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Abstract 

Background The impact of the gut microbiome on the initiation and intensity of immune-related adverse events 
(irAEs) prompted by immune checkpoint inhibitors (ICIs) is widely acknowledged. Nevertheless, there is inconsistency 
in the gut microbial associations with irAEs reported across various studies.

Methods We performed a comprehensive analysis leveraging a dataset that included published microbiome data 
(n = 317) and in-house generated data from 16S rRNA and shotgun metagenome samples of irAEs (n = 115). We uti-
lized a machine learning-based approach, specifically the Random Forest (RF) algorithm, to construct a microbiome-
based classifier capable of distinguishing between non-irAEs and irAEs. Additionally, we conducted a comprehensive 
analysis, integrating transcriptome and metagenome profiling, to explore potential underlying mechanisms.

Results We identified specific microbial species capable of distinguishing between patients experiencing irAEs 
and non-irAEs. The RF classifier, developed using 14 microbial features, demonstrated robust discriminatory power 
between non-irAEs and irAEs (AUC = 0.88). Moreover, the predictive score from our classifier exhibited significant 
discriminative capability for identifying non-irAEs in two independent cohorts. Our functional analysis revealed 
that the altered microbiome in non-irAEs was characterized by an increased menaquinone biosynthesis, accompa-
nied by elevated expression of rate-limiting enzymes menH and menC. Targeted metabolomics analysis further high-
lighted a notably higher abundance of menaquinone in the serum of patients who did not develop irAEs compared 
to the irAEs group.

Conclusions Our study underscores the potential of microbial biomarkers for predicting the onset of irAEs and high-
lights menaquinone, a metabolite derived from the microbiome community, as a possible selective therapeutic agent 
for modulating the occurrence of irAEs.
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Background
Immune checkpoint inhibitors (ICIs), contributing to 
durable remissions in a subset of cancer patients, have 
reshaped multiple cancer therapy paradigms over the 
past several decades [1, 2]. The traditional ICI drugs, 
including anti-cytotoxic T lymphocyte-associated anti-
gen 4 (CTLA-4) and other checkpoint inhibitors target-
ing the programmed death 1(PD-1)/programmed death 
ligand 1 (PD-L1) pathway, were approved for the treat-
ment of multiple cancers [3–5]. Although ICIs were 
confirmed to boost the tremendous clinical benefit of 
defense against cancer, they might bring adverse effects, 
collectively termed as immune-related adverse events 
(irAEs), that represented autoimmune effects and dam-
age on the normal tissues suffering misdirected over-
activation of the immune systems [6]. Common irAEs 
encroached on organs involving the skin (e.g., rash), the 
gastrointestinal tract (e.g., emesis or colitis), lungs (e.g., 
pneumonitis), heart (e.g., myocarditis), liver (e.g., hepa-
titis), and endocrine organs (e.g., autoimmune diabe-
tes), etc. [7]. These toxicities were important causes of 
treatment discontinuation and can debilitate long-term 
clinical responses and life quality [8]. Previous evidence 
demonstrated that patients who received anti-CTLA-4 
therapy suffered from a higher incidence of irAEs than 
ICIs targeting PD-1/PD-L1 [9]. Moreover, histologically 
pathologic features of anti-PD-1/PD-L1 therapy-related 
colitis were distinct from anti-CTLA-4 therapy [10]. 
These supported the idea that effective biomarkers for 
irAEs should be specific to the ICI agent used.

Strikingly, patients who experienced irAEs usually had 
a relatively improved progression-free survival (PFS) and 
overall survival (OS) compared with those who suffered 
none of irAEs [11, 12]. Therefore, the effective prevention 
and treatment of irAEs is a clinical paradox to maximize 
the utility of ICIs. Oncologists must weigh the risk of 
irAE onsets against the benefit of ICIs before prescrib-
ing ICI agents. Thus, intensive efforts were encouraged 
to identify potential biomarkers for the occurrence and 
severity of irAEs, thereby guiding the rational medica-
tions and surveillance strategies for high-risk patients 
allowing for earlier intervention [13].

Emergent studies have struggled to investigate the 
potential mechanisms and related strategies to recognize 
the patients who might be susceptible to suffering from 
irAEs. However, lack of scientific rigor and reproducibil-
ity, in concert with complex laboratory diagnosis and lim-
itative study scale, prevented comprehensive approaches 
to identify highly effective biomarkers of irAEs from 
becoming standard practice [14–17]. Accumulating evi-
dence provided insights that the gut microbiota could 
be leveraged for mounting antitumor efficacy with ICI 
therapy which might also influence the development of 

irAEs [18–25]. The baseline gut microbiota composition 
could serve as an important determinant of irAE onset 
[23, 25]. However, the present microbial traits on the 
baseline for discriminating susceptible optimates were 
inconsistent among studies [19], probably accounted for 
by the limited study size and discrepant treatment strat-
egy. Accordingly, integrated analysis with more microbi-
ome data was required for identifying effective microbial 
biomarkers for toxicity prediction.

Recent studies have also proposed gut microbiome-
based predictive models for ICI efficacy of specific 
diseases [26–29]. However, highly effective microbial bio-
markers for predicting the development of irAEs using 
more pooled data have been hardly proposed and are 
under investigation [13]. Developing potential microbial 
biomarkers for predicting the irAE occurrence prob-
abilities and discovering potential mechanisms driving 
checkpoint blockade toxicities will have important clini-
cal implications [6]. More specific therapeutic strategies 
could be available for identifying high-risk patients prior 
to treatment and thus supplying preventive methods to 
mitigate adverse effects.

Herein, a machine-learning algorithm was employed to 
uncover potentially predictive gut microbiota associated 
with irAEs, particularly in patients undergoing treatment 
with anti-PD-1/PD-L1 drugs. The composition of the 
fourteen gut microbes at the treatment baseline presents 
an intriguing and novel investigational avenue for pre-
dicting the incidence of irAEs, supported by a robustly 
validated model performance. Furthermore, our study 
provides new insights into preventing irAEs and uncov-
ers potential mechanisms from a microbiological func-
tional perspective.

Methods
Public datasets retrieval and irAEs status definition
We extracted data from studies published on https:// 
pubmed. ncbi. nlm. nih. gov/ that included 16S rRNA 
sequencing data from patients with information on irAEs 
results and the gut microbiome at the treatment base-
line. The data specifically encompassed pre-treatment or 
initial on-treatment samples as identified in the original 
papers, representing the gut microbiome at the treat-
ment baseline. All sample identifiers and available meta-
data are provided in the Additional file 1: Table S1. Raw 
sequencing data of these studies were downloaded using 
the SRA toolkit (V.2.9.1) from Sequence Read Archive 
(SRA) using the following identifiers: PRJNA665109 
(https:// www. ncbi. nlm. nih. gov/ biopr oject/ PRJNA 
665109) for Cascone et  al. [30], PRJNA687361 (https:// 
www. ncbi. nlm. nih. gov/ biopr oject/ PRJNA 687361) for 
Chau et  al. [31], PRJNA606061 (https:// www. ncbi. nlm. 
nih. gov/ biopr oject/ PRJNA 606061) for Hakozaki et  al. 

https://pubmed.ncbi.nlm.nih.gov/
https://pubmed.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA665109
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA665109
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA687361
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA687361
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA606061
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA606061
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[32], PRJEB48780 (https:// www. ncbi. nlm. nih. gov/ biopr 
oject/ PRJEB 48780) for Zhang et  al. [33], PRJNA762360 
(https:// www. ncbi. nlm. nih. gov/ biopr oject/ PRJNA 
762360) for McCulloch et al. [20], PRJNA379764 (https:// 
www. ncbi. nlm. nih. gov/ biopr oject/ PRJNA 379764) for 
Chaput et al. [34], and PRJNA302832 (https:// www. ncbi. 
nlm. nih. gov/ biopr oject/ PRJNA 302832) for Dubin et  al. 
[35]. A summary outlining the clinical characteristics 
of the studies under review is provided in Additional 
file  1: Table  S2. The above studies were selected on 
the basis of the availability of sequencing data in pub-
lic databases at the time when this study was initiated 
(Accessed Aug. 2022).

For the further meta-analysis, only three studies on 
a larger scale with more than 50 patients using anti-
PD-1/PD-L1 drugs were included as the training data-
sets for model construction. Notably, we obtained the 
metadata of Hakozaki et  al. [32] from the supplemen-
tary materials of another meta-analysis carried out by 
Shaikh et  al. [36]. Only the baseline gut microbiome 
data defined by the original paper were included for 
the following analysis, and notably McCulloch et  al. 
used a landmark timepoint to identify the baseline gut 
microbiome [20]. The irAEs status was evaluated using 
the original metadata and dichotomized to irAEs and 
non-irAEs, and irAEs were defined once the patients 
were recorded with any irAEs in the original paper and 
vice versa. Colon RNA sequencing data and 16S rRNA 
amplicon sequencing data from an independent cohort 
carried out by Baruch et  al. [37] with accession num-
bers GSE162436 (https:// www. ncbi. nlm. nih. gov/ biopr 
oject/? term= GSE16 2436) and PRJNA678737 (https:// 
www. ncbi. nlm. nih. gov/ biopr oject/ PRJNA 678737) 
were utilized to speculate the potential mechanism for 
microbial traits of the model [37].

Patient recruitment and sample collection
Baseline stool samples were collected from patients with 
pan-cancer who were initiated with anti-PD-1/PD-L1 
drugs from Renji Hospital, Shanghai Jiao Tong Univer-
sity School of Medicine (SH Cohort, N = 65) and Xuzhou 
Central Hospital (JS Cohort, N = 50) (Table 1, Additional 
file  1: Table  S3). Patient recruitment and sample collec-
tion were approved by the Medical Ethics Committee 
of Renji Hospital, Shanghai Jiao Tong University School 
of Medicine (ID: LY2020-067-B)  and Xuzhou Central 
Hospital of Xuzhou Medical University  (ID:XZXY-
LJ-20200110-090). Written informed consent was 
obtained from each participant. This study protocol is 
in accordance with the approved World Medical Asso-
ciation Declaration of Helsinki (2008) and the Belmont 
Report. Treatment responses were evaluated through 
the Response Evaluation Criteria in Solid Tumors 1.1 
(RECIST 1.1) [38] as determined in the original studies. 
Patients with complete response, partial response, or/
and stable disease lasting more than 6  months, accord-
ing to RECIST 1.1 criteria, were classified as responders, 
whereas patients with progressive disease or stable dis-
ease lasting less than 6  months were classified as non-
responders. Immunotherapy-related adverse events 
were evaluated and identified retrospectively based on 
the Common Terminology Criteria for Adverse Events 
(CTCAE), version 5.0. Patients were recruited for ini-
tial diagnosis and had never received any ICI treatment 
before fecal sample collection. The stool was collected in 
fecal collection tubes and was stored at − 80 °C. We col-
lected fresh blood samples from two groups of patients: 
those with confirmed irAEs (N = 10) and those without 
irAEs (N = 10) who had undergone anti-PD-1/PD-L1 
blockade therapy. Serum was extracted by centrifugation 
at 3000 rpm for 10 min and stored at − 80 °C.

Table 1 Clinical features of the studies employed in this investigation

Note: Each study is indicated by first author and year of publication. aStudies utilized for reanalyzing the differential microbes between irAEs and non-irAEs. bStudies 
utilized for constructing predictive microbial Random Forest classifier for anti-PD-1/PD-L1-associated irAEs. cStudies utilized as external validation. PD-1 programmed 
death 1, PD-L1 programmed death ligand 1, CTLA-4 cytotoxic T lymphocyte-associated antigen 4, NE/- not evaluated/not available

Study Tumor type Treatment Group BMI(%) Sex
F(%)/M(%)

Chau et al. [31]a Lung cancer anti-PD1 irAEs (n = 16); non-irAEs (n = 12) - - -

Hakozaki et al. [32]a,b Lung cancer anti-PD1/PD-L1 irAEs (n = 16); non-irAEs (n = 54) 69.71 ± 9.58 - 42.3/57.7

Zhang et al. [33]a,b Lung cancer anti-PD1/PD-L1 irAEs (n = 26); non-irAEs (n = 43) 65.61 ± 9.56  < 25(47.1); ≥ 25(45.7); NE(7.1) 29.0/71.0

McCulloch et al. [20]a,b Melanoma anti-PD-1 irAEs (n = 35); non-irAEs (n = 16) 67.36 ± 12.48  < 25(19.6); ≥ 25(80.4) 35.3/64.7

Chaput et al. [34]a Melanoma anti-CTLA-4 irAEs (n = 7); non-irAEs (n = 19) - - -

Dubin et al.a Melanoma anti-CTLA-4 irAEs (n = 10); non-irAEs (n = 24) - - -

Cascone et al. Lung cancer Combined irAEs (n = 20); non-irAEs (n = 19) - - -

SH Cohort (in-house)c Multi-type anti-PD1/PD-L1 irAEs (n = 23); non-irAEs (n = 42) 63.57 ± 12.07  > 25 (15.4); ≤ 25(84.6) 26.2/73.8

JS Cohort (in-house)c Multi-type anti-PD1/PD-L1 irAEs (n = 16); non-irAEs (n = 34) 61.94 ± 13.17  > 25(20); ≤ 25(78); NE(2) 22.0/78.0

https://www.ncbi.nlm.nih.gov/bioproject/PRJEB48780
https://www.ncbi.nlm.nih.gov/bioproject/PRJEB48780
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA762360
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA762360
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA379764
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA379764
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA302832
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA302832
https://www.ncbi.nlm.nih.gov/bioproject/?term=GSE162436
https://www.ncbi.nlm.nih.gov/bioproject/?term=GSE162436
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA678737
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA678737
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Data preprocessing
The 16S rRNA sequencing data were analyzed using 
QIIME2 (V.2022.2) [39], a plugin-based platform for 
microbiome analysis. DADA2 (V.2022.1) [40] software, 
wrapped in QIIME2, was used to filter out sequenc-
ing reads with quality score Q > 25 and denoise reads 
into ASVs, resulting in feature tables and representative 
sequences. Taxonomy classification was assigned based 
on the naïve Bayes classifier using the classify-sklearn 
package against the RDP Classifier_16S_V18 reference 
sequences [41]. ASVs that could not be precisely anno-
tated to species were reassigned to ones having the most 
similar sequences in the same genus (or family) using 
NCBI Blast. Subsequently, representative sequences were 
aligned and merged within the same annotation on spe-
cies using the function tax_glom() in phyloseq R package. 
Then, the feature tables were converted to relative abun-
dance tables.

Raw FASTQ reads of shotgun metagenomic data 
underwent quality filtering using fastp with default 
parameters. Using mOTUs3 (Marker gene-based opera-
tional taxonomic units) [42] with default parameters, 
we profiled the microbial composition for each sam-
ple and counted the number of reads mapping to given 
phylogenetic genes. Each marker gene is given a specific 
operational taxonomic unit (OTU) acting as resolutive 
microbes. The output files were loaded into R and pack-
aged into a phyloseq object for ease of analysis. The rela-
tive abundance values were calculated and converted for 
the following analysis.

The raw count data for transcriptomic analyses on 
normal colon tissue [37] were downloaded from GEO 
database repository (https:// ftp. ncbi. nlm. nih. gov/ geo/ 
series/ GSE16 2nnn/ GSE16 2436/ suppl/ GSE16 2436_ stran 
ded_ rev_ CPM2_ gut_ TMM_ counts. xlsx). Output files 
were further analyzed with R4.1.2 software. Differentially 
expressed genes were filtered by calculating the false dis-
covery rate less than 0.5 (FDR < 0. 5) using the DESeq2 
package [43] and visualized using ggplot2 in R. The Clus-
terProfiler package was utilized for performing Gene Set 
Enrichment Analysis (GSEA). Differential pathways from 
the Kyoto Encyclopedia of Genes and Genomes (KEGG) 
database with FDR less than 0.05 were finally visualized.

Confounder analysis and covariate evaluation
We employed an ANOVA-like analysis referring to a 
previous study [27] to assess the impact of potential 
confounding variables and the presence of a disease. 
The total variance of a specific amplicon sequence vari-
ant (ASV) was compared to the variance explained by 
irAEs status (irAEs and non-irAEs) and the variance by 
confounding factors (age, BMI, sex, antibiotics, drug 
types, tumor staging, patients PD-L1 status, and study). 

Variance calculations were performed on ranks to 
account for non-Gaussian distribution of microbiome 
abundance data. Potential confounding factors with con-
tinuous values were transformed into discrete variables 
either as quartiles or in the case of BMI as groups of lean 
(> 25), overweight (25–30), and obese (> 30) based on 
conventional cutoffs, PD-L1 status were transformed into 
discrete variables with the cutoff value of 50%. To assess 
whether different tumor types influence the relationship 
between gut bacteria and irAEs, we employed a method 
known as aPCoA (covariate-adjusted principal coordi-
nates analysis) [44].

Meta‑analysis of important abundant species
Considering the “study” accounted for the largest con-
founder, we used the MMUPHin (Meta-analysis Methods 
with a Uniform Pipeline for Heterogeneity in microbi-
ome studies) [45] for microbial community batch correc-
tion on the confounder factor “study,” a new algorithm 
extending the batch correction method developed for 
gene expression data in ComBat with an additional com-
ponent to allow for the zero-inflated nature of microbial 
abundance data. The significance of differential abun-
dance was tested on a single ASV using a two-sided 
blocked Wilcoxon rank-sum test implemented in the 
R (V.4.1.2) “coin” package (To identify more potential 
microbial biomarkers, P values < 0.1 were considered to 
bring into the further analysis). Confounder with a high 
variance explanation was also defined as a block to adjust 
the batch effects in the differential analysis.

Model construction and feature selection
The integrated anti-PD-1/PD-L1 cohort was utilized as 
the training subsample (n = 190), for which we developed 
the prediction algorithm. The features used for model 
building consist of important differential features (P < 0.1) 
as well as patient metadata features including age and 
sex. For the sake of incomplete data on the BMI, tumor 
stage, etc., we did not integrate other metadata for model 
construction.

Subsequently, the Random Forest (RF) models were 
built with 501 estimator trees and each tree had 10% of 
the total features. Then, an Iterative Feature Elimination 
(IFE) step was used to filter features and optimize the 
performance of subsequent RF models. The top features 
from the top-performing model were selected as “impor-
tant features”. The permutation-based importance (func-
tion Permutation Importance) from the ELI5 Python 
package (https:// eli5. readt hedocs. io.) was finally utilized 
to compute the feature importance for models.

We used abundance profiles including the most 
important abundant microbial species and assessed 
how well classifiers trained in cross-validation on one 

https://ftp.ncbi.nlm.nih.gov/geo/series/GSE162nnn/GSE162436/suppl/GSE162436_stranded_rev_CPM2_gut_TMM_counts.xlsx
https://ftp.ncbi.nlm.nih.gov/geo/series/GSE162nnn/GSE162436/suppl/GSE162436_stranded_rev_CPM2_gut_TMM_counts.xlsx
https://ftp.ncbi.nlm.nih.gov/geo/series/GSE162nnn/GSE162436/suppl/GSE162436_stranded_rev_CPM2_gut_TMM_counts.xlsx
https://eli5.readthedocs.io
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study generalize in evaluations on the other two stud-
ies (termed as study-to-study transfer of classifier). And 
we also further assessed if including data from all but 
one study in model training improves prediction on the 
remaining hold-out study (also termed as leave-one-
study-out (LOSO) validation).

Model evaluation and external validation
Using the important microbiome features, we built RF 
Classifiers in the scikit-learn (V.0.19.2) package with 
stratified tenfold cross-validation to distinguish the 
patients with irAEs or non-irAEs. The receiver operat-
ing characteristic (ROC) curves and the area under the 
curve (AUC) were performed for model performance 
evaluation. To calculate the probability of irAEs onsets, 
we developed a robust score for the RF classifier with 
input microbial features (hereafter called RF score). The 
RF score for both the training and the validation datasets 
were calculated using function predict_proba() in the 
scikit-learn (V.0.19.2) package. The optimal thresholds of 
the RF score, which discriminate irAEs and non-irAEs, 
were computed by using Youden’s index method in the 
training set with the pROC package. The higher RF score 
indicated a lower probability for patients developing 
irAEs. Model predictive performance was measured by 
multi-metrics including sensitivity, specificity, accuracy, 
positive predictive value (PPV), and negative predic-
tive value (NPV). Model specificity evaluation was con-
ducted between irAEs and response using the Bootstrap 
Hypothesis testing.

Two additional cohorts, including the Shanghai Cohort 
(SH cohort, N = 65) and Jiangsu Cohort (JS cohort, 
N = 50) were used as independent cohorts for validation. 
The clinical information is demonstrated in Additional 
file 1: Table S3. RF scores for the validation datasets were 
calculated using the function predict_proba () in the 
scikit-learn (V.0.19.2) package. Then ROC curves and the 
AUC value for model performance evaluation were con-
ducted using the pROC function.

Functional profile analysis
To investigate the potential mechanisms of the func-
tions of our model species, PICRUSt2 (V.2.0.3) as previ-
ously published was utilized for predicting microbiome 
genome and function inferred from 16S rRNA sequences 
[46]. We collected the output results of PICRUSt2 predic-
tions based on several gene family databases by default, 
including KEGG orthologs (KOs), Enzyme Commission 
numbers (EC numbers), and MetaCyc pathway.

The HMP Unified Metabolic Analysis Network 2 
(HUMAnN2) tool [47] was further utilized for profil-
ing the microbial function from shotgun metagenomic 
data. Genes/proteins and pathways abundances of the 

microbiota between samples were quantified using 
UniRef50 gene clusters in conjunction with MetaCyc 
databases.

DNA extraction, 16S rRNA gene sequencing, and shotgun 
metagenome sequencing
DNA was extracted from fecal samples using HiPure 
Stool DNA Mini Kit (Magen, D314103, China) following 
the manufacturer’s instructions. The full-length primer 
sequences designed for amplifying the V3-V4 hyper-
variable region of 16S rRNA gene including Illumina 
adaptors were as follows: forward: CCT ACG GGNGGC 
WGC AG, and reverse: GAC TAC HVGGG TAT CTA ATC 
C. Microbial genomic DNA was used to start the poly-
merase chain reaction (PCR) protocol. A volume of 1 μL 
of the PCR product was quantified using a fluorometer 
(Qubit, Invitrogen). After size verification, the librar-
ies were sequenced using a 2 × 250 pb paired-end run 
on a MiSeq sequencer, according to the manufacturer’s 
instructions (Illumina).

DNA for shotgun metagenome sequencing was 
extracted and quantified as above. DNA was then sheared 
to the desired insert size, and products were brought to 
50 μL using 1X VAHTS DNA Clean Beads. After end-
repreparation and adapter ligation, libraries are gener-
ated and run through 10–15 cycles of PCR with KAPA 
Hyper Prep Kit (Roche Sequencing Solutions, Pleasan-
ton, CA). The Qubit Fluorometer and the Agilent 2100 
Bioanalyzer were used for library quantification. Finally, 
libraries were sequenced on the Illumina Nova6000 on a 
2 × 150 bp paired-end run.

qRT‑PCR validation
Real-time qPCR to quantify the abundance and expres-
sion of the differential gene menH and menC was per-
formed on a subset of samples in the  Jiangsu Cohort 
(17non-irAEs and 11 irAEs). To quantify menC and 
menH genes relative to the total bacterial RNA/DNA in 
a sample, qPCR was performed in triplicates for the 16S 
rRNA and menC and menH genes, respectively. We uti-
lized primers based on a previous study [29] for menC 
and menH, along with standard primers for universal 
eubacteria 16S as in prior research [48]. Real-time PCR 
reactions were prepared with a final primer concentra-
tion of 0.5 μM in a 20-μl final reaction volume and then 
were performed with a SYBR Green qPCR Mix on a Ste-
pOnePlus real-time PCR system (Applied Biosystems). 
Cycling conditions were performed as described in the 
protocol. − ΔCt values were calculated as the difference 
between menC or menH and 16S Ct values. The signifi-
cance of the comparison between irAEs and non-irAEs 
samples was tested on the − ΔCt values using the Wil-
coxon test as confirmation of metagenomic enrichment.
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Bacteria culture and supernatant collection
Parabacteroides merdae (PM, BNCC358131) and Lacto-
bacillus Salivarius (LS, BNCC194719) were purchased 
from BeNa Culture Collection (BNCC, Shanghai, China). 
PM was cultured overnight at 37  °C under anaerobic 
conditions (DG250, Don Whitley Scientific, West York-
shire, UK) in brain heart infusion (BHI) broth with the 
protocol. The LS was cultured in deMan Rogosa Sharpe 
(MRS) medium overnight at 37 °C in shake cultivation at 
220 rpm/min. Bacteria were cultured until  OD6001.0–1.2 
and cultures were collected and stored as 0.5–1-ml ali-
quots at − 80  °C until used for the quantification of 
menaquinone.

High‑performance liquid chromatography analysis
The HPLC–MS/MS analysis followed the methodology 
described in previous studies [49, 50]. Separation was 
accomplished on the Zorbax Eclipse Plus C18 column 
(2.1 × 50  mm, 1.8  µm, 600  bar). Elution was carried out 
with the following solvent system: 0.1% formic acid in 
water (Mobile Phase A) and acetonitrile plus 0.1% formic 
acid (Mobile Phase B). The flow rate was set at 0.5  ml/
min, employing an isocratic elution program with Pump 

A at 0% and Pump B at 100% for 10 min. Sample injec-
tion was carried out using an automatic sampler with a 
sample tray temperature maintained at 4  °C, and 20 μL 
of the sample was utilized for analysis. For quantifying 
menaquinone, Menaquinone-6 (MK-6) (Macklin, CAS 
#84–81-1) was employed as the standard.

Results
Characteristics of studies involved in analyzing 
irAEs‑associated gut microbiomes
Based on the availability of baseline16S rRNA sequenc-
ing data and detailed population clinical information, 
we finally included seven studies for the following analy-
sis (Table  1). Totally, we collected 218 patients receiv-
ing anti-PD-1/PD-L1 immunotherapy from 4 studies, 60 
patients receiving anti-CTLA-4 immunotherapy from 2 
studies, and 39 patients receiving combined anti-PD-1/
PD-L1 and anti-CTLA-4 immunotherapy (Fig.  1A). We 
also observed there is no statistically significant asso-
ciation between adverse reaction outcomes and tumor 
types (P-value = 0.1523, Additional file  2: Fig.S1B). Sub-
sequently, we waived the studies conducted by Chau 
et  al. for the anti-PD-1/PD-L1-associated irAEs model 
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construction for the sake of its small scale (n = 23). The 
detailed demographic information and study character-
istics are demonstrated in Table 1 and Additional file 1: 
Table.S2. Similar to other classic sequencing data from 
human gut microbiota [51], Firmicutes and Bacteroidetes 
represented the two most dominant bacterial phyla of the 
total community among all studies. However, the relative 
abundance of microbiomes in the phylum level seemed 
to vary from different studies and irAEs status. Previous 
studies reported an elevated presence of Firmicutes was 
linked to a greater likelihood of experiencing irAEs, while 
the phyla Bacteroidetes and Proteobacteria tended to be 
more abundant in individuals without irAEs [25, 52]. In 
this study, despite no significant statistical difference, we 
found that Firmicutes appeared to be higher in patients 
with irAEs (median value, 0.316 vs. 0.273) while Bacteroi-
detes seemed to be lower in patients with irAEs (median 
value, 0.151 vs. 0.229) as compared to non-irAEs (Fig. 1B 
and C).

Compositional differences in the microbiome 
between irAEs and non‑irAEs under different ICIs
Several lines of evidence support the hypothesis that anti-
CTLA-4 and anti-PD-1/PD-L1 therapy are associated 
with distinct microbial biomarkers [15, 53]. Hence, we 
tried to figure out differential gut microbiome for distin-
guishing irAEs and non-irAEs with anti-PD-1/PD-L1 and 
anti-CTLA-4 treatments, respectively. Several species, 
such as Bacteroides xylanisolvens, Phocaeicola plebeius 
and Prevotella copri, were found to enrich in non-irAEs 
in the pooled anti-CTLA-4 cohorts (Fig. 1D, Additional 
file  1: Table.S4). Strikingly, the integrated anti-PD-1/
PD-L1 datasets demonstrated quite different species for 
distinguishing irAEs and non-irAEs (Fig.  1E, Additional 
file  1: Table.S5). The abundance of species including 
Fusobacterium mortiferum and Lactobacillus salivarius 
was significantly enriched in non-irAEs (Fig. 1E).

Potential confounders adjustment and baseline gut 
microbial composition evaluation for distinguishing 
anti‑PD‑1/PD‑L1 immunotherapy‑associated irAEs 
and non‑irAEs
To create a gut microbiome signature for predicting the 
occurrence of irAEs, we finally incorporated three stud-
ies with anti-PD-1/PD-L1 immunotherapy for the meta-
analysis in consideration of the integrity of demographic 
information and sample size. Since both technical and 
biological confounders might exist in different studies, 
we calculated the variances explained by irAEs status 
and other clinical variates for each species to quantify the 
potential confounder effects (See Supplementary Mate-
rials and Methods). Remarkably, the variance of species 
explained by “Study” was found to be more predominant 

than other confounders (Fig.  2A, Additional file  2: Fig.
S2). On the phylum level, Firmicutes and Bacteroidetes, 
accounting for the top two of the most predominant 
phyla, showed more variation in their ratios among stud-
ies (Fg.2B). Zhang et  al.’s study demonstrated a higher 
level of Bacteroidetes while Firmicutes is mostly com-
posed in the other two studies. Additionally, both the 
alpha diversity and beta diversity varied among different 
studies (P < 0.001, Fig. 2D, and Additional file 2: Fig.S1.C-
D). All above indicated that the factor “study” brought a 
great impact on gut microbial composition. Therefore, 
we treated “study” as a blocking factor for the adjustment 
of the batch effect in the further analysis and a two-sided 
blocked Wilcoxon rank-sum test was utilized to test the 
significance between non-irAEs and irAEs.

The baseline gut microbiome of irAEs was demon-
strated to be distinct from non-irAEs. The alpha diversity 
indexes including Fisher alpha and Richness were signifi-
cantly higher in non-irAEs (P < 0.01, Fig. 2C). The Shan-
non index and Simpson index had also a higher trend in 
the non-irAEs group. In addition, the beta diversity cal-
culated using Bray–Curtis distance was found to be sig-
nificantly different in irAEs and non-irAEs after pooling 
the data sets (P = 0.001, PERMANOVA, Fig. 2D), whereas 
no significant differences were found in other clinical fac-
tors such as age and gender (P > 0.05, PERMANOVA, 
Additional file 2: Fig.S2B-C). This indicated the baseline 
gut microbiome constitutes were different in irAEs and 
non-irAEs. Convincingly, a set of differential microbes 
more significantly explained by “irAEs status” could be 
identified.

To assess whether different tumor types influence the 
relationship between gut bacteria and irAEs, we initially 
presented the PCoA plot without considering tumor 
types. Subsequently, we applied the aPCoA algorithm to 
correct for tumor types as covariates. Our findings sug-
gest that there was no substantial alteration in the PCoA 
plots following correction for tumor types. Furthermore, 
the extent of variation explained by the PCoA experi-
enced only minimal changes before and after tumor type 
correction (Additional file  2: Fig.S1E-F). This indicated 
that gut microbes might associate with the irAEs regard-
less of tumor type.

Identification of irAEs‑specific species 
and model construction for anti‑PD‑1/PD‑L1 
immunotherapy‑associated irAEs
An outstanding question is to search for microbial bio-
markers predicting anti-PD-1/PD-L1 immunotherapy-
associated irAEs. The model construction pipeline is 
described in Fig. 3A. Sixty-two microbes were identified 
as irAEs-associated microbial traits, of which 11 species 
were also found to correlate with response. In order to 
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(See figure on next page.)
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construct more specific microbial traits model for irAEs, 
the intersection of response and irAEs-associated micro-
bial traits were subsequently ruled out, and ultimately 
51 important microbial features were regarded as irAE-
specific species for the following feature filtering (Addi-
tional file 1: Table.S6). In total, 14 microbial features were 
filtered to show the best average AUC as well as the pre-
dominantly discriminatory power for identifying irAEs 
and non-irAEs after IFE (Additional file 2: Fig.S3A-O). A 
robust RF model was eventually constructed with a core 
set of best features, including 14 differential microbes 
(hereafter termed as RF14 classifier), which achieved an 
average AUC of 0.88 for distinguishing non-irAEs from 
irAEs (Fig.  3C, Additional file  1: Table.S7). Most of the 
species involved in the model were significantly enriched 
in the non-irAEs in the integrated data (Additional file 2: 
Fig.S3). Among these, the ASV assigned as Lactobacil-
lus salivarius was identified as the top highest-ranking 
biomarker. To test whether the identified microbial fea-
tures in our RF14 classifier are universal and robust 
across multiple studies, we performed study-to-study 
transfer validation and LOSO validation on the entire 
samples. In our RF14 classifier, the AUC values of study-
to-study transfer validation ranged from 0.65 to 0.89, 
with an average of 0.74 (Fig. 3D). Additionally, the AUC 
values of LOSO analysis ranged from 0.72 to 0.90 (aver-
age AUC = 0.82, Fig.  3D), which was better than those 
achieved in study-to-study transfer validation owing to 
using a larger amount of training data (Fig. 3D). All above 
demonstrated that our microbial-derived biomarker 
panel had excellent accuracy across studies.

Machine learning‑based microbiome model performance 
assessment and external validation
We used a different number of input features, includ-
ing all features, differential features, all important fea-
tures, and top features (feature ranks after calculating 
the permutation-based importance), to test the predic-
tive capability. The average AUC values were consist-
ently calculated and compared in study-to-study transfer 
validation, LOSO validation, and the integrated ten-fold 
Random Forest analysis, respectively. Obviously, the set 
of 14 microbes achieved higher predictive performance 
compared to other number of features used in all evalu-
ation methods (Fig. 4A). The RF score derived from our 
RF14 classifier for non-irAEs was significantly higher 
than irAEs (Fig. 4B, Wilcoxon rank-sum test). We further 
calculated the predictive performance of the gut microbi-
ome-based model as measured by sensitivity, specificity, 
accuracy, positive predictive value (PPV), and negative 
predictive value (NPV). The RF14 classifier showed high 
predictive performance as measured by sensitivity, speci-
ficity, accuracy, PPV, and NPV (Fig.  4D and Additional 

file 2: Fig.S4A). Moreover, as expected, our RF14 classi-
fier demonstrated significant specificity for predicting 
the occurrence of irAEs instead of ICIs efficacy (Fig. 4D, 
P = 2.137e − 14, Bootstrap Hypothesis Test).

To further validate our RF14 classifier for irAEs pre-
diction, two additional independent cohorts, SH cohort 
(N = 65) and JS cohort (N = 50), were incorporated into 
this study. SH cohort consisted of 23 irAEs and 42 non-
irAEs patients using 16S rRNA amplicon sequencing 
strategy for gut microbiome analysis. And JS cohort, con-
sisting of 16 irAEs and 34 non-irAEs, adopted shotgun 
metagenome sequencing strategy. We calculated the rela-
tive RF score for the validation cohorts and used the pre-
cision-recall (PR) curves and AUC value under the ROC 
curve for model evaluation. Both the SH cohort and JS 
cohort achieved reasonable performance for distinguish-
ing non-irAEs from irAEs, with relatively superior model 
metrics (Fig. 5A–F). This indicated that the gut microbi-
ome identified in our RF14 classifier possessed robust-
ness for discriminating non-irAEs from irAEs.

Meanwhile, using the same model construction meth-
ods, we reconstructed RF models for the small-scale 
dataset from Chau et  al. and identified five important 
species achieving the best AUC value of 0.95 (Additional 
file 2: Fig.S4E). Notably, the important biomarkers were 3 
out of 5 included in our discovery RF14 classifier. Addi-
tionally, the features’ ranks were consistent with our 
RF14 classifiers. For instance, ASVs assigned as Lacto-
bacillus  salivarius and Parabacteroides goldsteinii were 
also confirmed as the top-ranking biomarkers in our 
RF14 classifier (Additional file 1: Table.S7).  Our research 
results indicate that the model constructed with features 
selected at P < 0.05 ultimately included 18 microbial fea-
tures and achieved a maximum area under the curve 
(AUC) of 0.83 (Additional file 2: Fig.S4F).

Microbial function exploration and validation
We further examined the microbiome-based functional 
alterations using the 16S rRNA data from training data-
sets. There were 110 differential pathways between irAEs 
and non-irAEs based on the results of MetaCyc path-
way abundances calculated in PICRUSt2 (Additional 
file 1: Table.S8). Differential pathways with the FDR less 
than 0.005 were filtered out and clustered based on their 
abundance (Fig. 6A).

Notably, the menaquinone (also termed as vitamin 
K2) biosynthesis was significantly enriched in non-irAEs 
compared with irAEs (Fig.  6A, Additional file  1: Table.
S8). The biosynthesis of 1,4-dihydroxy-2-naphthoate, an 
important intermediate of menaquinone biosynthesis, 
was also found to be enriched in non-irAEs (Additional 
file  1: Table.S8). We further calculated Spearman’s cor-
relation between the menaquinone-related pathways and 
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the abundance of species involved in our RF14 classifier. 
Interestingly, the menaquinone biosynthesis significantly 
correlated to the species that enriched in non-irAEs 
(Fig.  6B), which was also consistent when perform-
ing PICRUSt2 analysis on Chaput’s and Dubin’s cohorts 
(Additional file 2: Fig.S5 C-H). Moreover, 420 differential 
limited enzymes were identified from the EC metagen-
ome prediction (Additional file 1: Table.S9). Consistently, 

we noticed that several rate-limiting enzymes in 
the biosynthesis of menaquinone, including menH 
(EC:4.2.99.20) and menC (EC:4.2.1.113), were signifi-
cantly elevated in non-irAEs compared with that of irAEs 
in pooled data sets. These results were also confirmed by 
qPCR with our newly collected fecal samples (Fig. 6C, D), 
showing that menH and menC genes were significantly 
increased in the non-irAEs samples than those in the 
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irAEs samples. Collectively, the declining menaquinone 
biosynthesis and its key genes from gut microbes were 
more related to the higher incidence of irAEs.

Since shotgun metagenomic sequencing data allow 
for a more accurate analysis of the microbial function, 
we further used additional shotgun metagenomics data 
derived from JS Cohort (N = 50) to examine the alteration 
of metabolic pathways and orthologous gene families 
between patients with irAEs and non-irAEs. Consist-
ently, the expression of microbial genes menH and menC 
were significantly upregulated in non-irAEs (Fig. 6E, F). 

In addition, pathway analysis demonstrated the abun-
dance of related pathways referring to the biosynthesis 
of menaquinone was significantly enriched in non-irAEs 
(Fig.  6G–N). All results indicated that microbiome-
derived menaquinone might serve as potential functional 
microbial metabolites for defending the occurrence of 
irAEs.

Quantification analysis on menaquinone with HPLC–MS
We performed HPLC–MS analysis of menaquinone 
in bacterial metabolites and serum samples collected 
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value (NPV). D Receiver operating characteristic (ROC) curves for the validation of microbiome model using JS metagenome cohort (n = 50). E 
Statistical analysis was conducted based on the predictive value and actual value of irAEs using the cut-off value of RF score defined in the training 
cohort from JS metagenome cohort (n = 50), chi-square test. F Performance measurements of RF14 classifier for JS cohort illustrated by sensitivity, 
specificity, accuracy, positive predictive value (PPV), and negative predictive value (NPV)
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from individuals both with and without irAEs. Notably, 
HPLC–MS/MS results confirmed menaquinone pro-
duction in bacterial supernatants, particularly from two 
representative microorganisms, Parabacteroides merdae 
and Lactobacillus salivarius, when compared to con-
trol media (refer to Additional file  2: Fig.S5C-F). This 
highlights the potential of these species for menaqui-
none biosynthesis. Furthermore, serum menaquinone 
levels showed a significant increase in individuals with-
out irAEs compared to those with irAEs (P = 0.005, as 
depicted in Fig. 6O).

Potential mechanism deduction
To further elucidate how the microbial features involved 
in our RF14 classifier contribute to the development of 
irAEs, we used an extra study, consisting of 9 melanoma 
patients who received anti-PD-1/PD-L1 treatment with 
both fecal 16S rRNA amplicon sequence and bulk RNA 
sequencing on the normal intestinal or colorectal mucosa 
available. The nine patients were then stratified by the 
RF14 classifier into RF score-high and score-low groups 
via the median value. Notably, the inflammation-associ-
ated gene, CCL21, was significantly enriched in the RF 
score-low group (Additional file 1: Table.S10; Additional 
file  2: Fig. S5A). Interestingly, several pro-inflammation 
pathways including the chemokine signaling pathway and 
NF-κB signaling pathway were significantly elevated in 
the score-low group utilizing Gene Set Enrichment Anal-
ysis (GSEA) (Additional file 2: Fig.S5 B, Additional file 1: 
Table.S11). Remarkably, several reports had demon-
strated that NF-κB signaling pathway could be inhibited 
by menaquinone, resulting in anti-inflammation effects 
[54, 55].

Taken together, these results indicated that the metab-
olites derived from the gut microbiome like menaqui-
none might exert potential protective effects via 
inhibiting the pro-inflammation signaling pathway such 
as NF-κB signaling pathway. Our data supported the idea 

that supplemented menaquinone during the anti-PD-1/
PD-L1 immunotherapy might mitigate or prevent the 
occurrence of irAEs.

Discussion
ICI drugs elicit the destruction of cancer cells by reliv-
ing inhibitory T cell signaling, while tipping the bal-
ance between the normal tissue and immune system as 
well. Predictive strategies that define the risk of irAEs 
are essential for optimizing ICI use, or alternatively for 
redirecting patients towards safer therapeutic modali-
ties. Heretofore, growing evidence has demonstrated 
cytokines potentiate the development of irAEs, and 
cytokine-targeted therapies have been established for the 
long-term alleviation of irAEs and brought into clinical 
use for curbing severe irAEs [56]. However, the preven-
tive strategy tailored for irAEs remains a challenge since 
“one size fits all” is not adequate for this setting. Gut 
microbiome and their metabolites have demonstrated 
effective synergistic antitumor response with ICI therapy 
and alleviate the toxicity induced by ICI drugs.

Data from the preclinical models and clinical obser-
vations indicated that the gut microbiome processed 
great potential in modulating the development of irAEs 
[21]. Pdcd1 − / − mice, which lack the inhibitory recep-
tor Pdcd-1 and are usually utilized as a model mimick-
ing the systematic function of anti-PD-1 drugs [57, 58], 
demonstrated obvious composition shift and diversity 
reduction on the gut microbiota, especially a dramatic 
reduction of Lactobacillales [59]. This was consist-
ent with the microbial traits identified in our model, 
where we found the top-ranking species Lactobacillus 
salivarius for predicting irAEs, and exerts the strongest 
relevance with menaquinone abundance. In addition, 
exogenous supplements of probiotics such as Bifidobac-
terium and Lactobacillus were also confirmed to amelio-
rate the DSS plus anti-CTLA-4 colitis in murine model 
[60, 61]. Parabacteroides genus and Ruminococcus genus 

(See figure on next page.)
Fig. 6 Microbial functional alterations in irAEs and non-irAEs. A Differentially abundant pathways were plotted; P values were computed using 
a two-sided blocked Wilcoxon rank-sum test and the FDR < 0.005 were presented in the heatmap. B The correlation between the abundance 
of menaquinone biosynthesis-related pathway and model species. Spearman’s correlation between the abundance of menaquinone biosynthesis 
and 14 representative microbial species in the classifiers and edge width corresponds to the Spearman’s r statistic and edge color denotes 
the statistical significance. r, Spearman correlation coefficient; with a color-gradient denoting Spearman’s correlation coefficients, and the exact 
values were described in heatmap frames. C, D Plotted values are qRT-PCR quantifications of bacterial genes in menaquinone biosynthesis. The 
abundances of menC (C) and menH (D) were compared between non-irAEs (n = 17) and irAEs (n = 11) groups. All boxes extend from 25 to 75th 
percentiles and whiskers show the minimum and maximum values. Lines at the middle of each box show the median. P values were computed 
using a two-sided Wilcoxon rank-sum test. E–M Shotgun metagenome functional validation (N = 50) for differential genes menC (E), menH (F), 
and menaquinone biosynthesis pathway (G–M). All boxes extend from 25 to 75th percentiles and whiskers show the minimum and maximum 
values. Lines at the middle of each box show the median. P values were computed using a two-sided Wilcoxon rank-sum test. O Blood 
concentration comparison of menaquinone-6 (MK-6) between patients with irAEs( N = 10) and patients without irAEs(N = 10). Statistical significance 
was assessed using a two-sided Wilcoxon rank-sum test
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were also deciphered to be probiotics for the remission 
of inflammation and disease development [62]. Of note, 
two species of Parabacteroides genus (including Para-
bacteroides goldsteinii and Parabacteroides merdae), as 
well as two Ruminocuccus genera (Ruminocuccus bromii 
and Ruminocuccus champanellensis), were also identified 
as important microbial traits for predicting irAEs onset. 
Collectively, the microbial traits identified in our model 
might harbor promising function influencing the devel-
opment of irAEs whereas more evidence was needed.

Overall, we utilized a robust machine-learning method 
to identify a panel of gut microbiome for predicting the 
occurrence irAEs from pooled data regardless of the 
various confounders. The baseline gut microbiome could 
function as effectively predictive biomarkers for irAEs 
with high sensitivity and specificity. External amplicon 
sequencing data and shotgun metagenome sequenc-
ing data were further carried out to validate the robust 
results. Additionally, from microbial functional analysis, 
in patients with irAEs, levels of menaquinone biosyn-
thesis and the key enzymes involved in menaquinone 
synthesis are lower than in non-irAEs. This was similar 
to the previous findings on melanoma patients treated 
with anti-CTLA-4 inhibitors, where bacterial metabo-
lism pathways involved in B vitamin biosynthesis were 
indicated to protect patients from immune-related colitis 
[35]. Based on the above findings, we deduced that reg-
ulation of the gut microbiome or the use of gut micro-
biome-derived metabolites like menaquinone, either 
prophylactically or concurrently with anti-PD-1/PD-L1 
treatment, might harbor the potential to control and pre-
vent the incidence of irAEs. It remains unclear whether 
reduced menaquinone levels contribute to irAEs onsets 
or development and further research was in demand.

Moreover, integrated analysis of the gut microbiome 
and colon tissue bulk RNA sequencing further showcased 
the potential mechanism for the inhibition of the NF-κB 
signaling pathway. Similarly, Luoma et al. [63] delineated 
a significantly elevated TNFα signaling via NF-κB in the 
colonic macrophage through a comprehensive single-cell 
analysis of immune cell population in patients with ICIs-
associated colitis. The gut microbiome and its metabo-
lites might interact with the host genome and restore 
the host immune cells, causing inflammation activation. 
Accordingly, more rationales were required to interpret 
how gut microbiome influenced host and immune cells.

Some controversy remains to be clarified regarding 
whether the treatment of irAEs might disrupt the efficacy 
of immunotherapy. For instance, non-small cell lung can-
cer patients who develop G3 or G4 pneumonitis and con-
sequently receive high-dose corticosteroids for at least 
4–6  weeks tend to have a worse prognosis. Conversely, 
patients with melanoma who discontinued treatment 

due to irAEs and utilized immune suppressant agents did 
not exhibit distinct outcome [64–66]. With the identifi-
cation of those predictive biomarkers of irAEs, including 
gut microbiota biomarkers, it becomes possible to greatly 
enhance efficacy while mitigating irAEs [67, 68].

Our study also has certain limitations, primarily related 
to the study’s size and various factors confounding the 
omics data used for analysis. To gain a more comprehen-
sive understanding of the biological markers associated 
with irAEs, it is important to improve the experimen-
tal design by controlling unnecessary confounding fac-
tors for more relevant clinical data. This will enable us 
to delve deeper into the complex mechanisms under-
lying the gut microbiome and the occurrence of irAEs 
[69]. Furthermore, it is essential to bolster our findings 
with in vivo and in vitro experiments. The validation of 
menaquinone’s functionality could be further substanti-
ated through additional preclinical modeling.

Conclusion
Our study underscores the predictive potential of micro-
bial biomarkers for irAE onset. Menaquinone, derived 
from the microbiome, emerges as a promising therapeu-
tic agent to modulate irAE occurrence. 
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