior pitui-
tary consists of five main cell types that secret specific 
hormones [1, 2]: somatotrophs (growth hormone, GH), 
lactotrophs (prolactin, PRL), thyrotrophs (thyroid-stimu-
lating hormone, TSH), gonadotrophs (follicle-stimulating 
hormone, FSH, and luteinizing hormone, LH), and cor-
ticotrophs (adrenocorticotropic hormone, ACTH). Pitui-
tary neuroendocrine tumors (PitNETs) arise from one or 
more hormone-producing cell types and are classified 
according to the expression of cell-specific transcrip-
tion factors [3]. Somatotroph, lactotroph, and thyrotroph 
tumors are of PIT1 (known as POU1F1) lineage, corti-
cotroph tumors are of TPIT (known as TBX19) lineage, 
and gonadotroph tumors are of SF1 (known as NR5A1) 
lineage [4–6]. Plurihormonal tumor express multiple 
transcription factors, while null cell tumor lacks any gene 
listed above [7, 8]. Most PitNETs are benign, but they 
can cause hormonal excess or local mass compression 
with adverse clinical outcomes [9–11]. The pathogenesis 
of many pituitary tumors remains poorly elucidated and 
no single molecular marker is sufficient to predict their 
behavior.

Single-cell RNA sequencing (scRNA-seq) is a power-
ful bio-technology for characterizing cellular diversity 
[12, 13], revealing complexity among multiple cell types 
[14] and deciphering the heterogeneity of various tumors 
[15, 16]. It has been applied to unravel the relationship 
between hormone specificity and cell plasticity in mouse 
pituitary [17] and to identify cell developmental trajec-
tories in human fetal pituitaries [18]. A previous study 
of PitNETs has identified novel tumor-related genes at 
the single-cell resolution [19]. And another recent study 
has used scRNA-seq to compare PitNET subtypes with 
normal anterior pituitary cells and found that the tumor 
differentiation status was associated with long-term 
recurrence [20]. However, the tumor cell heterogeneity of 
different lineages and the tumor microenvironment still 
need further investigation.

In this study, we conducted scRNA-seq on 4 normal 
pituitary tissues and on major types of PitNETs from 24 
patients to build a comprehensive transcriptional land-
scape of human normal pituitary as well as PitNETs. Our 

data and analysis provide a deep multifaceted under-
standing of cellular heterogeneity and tumor microen-
vironment features of PitNETs, which underscores the 
inherent complexity of PitNETs.

Methods
Patients and clinical samples
In this study, we collected fresh tissues of 4 normal pitui-
tary samples and 24 PitNET cases from 26 patients who 
had undergone pituitary surgery at Beijing Tiantan Hos-
pital in 2018 (Additional file  1: Figure S1, Additional 
file  2: Table  S1). The 4 normal pituitary samples were 
taken from the endonasal endoscopy surgeries requiring 
partial pituitary resection and transposition. All diag-
noses of PitNETs were confirmed by a multidisciplinary 
group consisting of neurosurgeons, neuroradiologists, 
and neuropathologists. The invasive PitNET criteria were 
based on three aspects: (1) MRI manifestations: Knosp 
classification grades 3 and 4, Hardy–Wilson classifica-
tion grades 3 and 4 or stage D and E; (2) intraoperative 
findings: tumor invasion into the dura mater, cavernous 
sinus, bone, or subarachnoid space; (3) pathological con-
firmation of tumor invasion into surrounding tissues. The 
invasive sample must meet the MRI criteria and intraop-
erative findings or pathological confirmation.

All procedures performed with the use of samples 
obtained from patients were approved by IRB of Beijing 
Tiantan Hospital, Capital Medical University (KY 2018–
053-02). All the patients signed informed consent.

Single‑cell preparations
Fresh pituitary adenoma tissues were minced with the 
Iris scissor into small pieces and digested for 30  min 
at 37  °C, 800  rpm, with a digestion solution containing 
PBS and collagenase II and IV (1.5  mg/ml, Gibco). The 
cell suspension was further filtered through 45-µm nylon 
mesh to remove cell aggregates and re-suspended in L15 
with 10% FBS. Then, a second enzymatic digestion with 
accutase to dissociate the remaining cell clusters into 
single cells was performed. Finally, add L15 medium 
enriched with 10% fetal bovine serum (FBS).

Single‑cell RNA‑seq
The chromium single-cell expression solution 
(10 × Genomics) was used to generate single-cell 

Conclusions Our data and analysis manifested the basic cell types in the normal pituitary and inherent heterogene-
ity of PitNETs, identified several features of the tumor immune microenvironments, and found a novel epithelial cell 
sub-population with aggressive signatures across all the studied cases.

Keywords Pituitary neuroendocrine tumor, Tumor heterogeneity, Tumor microenvironment, Single-cell RNA 
sequencing



Page 3 of 17Yan et al. Genome Medicine            (2024) 16:2  

transcriptomes of digested pituitary adenomas. The 
single-cell suspensions were loaded onto the Chromium 
Controller (using Chromium i7 Multiplex Kit, Chromium 
Single Cell 3′Library and Gel Bead Kit v2 and Chromium 
Single Cell A Chip Kit) for estimated 5000 ~ 10,000 cap-
tured cells per library. The libraries were sequenced by 
HiSeq4000 (Illumina) (150 bp paired-end sequencing).

Preprocessing of scRNA‑seq data
Raw gene expression (UMI counts; UMIs, unique molec-
ular identifiers) matrices for each sample were obtained 
by CellRanger (6.0). Given that both P6T and P8T had 
two scRNA-seq samples, we selected one with higher 
sequencing quality from each patient (P6T1, P8T2) for 
the subsequent analysis. The following steps were pro-
cessed based on the R (4.2.1) package “Seurat” (4.1.1) 
[21]. We firstly filtered out low-quality cells for each sam-
ple. Four filters were used: cells with very low or high 
number of UMIs, cells with very low or high number 
of detected genes, cells with high percent of mitochon-
drial genes, and cells with high percent of dissociation-
associated genes. In addition, we removed those genes 
that were detected in less than 3 cells in any sample. 
After these, the expression of each gene was normal-
ized by dividing the sum of remaining UMI counts in the 
cell and then multiplying 10,000 to obtain the TPM-like 
values. To make the expression of all genes comparable, 
the TPM-like values were further logarithm transformed 
after adding a pseudo-count 1. We then combined cells 
from all samples as a single expression matrix, and 
used the function “FindVariableGenes” with “selec-
tion.method = ’vst” from Seurat, selecting 2000 highly 
variable genes for the downstream analysis (Additional 
file 2: Table S2). The expression matrix of highly variable 
genes was scaled after regressing out the total count of 
UMIs and the percent of mitochondrial genes. To fur-
ther reduce noise and dimensions, principal component 
(PC) analysis was performed on the scaled data matrix of 
the selected genes with the first 30 PCs remained. Har-
mony [22] was then adopted to remove the batch effects 
between different samples (Additional file 1: Figure S2a, 
S3a). Clustering was performed by the “FindClusters” 
function, and UMAP was used for visualization. We sys-
tematically performed two rounds of clustering and the 
corresponding visualization, with the first round discern-
ing the major cell types, including PIT1-positive pitui-
tary cells, PIT1-negative pituitary cells, PTTG1-positive 
epithelial cells, other epithelial cells, stromal cells, and 
immune cells. The second round of clustering then fur-
ther identified the fine-grained cell types for each major 
one. The diffusion map and RNA velocity analysis were 
performed based on the Python package “scanpy” [23] 
and “scvelo” [24] with default settings.

Identification of differentially expressed genes 
and biomarkers
Differentially expressed genes of each cluster were 
identified by Wilcoxon rank-sum test implemented in 
Seurat. We first applied the function “FindAllMark-
ers” to identify DEGs for each cluster compared with all 
cells from the rest clusters and then filtered genes with 
high Logarithmic fold change (> 0.25) and low adjusted 
P value (< 0.01) (Additional file 2: Table S3). Moreover, 
we also checked specific known marker gene expres-
sion to validate the characteristics of each cluster. The 
top differentially expressed genes and the biomarkers of 
each cluster were selected for visualization in heatmaps 
or bubble plots.

Calculation of dendrogram distance
We firstly selected the cells of clusters N01–N05, fil-
tered the expression of TF genes, and reperformed scal-
ing and PCA reduction on these cells. We next selected 
the first 20 PCs, calculated the Euclidean distance 
between the average of each cluster, and constructed 
the dendrogram based on hierarchical clustering.

Comparison analysis for human versus mouse and rat
We downloaded the dataset GSE120410 [25, 26] and 
GSE132224 [27, 28] as reference for mouse and rat, 
respectively. We converted the gene names of mouse 
and rat into corresponding human gene names and fil-
tered these three datasets (including our human pitui-
tary samples) by their common genes (15,406 genes) for 
subsequent analysis. For the mouse and rat datasets, we 
filtered cells with at least 200 genes and at most 50% 
of mitochondrial genes. Similar preprocessing proce-
dures were applied on the filtered human, mouse, and 
rat datasets to obtain the integrated atlas for com-
parison (Additional file  1: Figure S2c, d). Inspired by 
scmap [29], we represented each cluster in mouse or 
rat by its centroid (mean gene expression) and calcu-
lated the Pearson correlation coefficients between the 
gene expression of every single-cell in human normal 
pituitary samples and the centroid of the correspond-
ing cell type in mouse or rat as similarity. The stemness, 
epithelial, and mesenchymal gene signatures were cal-
culated as the average expression based on the marker 
gene score definitions presented in the previous study 
[18]. To make the single-cells comparable across differ-
ent samples and species, we considered every cell to be 
composed of three states according to its correspond-
ing signatures. Next, we used R package ggtern (v3.4.2) 
to visualize the relative proportional relationship as cell 
state scores in one ternary plot.
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Pseudo‑bulk construction and similarity calculation
The pseudo-bulk of each sample was constructed by 
summing up the log-normalized expression of all cells in 
one sample. We performed scaling, PCA reduction, and 
UMAP for visualization. The first 20 PCs were selected to 
calculate the pairwise cosine similarity of all pseudo-bulk 
samples.

Signature calculation for M1 and M2 phenotypes 
of macrophages and the functions of T cells
The gene sets for calculating M1 (classically activated) 
and M2 (alternatively activated) phenotypes of two 
groups of tumor-associated macrophages (TAMs) were 
from a previous article [30]. We calculated the average 
of log-normalized expression as the signature of cluster 
I09 and cluster I10 for comparison. The gene sets for cal-
culating the functions of T cells were from another study 
[31]. We used the function “AddModuleScore” in Seurat 
to calculate the signature scores of T cells in normal and 
tumor samples.

Pathway enrichment analysis
We employed over representation analysis (ORA) and 
gene set enrichment analysis (GSEA) [32] to identify gene 
sets that have significant differences between selected 
clusters. In detail, we first converted captured gene 
names by a gene symbol to gene entrezID conversion 
function “bitr” using “org.Hs.eg.db” database, and hence 
those genes could not be converted were filtered. In 
ORA, we ranked differentially expressed genes according 
to adjusted P value and used top 50 genes of the cluster 
as input. In GSEA, we calculated log2FC for all filtered 
genes using Seurat function “FoldChange” based on the 
cluster annotation and took them as input. The ORA and 
GSEA results were given by the function “enricher” and 
“GSEA” from an R package “clusterProfiler” [33], respec-
tively. The gene sets for testing included KEGG [34] path-
ways, Gene Ontology [35, 36] (Biological Processes), and 
Hallmark [37] gene sets, collected in Molecular Signa-
tures Database (MSigDB). In order to ensure the reliabil-
ity of enrichment, only the pathway that were identified 
as significantly enriched via both ORA and GSEA meth-
ods in at least two gene sets from MSigDB were selected. 
We eventually used the GSEA curve plots tested on 
GO:BP and the core enrichment genes identified by ORA 
for visualization.

Cell–cell communication analysis
We applied CellChat [38] package on all immune and 
stromal clusters for cellular interaction analysis. To com-
pare the difference between tumor and normal pituitary 
samples, we divided every cluster into tumor and normal 
groups according to the source of cells. Then, we ran the 

pipeline of CellChat with default settings to analyze char-
acteristics of cell–cell communication with respect to 
these two groups. Considering the relatively low number 
of some groups of clusters, we used the function “project-
Data” to project the inference results from gene expres-
sion to protein–protein interaction networks for higher 
reliability. After that, we merged the results from tumor 
and normal for comparative analyses.

Cell cycle scoring
We used the function “CellCycleScoring” in Seurat pack-
age to calculate the cell cycle scores of all clusters in Pit-
NETs. The gene set for G1, S, and G2M was from the 
previous study [39].

Pan‑cancer analysis
We calculated the logarithmic fold change based on the 
normalized median expression of several tumor types 
and the match normal tissue in TCGA and GTEx data-
sets, where the expression data was collected from 
GEPIA [40].

Classification based on scRNA‑seq data
It is hypothesized that the expression patterns of the 
aggressive cells from cluster T00 should be used to dis-
tinguish malignant pituitary carcinomas from the other 
benign tumors. Firstly, we selected important genes as 
input features by the following procedures: (1) “Find-
Marker” function provided 83 differentially expressed 
genes in cluster T00 (589 genes in total); (2) filter genes 
with average logarithmic fold change higher than 0.75 
and adjusted P value lower than 0.05 (only 83 genes left, 
reflecting the highly importance of DEGs); (3) further 
reduce this list by filtering out those not detected in the 
bulk dataset (the number reduced to 32). These 32 genes 
were used in the following analysis.

To match the expression distribution of our scRNA-seq 
data and the bulk data in GSE22812 [41, 42] (13 pituitary 
adenomas with 3 carcinomas), we reconciled the two 
datasets on the same measure scale. For the scRNA-seq 
dataset, the logarithmic normalized expression matrix 
with 32 genes was scaled to z-scores. For bulk data, we 
applied the “impute.knn” function from an R package 
“impute” to impute the “NA” values and then “normal-
ize.quantiles” from “preprocessCore” package to nor-
malize bulk samples. Afterwards, each gene’s expression 
value was also transformed to z-scores by centering and 
scaling.

As our assumption that the bulk data and the scRNA-
seq data should have been scaled to similar distributions 
with the above pre-processing steps, we therefore used 
the 32 genes to train a random forest classier based on 
the scRNA-seq data by the “randomForest” function 
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from the “randomForest” R, where “ntree” parameter 
was set as 4000; “strata” parameter was set as true labels, 
and “sampsize” was set to aggressive vs non-aggressive as 
1500 vs 500 for balanced training. The “predict” function, 
where “type” parameter was set as “prob,” eventually gave 
the probability of each bulk sample to be “non-aggres-
sive” or “aggressive.”

Progression‑free survival curves analysis
We collected 50 clinical PitNET samples and classi-
fied them based on the PBK expressions by RNAscope. 
Kaplan–Meier survival curves were used to demonstrate 
the significant difference in prognosis. In our study, PFS 
analysis was defined as the time from surgery to the first 
diagnosis of regrowth. Patients who lost follow-up or 
study end dates were considered censored in comparative 
survival analyses. The progression-free survival outcome 
was estimated by Kaplan–Meier method, and the differ-
ence was analyzed by log-rank test. P value < 0.05 was 
considered statistically significant.

Immunofluorescence staining
Utilizing the multiplex IHC technique, we performed 
immunofluorescence staining of human FFPE tissues with 
the PANO 7-plex IHC kit (catalog number 0004100100, 
Panovue, Beijing, China). The procedure involved the 
sequential application of various primary antibodies, 
including those specific for GZMK (HPA063181, Sigma-
Aldrich, St. Louis, MO, USA) and TPIT (ZM-0318, 
ZSGB-Bio, Beijing, China). Following this, slides were 
incubated with a horseradish peroxidase-conjugated 
secondary antibody and subsequently underwent tyra-
mide signal amplification (TSA). After each TSA step, the 
slides were subjected to microwave treatment. Once all 
human antigens were appropriately labeled, nuclei were 
stained using 4′-6′-diamidino-2-phenylindole (DAPI, 
provided by Sigma-Aldrich).

Hybridizations using the RNAscope method were 
performed according to the manufacturer’s protocol 
(Advanced Cell Diagnostics) using the RNAscope 2.5 HD 
Duplex Reagent Kit (322,430). Probes used were Hs-PBK 
(551,871).

Electron microscopy
Immediately after tumor tissue excision, small blocks of 
tumor were fixed in a mixture of 2.5% glutaraldehyde and 
2% paraformaldehyde for 2  h at 4  °C and then washed 
three times with 0.1 M phosphate buffer. They were then 
dehydrated in gradient concentrations of ethanol, finally 
embedding the samples in pure epoxy resin (Epon 812, 
Shanghai, China). Ultrathin sections from 60 to 100 nM 
for electron microscopy were double stained with uranyl 

acetate and lead citrate and examined under a Hitachi 
H-7650 transmission electron microscope (Tokyo, Japan).

Cell culture
Rat pituitary cells (GH3) were originally obtained from 
the American Type Culture Collection (ATCC) and cul-
tured at 37  °C in 35  mm dishes in a humidified atmos-
phere of 95% air and 5%  CO2. The culture medium was 
Ham’s F12K medium with 2.5% fetal bovine serum (FBS) 
and 15% horse bovine serum. Cultures were fed every 
other day. The cell lines were also genotyped to rule out 
cross-contamination and their morphology was regularly 
examined.

Transfection and RNA interference
Small interfering RNA (siRNA) transfections were per-
formed using Lipofectamine 2000 (11,668,019, Thermo 
Fisher), according to the manufacturer’s protocol. siRNA 
synthesis was performed by Shanghai GenePharma and 
the siRNA sequences for human GBK and GGH are 
shown in Additional file 2: Table S4.

Quantitative real‑time PCR
Total RNA was extracted using RNeasy Mini Kit (76,104, 
Qiagen) and then reversed transcribed using High-
Capacity cDNA Reverse Transcription Kit (0049472, 
Thermo Fisher) according to the manufacturer’s instruc-
tions. Subsequently, we performed qRT-PCR using Power 
SYBR™ Green PCR Master Mix (4,367,659, Thermo 
Fisher) in a total reaction volume of 10 μL. GAPDH was 
used as a reference gene. The levels of mRNAs were per-
formed on an ABI 7500 System (Applied Biosystems). 
Primer pairs for quantitative real-time PCR are shown in 
Additional file 2: Table S4. Amplification was performed 
as follows: 95  °C for 10  min and 40 cycles at 95  °C for 
15  s, 60  °C for 60  s. For the quantitative analysis, rela-
tive expression levels were calculated based on CT val-
ues (corrected for GAPDH expression) according to the 
equation: 2-△CT [△CT = CT (gene of interest) − CT 
(GAPDH)]. All qRT-PCR analyses were performed in 
triplicate. Expression levels after different siRNAs’ trans-
fections were shown in Figure S10.

CCK‑8 assay cell growth viability
Cells after treated or untreated were seeded at a concen-
tration of 4 ×  103 per well in the 96-well plate and cul-
tured for 24 h, 48 h, 72 h, 96 h, and 120 h at 37  °C, 5% 
 CO2. Each group were detected with Cell Counting Kit-8 
(Beyotime, C0039), following the manufacturer’s instruc-
tions. Briefly, 10 µl CCK-8 was added into each well, and 
cells were incubated for additional 4 h. The absorbance at 
450 nm was measured using a microplate reader.
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Apoptosis analysis
Cells were analyzed for apoptosis by an Annexin 
V-FITC/propidium iodide double-staining method 
described by kit manufacturer (Beyotime, C1062M). 
The cells 48  h after transfection of siRNAs or expres-
sion vector plasmids were collected and subjected to 
the analysis. About 5 ×  105 cells each group were col-
lected by centrifugation and resuspended 500  μl of 
binding buffer. Five microliters of Annexin V-FITC and 
5 μl of propidium iodide were added into each tube and 
then incubated at room temperature for 15 min in the 
dark. Stained cells were analyzed by flow cytometry in 
FITC and ECD channels.

Plasmid
The Flag-tagged PBK construct was subcloned into the 
pHS-AVC vector. The pZDonor-CMV-PBK-3flag (Rat, 
NM_001079937) overexpression vector was purchased 
from SyngenTech (Beijing, China).

Transfection and RNA interference
GH3 cells (1 ×  106 per well) were seeded in six-well plates. 
After 24  h of incubation in the humidified incubator, 
GH3 cells were transfected with small interfering RNA 
(siRNA) or plasmids using lipofectamine 3000 (Lipo3000, 
Thermo Fisher, USA), according to the product specifica-
tion. The specific siRNAs against PBK were purchased 
from GenePharma (Suzhou, China). The sequences of 
PBK siRNAs are as follows:

PBK-Rat-1, 5′ GGU AGU CUG UGC CUU GCU ATT 
3′
5′ UAG CAA GGC ACA GAC UAC CTT 3′
PBK-Rat-2, 5′ GCA UGG AGA CAU AAA GUC UTT 
3′
5′ AGA CUU UAU GUC UCC AUG CTT 3′
PBK-Rat-3, 5′ GGG UCA GUG UUU ACC UAA UTT 
3′
5′ AUU AGG UAA ACA CUG ACC CTT 3′

Western blotting
GH3 cells were lysed with RIPA buffer (NCM Biotech, 
China). The obtained protein concentration was deter-
mined using the BCA Protein Assay kit (Thermo Fisher, 
USA). Proteins were separated by SDS-PAGE and trans-
ferred to PVDF membranes (Millipore, USA). Mem-
branes were blocked and incubated in diluted primary 
anti-PBK antibody (dil. 1:1000, Santa Cruz, USA) and 
anti-Flag (dil. 1:1000, Sigma-Aldrich, USA) at 4 °C over-
night followed by secondary antibodies. Tubulin was 

used as the internal control, and the grey values were cal-
culated with the ImageJ software.

Transwell migration assay
GH3 cells (5 ×  105 per well) were seeded in the upper 
chambers in 24-well culture plates with 8-μm pores 
(Corning, USA). GH3 cells were allowed to migrate 
through the pores in the transwell membrane during 
incubation at 37  °C with 5%  CO2 for 24  h. Then, cells 
on the lower surface of the membrane were fixed in 4% 
paraformaldehyde for 15 min, stained with crystal violet 
for 10  min, washed with PBS. The migrated GH3 cells 
were imaged under a microscope and counted using the 
ImageJ software.

Results
Transcriptomic analysis of the cell populations in human 
pituitary
To construct a reference single-cell atlas of human pitui-
tary, we integrated 5361 high-quality single cells from 
4 normal pituitary samples, with an average of 11,172 
UMIs and 2397 genes per cell. Unsupervised clustering 
was then performed, identifying 17 distinct cell popula-
tions (Fig. 1a), which in general could be categorized into 
3 main types according to their representative marker 
genes (Fig.  1b, Additional file  1: Figure S2b): epithelial 
cells (N01-N06, including hormone-secreting cells and 
pituitary stem-like cells), immune cells (N07-N15, includ-
ing T, B, myeloid cells), stromal cells (N16-N17, including 
fibroblasts and endothelial cells). As expected, epithelial 
cells accounted for the major compartment [43], and cell 
types of PIT1-lineage had the largest population. Further 
analyzing the regulatory similarity of hormone-secreting 
cells from different lineages, we found that the expression 
of the PIT1-positive cell clusters was more similar than 
those of PIT1-negative cells, where cells expressing GH1 
and PRL were the most similar (Fig. 1c). These similari-
ties reflected the differentiation process of pituitary cells 
under the regulation of a set of transcription factors and 
was consistent with the fact that somatotrophs and lacto-
trophs were differentiated from the same precursor cells 
(mammosomatotrophs) [44].

Comparing our scRNA-seq data of human pitui-
tary with mouse [25] and rat [27] pituitary, we cor-
roborated that most cell types, especially epithelial and 
stromal cells, were highly conservative among these 
species, while immune cells had relatively low simi-
larities (Fig. 1d, Additional file 1: Figure S2d). Notably, 
melanotrophs (N05), however, had different expres-
sion profiles (Fig.  1e), for both Pomc + /Pcsk2 + and 
Pomc + /Pcsk2 − cells were discovered in mice and 
rats while only POMC + /PCSK2 − cells were found in 
human. Pituitary stem-like cells have previously been 
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reported to possess a hybrid epithelial/mesenchymal 
state [18]. Based on the marker gene score definitions 
in this article [18], we calculated the epithelial, mes-
enchymal, and stemness scores of all cells in cluster 
N06 as well as the corresponding stem-like cells in 

mouse and rate to validate this transition situation. We 
observed that human and mouse had similar hybrid 
state, whereas rat had higher stemness and lower epi-
thelial scores (Fig. 1f ). This atlas comprehensively cov-
ers well-characterized pituitary cell types and provides 

Fig. 1 Single-cell landscape of normal human pituitary gland. a UMAP plot showing the annotated cell types from normal pituitary samples. 
Left: UMAP plot of all the clusters. Upper right: UMAP plot of only PIT1-positive epithelial cell clusters. Lower right: UMAP plot of only immune 
cell clusters. b Matrix plot showing mean expression of characteristic markers for each annotated cell types. c Dendrogram representing 
the similarity of TF expression profiles between different hormone-producing cell types. d Pearson correlation of human normal cell types 
with the corresponding cell types from other species. Up: mouse pituitary samples. Down: rat pituitary samples. The dashed lines represent 
the correlation between mean expression of all cells from human and those from mouse and rat, respectively. e Scatter plot showing few 
melanotrope (POMC + PCSK2 +) cells detected in human samples. Both corticotrope and melanotrope exist in mouse and rat samples. f Ternary plot 
characterizing pituitary stem cells from different species by three kinds of signature scores
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a reference to analyze the altered cell populations and 
cellular states in PitNETs.

Characterization of the cell populations in PitNETs
We next collected 24 clinical samples from PitNET 
patients and obtained the scRNA-seq data of 126,483 
cells in total after careful quality control. The samples 
contained four major types of PitNETs according to clini-
cal diagnosis: PIT1-lineage PitNET, SF1-lineage PitNET, 
TPIT-lineage PitNET, and null cell tumor (NCT) (Fig. 2a, 
Additional file  1: Figure S1, Additional file  2: Table  S1). 
We firstly constructed pseudo-bulk samples based on the 
corresponding scRNA-seq data for sample-wise analysis. 
Consistent with the known facts, POU1F1 together with 
GH1, PRL, and/or TSHB were overexpressed in PIT1-
lineage tumors; FSHB and/or LHB were overexpressed in 
SF1-lineage tumors; TBX19 was overexpressed in TPIT-
lineage tumors; and few transcription factors or hor-
mone genes were captured in null cell tumors (Fig.  2a). 
The gene expression profiles in normal pituitary sam-
ples showed high similarity, yet the expression profiles 
of tumor samples differed greatly from each other, indi-
cating strong inter-tumor heterogeneities (Fig. 2b, c and 
Additional file  1: Fig. S4). Nonetheless, we found that 
PIT1-lineage tumors were relatively similar, and the other 
non-PIT1-lineage tumors were also similar. However, 
there was not high degree of similarity between these two 
groups (Fig.  2c). To better represent the difference and 
commonality of PitNETs, therefore, we defined PIT1-
lineage PitNETs as PIT1-positive pituitary tumors and 
the other non-PIT1-lineage PitNETs as PIT1-negative 
tumors for the following analysis.

By unsupervised clustering, the tumor cells and the 
major micro-environmental cell populations could be 
readily separated by a few typical marker genes. We 
observed that cell-types of immune cell and stromal cell 
were shared by both PIT1 positive and negative tumors, 
including fibroblasts (T15), endothelial cells (T16), and 
immune cells (T17, T18) (Fig. 2d, e). The tumor cells were 
largely distinguished according to hormone-encoded 
genes: the cells with high expression of only somatotro-
pin (T01, T02), high expression of only prolactin (T03, 
T04), and high expression of both hormones (T05, T06) 
were found in PIT1-positive tumors, while the cells with 
high expression of gonadotropin (T11) and melanocortin 
(T12) were found in PIT1-negative tumors (Fig.  2e, f ). 
We also discovered two interesting clusters of PIT1-nega-
tive tumors (T09, T10): the two clusters merely expressed 
hormone-encoding genes (POMC, LHB, FSHB) but 
highly expressed GZMK and TBX19 in cluster T09 and 
SST in cluster T10. Compared to the previously estab-
lished normal reference, the proportion of epithelial cells 
was significantly higher in PIT1, SF1, and TPIT lineage 

tumors, which suggested possible abnormal proliferation 
of tumor cells (Fig. 2g).

Analysis of the PIT1‑positive pituitary tumor cells
In this section, we focused on the tumor cells from the 
PIT1-positive pituitary tumors. Based on the expression 
of GH1 and PRL, we observed that most cells in normal 
samples expressed both genes (Fig.  3a). Many tumor 
cases, however, only expressed one of these two hor-
mone-encoding genes. Samples P1T and P2T, for exam-
ple, mainly expressed GH1 but few PRL, while samples 
P4T, P21T, and P23T strongly expressed PRL but few 
GH1 (Fig. 3a). These results suggested that the epithelial 
cells in PIT1-positive tumors were altered to differenti-
ate in only one direction in these tumors. We also found 
that the cells expressing both GH1 and PRL had differ-
ent expression patterns between the normal and tumor 
samples. In normal samples, the majority of these cells 
lowly expressed the two genes (low vs high as 30.8% vs 
5.9%), whereas the cells in tumor samples tended to 
highly express both genes (low vs high as 4.3% vs 26.0%) 
(Fig. 3b). Transmission electron microscopy experiments 
confirmed the existence of both somatotropin and pro-
lactin particles in the same tumor cells [45] (Additional 
file 1: Figure S5).

Our analysis revealed that PIT1-positive pituitary 
tumors exhibited strong inter-tumor heterogeneity simi-
lar to other malignant tumors, despite their non-aggres-
sive nature and hormone-oriented classification rules. 
The majority of tumor cell clusters were predominantly 
composed of only one or two tumor samples (Fig.  3c). 
The differentially expressed markers among the clusters 
suggested that the heterogeneity mainly came from the 
hormone-encoding genes and their regulators (Fig.  3d). 
Except for these genes, we also found some differentially 
enriched functional signatures by gene set enrichment 
analysis (GSEA), such as “oxidative phosphorylation” for 
T01 (ATP5F1D, CHCHD10, NDUFS5) and “response to 
type I interferon” (IFIT1, IFIT3, IFITM3) for T08 (Fig. 3e, 
f ).

Analysis of the PIT1‑negative pituitary tumor cells
For the epithelial cells from non-PIT1-lineage PitNETs, 
we identified four major clusters (Fig.  4a). Two clusters 
highly expressed hormone-encoding genes: cluster T11 
for FSHB/LHB and cluster T12 for POMC, while the 
other two clusters (T09, T10) only weakly expressed one 
hormone-encoding gene: POMC (Fig.  4a). It is known 
that TBX19 (T-box transcription factor 19, TPIT) and 
NEUROD1 (neuronal differentiation 1) are key tran-
scription factor genes for the lineage specification of the 
POMC expressing cells [46–48]. Both genes were highly 
expressed in cluster T09 (Fig.  4a), indicating that this 
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cluster was related to a subtype of corticotroph tumor. 
The multiplex immunofluorescence staining of GZMK 
in TPIT-lineage tumor cells also validate the existence 

of this cluster (Fig.  4b). Of note, the co-expression per 
cell quantified by immunofluorescence staining is pretty 
close to the co-expression rate calculated by scRNA-seq 

Fig. 2 Single-cell landscape of PitNET samples. a Matrix plot showing mean expression of known markers for each tumor sample. Samples are 
arranged by the classification of PitNETs. b UMAP plot showing the distribution of pseudo-bulk expression from all samples. c Boxplot showing 
pairwise similarities between pseudo-bulk expression profiles from different kinds of samples. The dashed line represents the mean correlation 
among all PitNET samples. ***P < 0.001, Student’s t test. d UMAP plot characterizing clusters of all cells from tumor samples. Upper left: UMAP plot 
labeled by the sample source. Upper right: UMAP plot labeled by all clusters. Lower left: UMAP plot of only epithelial cells in PIT1-positive samples. 
Lower right: UMAP plot of only epithelial cells in PIT1-negative samples. e The proportion of cells from four types of PitNETs for each cluster. f Bubble 
heatmap showing the characteristic marker genes of each cluster. g Boxplot showing the proportion of major cell types across different kinds 
of sample. *P < 0.05, **P < 0.01, Wilcoxon rank sum test. PIT1, PIT1-lineage PitNETs; SF1, SF1-lineage PitNETs; TPIT, TPIT-lineage PitNETs; NCT, null cell 
tumor
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data (14.10% and 15.62%, respectively). Furthermore, 
two recent studies [19, 20] have also shown GZMK being 
one of the top DEGs in TPIT-lineage PitNETs. Taken 
together, these findings suggested a subpopulation with 
high expression of GZMK in corticotroph tumors.

Interestingly, cluster T12 exhibited high expression 
levels of POMC but low expression of the two transcrip-
tion factors of corticotroph tumor, in contrast to cluster 
T09. Therefore, we utilized RNA velocity to examine the 
relationship between clusters T09 and T12, and the result 
showed that cluster T09 could be a non-functional degra-
dation of cluster T12 (Fig. 4c). This revealed the possible 

mechanism of tumor formation of silent corticotroph 
tumor, a type of high risk PitNETs [49].

Cluster T10 barely expressed hormone-encoding genes, 
and was marked by SST (a growth hormone release-
inhibiting factor) and SAA2 (a potential biomarker for 
certain tumors). It suggested that this cluster could be a 
subtype of null cell tumor (Fig. 4a).

The GSEA analysis found a significant enrichment of 
“response to type I interferon” in cluster T12 over the 
other clusters (Fig.  4d), marked by the expression of 
IFI27, IFI6, IRF1, and IFIT3 (Fig.  4e). Furthermore, we 
selected specific genes within this pathway to compare 

Fig. 3 PIT1-positive tumor epithelial cells. a The proportion of cells with different PRL and GH1 expression for each sample. b Scatter plots showing 
the expression relationship between PRL and GH1 in normal and tumor cells. c The proportion of cells from PIT1-positive samples for each cluster. d 
Heatmap showing the expression of differentially expressed genes in each cluster. e GSEA plots showing different pathways enriched in clusters T01 
and T08. f Bubble heatmap showing the corresponding pathway marker genes of each cluster
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differences between PIT1-positive and PIT1-negative 
tumors. Our analysis revealed that HLA class I genes 
(HLA-A, HLA-B, HLA-C) were highly expressed in all 
clusters of PIT1-positive tumors and cluster T12 of 
PIT1-negative tumors (Fig. 4f ). This might suggest more 
active endogenous antigen-presentation in PIT1 lineage 
PitNETs.

Characterization of tumor‑associated immune cells 
and stromal cells
To investigate the microenvironment of PitNETs, we re-
performed unsupervised clustering on 3335 immune 
cells and 3429 stromal cells from all normal and tumor 
samples. We identified 10 and 4 clusters for immune 

cells and stromal cells, respectively (Fig. 5a, b). Based on 
known markers, the immune cell clusters were annotated 
as T cells (I01), NK cells (I02), monocyte-like cells (I03 
with CD14-positive, I04 with CD16-positive), dendritic 
cells (plasmacytoid dendritic cell like I05, conventional 
dendritic cell like I06), and macrophages (I07-I10). The 
stromal cells included endothelial cells (S01), fibroblasts 
(S02), smooth muscle cells (S03), and pericytes (S04).

Most immune cell clusters (I01-I08) were shared in 
both normal and tumor tissues, whereas 2 clusters of 
macrophages (I09, I10) were significantly enriched in 
the tumors, revealing the existence of tumor-associated 
macrophages (TAMs) in the PitNETs (Fig.  5c). Further 
comparisons across different types of PitNETs showed 

Fig. 4 PIT1-negative tumor epithelial cells. a Heatmap showing the expression of differentially expressed genes in each cluster. b Multiplex 
immunohistochemical staining of GZMK (red) and TPIT (yellow) in corticotroph tumors. The thickness of the sections is 4 μm. Scale bar: 20 μm. c 
Inferred developmental trajectory of clusters T09 and T12 by RNA velocity. d GSEA plot showing the pathway enriched in cluster T12 over other 
clusters. e Bubble heatmap showing the pathway marker genes of each cluster. f Violin plots showing the expression of response to type I 
interferon pathway marker genes of each cluster
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that T cells (I01) tended to be enriched in PIT1-lineage 
and TPIT-lineage tumors, while NK cells (I02) were more 
likely to be highly enriched only in PIT1-lineage PitNETs 
(Additional file 1: Figure S6). It was also notable to found 
that one group of TAMs (I10) differentially distributed 

across different types of PitNETs (Additional file 1: Figure 
S6).

Next, we analyzed the differentiation trajectory and 
molecular features of the tumor-enriched clusters of 
macrophages (I08-I10). The RNA velocity result showed 

Fig. 5 Characterization of tumor-infiltrating immune cells and stromal cells in normal and PitNET samples. a UMAP plot showing clusters 
of immune cells and stromal cells from all samples. b Bubble heatmap showing the characteristic marker genes of each cluster. c Boxplots showing 
the changes of immune cell clusters between normal and tumor samples. d Inferred developmental trajectory of tumor-enriched myeloid cell types 
by RNA velocity. e Volcano plot showing differentially expressed genes between two tumor-enriched macrophage clusters. f Boxplots showing 
comparison of M1 and M2 phenotype signature across indicated macrophage clusters. Cluster filled in red has higher mean expression. Student’s 
t test. g Comparison of selected T cell function signatures between normal and tumor samples. h Boxplots showing the changes of stromal cell 
clusters between normal and tumor samples. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, Student’s t test
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that cluster I08 had the transition tendency to cluster 
I09 and cluster I10 (Fig.  5d), implying that these TAMs 
could be two differentiation endpoints of macrophages in 
PitNETs. Highly expressed genes in cluster I09 included 
HLA-DQA2, an HLA class II gene for exogenous antigen 
presentation, and CXCL3, a chemokine family member 
gene for the migration and adhesion of monocytes. By 
contrast, highly expressed genes in cluster I10 included 
multiple known pro-tumor markers in macrophages, 
such as TREM2, CX3CR1, and SPP1 (Fig. 5e). Moreover, 
cluster I09 had significantly higher M2 phenotype signa-
ture, while cluster I10 had higher M1 phenotype signa-
ture (Fig. 5f ).

We also characterized the functions of T cells based 
on the curated gene signatures from the recent study 
[31] and found significantly higher signature of stress 
response, glycolysis, fatty acid metabolism, and oxidative 
phosphorylation in PitNETs (Fig.  5g, Additional file  1: 
Figure S7). This observation implied that PitNETs might 
develop with resistance to immunotherapy [31]. In addi-
tion, we briefly analyzed the difference of cell–cell com-
munications between PitNETs and normal samples. As a 
recent work has reported decreased cell–cell communi-
cation from “benign” to “malignant” PIT1-positive pitui-
tary tumor [43], it is interesting to further discover that 
both the number and strength of cellular interactions 
are greatly lower in the PitNETs against normal tissues 
(Additional file  1: Figure S8a). Nevertheless, one group 
of TAMs (I09) still showed a more active communica-
tion with all immune and stromal subpopulations in Pit-
NETs (Additional file 1: Figure S8b). In stromal cells, the 
pericytes accounted for a significantly larger proportion 
in tumor than the normal tissue, while the proportion 
of endothelial cells decreased in tumors (Fig. 5h). These 
changes implied that the PitNET cells could be shielded 
by increased pericytes coverage [50, 51]. Unlike other 
types of tumors, we found no significant difference in the 
proportion of fibroblasts between normal and tumor tis-
sues (Fig. 5h).

Analysis on the aggressive tumor cell sub‑population
Though most PitNETs are regarded as benign, the inter-
tumor clustering analysis identify a population of 1947 
“aggressive” tumor cells (T00) across all the tumor sam-
ples, with a median of 73.5 cells in 24 patients (Fig. 6a). 
Cluster T00 highly expressed several known aggressive 
tumor markers (such as PTTG1, TOP2A) in compari-
son with other tumor epithelial clusters (Fig.  6b) due 
to the higher proportion of cells in proliferation status 
(Additional file 1: Figure S9a, b). The abundance of clus-
ter T00 in PitNET tissue was also found to be positively 
correlated to Ki-67 index examined in clinical (Addi-
tional file  1: Figure S9c). The great majority of these 

differentially expressed genes are consistently up-regu-
lated in nearly all solid tumors according to the TCGA 
and GTEx pan-cancer dataset (Fig.  6b). To validate the 
malignancy of these cells, we additionally built a random 
forest-based machine learning model to learn the features 
to discriminate cluster T00 from other tumor cells. The 
trained model together with its corresponding learned 
gene features was then used to assess the aggressive 
degree of 13 pituitary tumor samples from an independ-
ent bulk gene expression dataset [41]. Three carcinoma 
samples in the bulk dataset were predicted as the most 
aggressive, and the other five invasive adenomas were 
also predicted to rank relatively higher than non-invasive 
samples in terms of the probability of being aggressive 
(Fig. 6c). Such consistency of our model prediction with 
the clinical diagnosis indicated that this cluster of tumor 
cells had the characteristic of malignancy.

To further elucidate the roles of up-regulated genes 
identified within this cluster, we focused on two specific 
genes, PBK and GGH. While these genes are established 
as biomarkers in a variety of tumor types [52, 53], their 
functional significance in PitNETs remains understudied. 
Through rigorous functional validations, we observed 
that both GGH and PBK significantly inhibited pitui-
tary tumor cell apoptosis and enhanced cell proliferation 
(Fig.  6d, Additional file  1: Figure S10). Notably, further 
transwell experiments demonstrated that PBK also signif-
icantly increased the migration of GH3 pituitary tumor 
cells, implying the potential role in facilitating tumor cell 
invasiveness (Fig. 6e, f and Additional file 1: Figure S11). 
Moreover, we divided 50 clinical cases of PitNETs into 
two groups based on their PBK expressions. Patients with 
high PBK expression showed a prominent unfavorable 
prognosis than those with low PBK expression (Fig.  6g, 
Additional file  1: Figure S12). Taken together, these 
results provided further evidence for the malignancy 
nature of these commonly existing aggressive cells, and 
suggested potential prognostic value.

Discussion
PitNETs are one of the most common types of intrac-
ranial tumors which require thorough investigations on 
the transcriptomic features at single-cell level. In a pre-
vious study, Cui et  al. [19] have revealed the transcrip-
tomic heterogeneity of PitNETs using scRNA-seq and 
found several tumor-related genes. Another study car-
ried by Zhang et  al. [20] has leveraged scRNA-seq data 
from normal pituitary and different types of PitNETs 
to characterize the cell sub-populations from a novel 
view of differentiation status. It also identified multi-
ple differentiation-related markers and demonstrated 
their predictive value for the tumor recurrence. Our 
study also observed diverse tumor cell heterogeneity by 
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constructing a single-cell-resolution transcriptomic atlas 
of human normal pituitary and major types of PitNETs. It 
is an interesting finding that GZMK is highly expressed 

in a subpopulation of corticotroph tumor cells, and simi-
lar results could also be observed in the previous stud-
ies [19, 20]. Trajectory inference implies new mechanism 

Fig. 6 Aggressive tumor cell sub-populations. a The proportion of cells from each tumor sample for cluster T00. b Heatmap showing the highly 
expressed genes of cluster T00 in scRNA-seq data (left) and pan-cancer RNA-Seq data (right). MKI67 in blue serves as a selected differential 
marker for comparison, though it does not rank at the top. The fold change stands for tumors against adjacent normal tissues in TCGA. c The 
predicted aggressive degrees of the bulk pituitary tumor dataset by the random forest model. The left color panel stands for the clinical diagnosis 
of the samples. d Functional analyses by over-expressing and siRNA knockdown of GGH and PBK. The top panel stands for cell proliferation 
and the bottom panel for apoptosis. *P < 0.05, ***P < 0.001, ns, not significant, Student’s t test or one-way ANOVA. e, f Transwell migration analyses 
showed that PBK knockdown/overexpression would inhibited/promoted cell migration in GH3 cells, respectively. Left panel: representative images 
of transwell migration assay (scale bar: 100 μm). Right panel: quantitative analysis in different groups. **P < 0.01, ***P < 0.001. Student’s t test 
or one-way ANOVA. g Progression-free survival curves of PitNET cases with low (RNAscope counting <  = 50) and high (RNAscope counting > 50) PBK 
expression. Log-rank test
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for the initialization of this tumor cellular subpopula-
tion. The molecular characteristics of these corticotroph 
tumor cells require further investigations.

Apart from depicting tumor cell heterogeneity, our 
comprehensive analysis on immune cell subpopula-
tions, function, and cellular interactions enables a more 
in-depth understanding of TME in PitNETs. We did not 
observe much immune infiltration in our clinical Pit-
NET samples, and thereby no specific optimization of 
CD45 + cell sorting was performed at the beginning 
of our study, leading to a relatively limited number of 
immune cells captured. Nevertheless, major immune 
cell types are identified in the PitNET microenviron-
ment. In contrast to the study by Lyu et  al. [43], which 
has reported tumor infiltrating lymphocytes being the 
most abundant immune subtype in PIT1-positive pitui-
tary tumors, our results show that myeloid cells account 
for the major proportion, including PIT1-lineage tumors.

Given that invasiveness is one of the most clinically 
important features, we have additionally performed 
detailed analyses about the invasive and non-invasive 
cases in our data. Only a slight difference is actually 
found in the composition of major cell types, T cell func-
tions, and cellular interactions. Part of the reason is that 
the pathological and transcriptomic characteristics of 
invasive PitNETs vary greatly among individuals. This 
requires a larger sample size of single-cell sequencing 
data to explore the mechanisms of PitNET invasion, and 
we expect future research to address this question.

The majority of PitNETs are benign, but a few cases 
have an aggressive phenotype, with tumor tissue invad-
ing cavernous sinuses and parasellar structures with 
poor surgical results, and resistant to medical treatment 
or radiotherapy [54–56]. We identify a cluster of aggres-
sive cells with potentially high proliferative capacity in all 
PitNET samples. These cells exhibit high expression level 
of multiple known pan-cancer proliferation markers. A 
random forest trained on these aggressive tumor cells can 
accurately distinguish pituitary carcinomas from adeno-
mas, indicating that the cluster could contribute to an 
enhanced malignancy of PitNETs. Analyzing features of 
these cells may provide an opportunity to explore novel 
therapeutic strategies, provisionally by a few computa-
tional methods [57–59]. Given that only a few malignant 
markers have been specifically proposed in PitNETs so 
far, our study identifies a new gene PBK which is associ-
ated with cell proliferation, migration, and patient prog-
nosis. Yet, other functional roles of PBK, such as cell 
invasion, still need more investigations. The finding of 
such aggressive tumor cells could open a way to study the 
cellular basis of malignant transformation of PitNETs.

In summary, our established single-cell atlas provides 
a systematical understanding of the inherent complexity 

of PitNETs and offers a refined perspective for molecular 
classification that complements traditional histopatho-
logical methods. Our study holds the potential to identify 
more signature genes which can serve as both candidate 
markers or novel therapeutic targets of different types of 
PitNETs. In the future, we plan to integrate such molecu-
lar findings with clinical outcomes to offer more transla-
tional insights for PitNETs.

Conclusions
We firstly constructed the single-cell atlas of human nor-
mal pituitary, including epithelial cells, immune cells, 
and stromal cells as well as their subtypes. Since there 
are few datasets of normal pituitary in current human 
single-cell database, this complete single-cell atlas pro-
vides a precious reference resource for the community. 
Moreover, we obtained scRNA-seq data from 24 clinical 
samples of PitNETs, covering the major types of PitNETs, 
and performed comprehensive analyses to understand 
the cellular heterogeneity of the tumor cells and tumor 
microenvironment. The inter-tumor analysis showed 
great heterogeneity in gene signatures, hormone produc-
tions, and functional pathways within epithelial cells in 
PitNETs. For immune cells, we identified two clusters of 
tumor-associated macrophages with distinct functional 
characteristics. We also discovered significantly higher 
activation of the stress response pathway of T cells in Pit-
NETs. While PitNETs are mostly benign in comparison 
with other solid tumors, it is important to unveil a com-
mon existence of aggressive tumor cells characterized by 
a set of malignant signature genes features in the studied 
samples. We conducted functional experiments to con-
firm the oncogenic role of selected up-regulated genes. 
The over-expression of PBK can promote both prolifera-
tion and migration capacity of PitNET cells, and it is also 
found to be associated with poor prognosis in PitNET 
patients. Our data together with the analyses could play 
a fundamental role in future research on human pitui-
tary and provide comprehensive understanding about the 
complexity and inherent heterogeneity within PitNETs.
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