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Abstract 

Background Drug resistance in tuberculosis (TB) poses a major ongoing challenge to public health. The recent 
inclusion of bedaquiline into TB drug regimens has improved treatment outcomes, but this advance is threatened 
by the emergence of strains of Mycobacterium tuberculosis (Mtb) resistant to bedaquiline. Clinical bedaquiline resist-
ance is most frequently conferred by off-target resistance-associated variants (RAVs) in the mmpR5 gene (Rv0678), 
the regulator of an efflux pump, which can also confer cross-resistance to clofazimine, another TB drug.

Methods We compiled a dataset of 3682 Mtb genomes, including 180 carrying variants in mmpR5, and its immedi-
ate background (i.e. mmpR5 promoter and adjacent mmpL5 gene), that have been associated to borderline (hence-
forth intermediate) or confirmed resistance to bedaquiline. We characterised the occurrence of all nonsynonymous 
mutations in mmpR5 in this dataset and estimated, using time-resolved phylogenetic methods, the age of their 
emergence.

Results We identified eight cases where RAVs were present in the genomes of strains collected prior to the use 
of bedaquiline in TB treatment regimes. Phylogenetic reconstruction points to multiple emergence events and circu-
lation of RAVs in mmpR5, some estimated to predate the introduction of bedaquiline. However, epistatic interactions 
can complicate bedaquiline drug-susceptibility prediction from genetic sequence data. Indeed, in one clade, Ile67fs 
(a RAV when considered in isolation) was estimated to have emerged prior to the antibiotic era, together with a resist-
ance reverting mmpL5 mutation.
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Conclusions The presence of a pre-existing reservoir of Mtb strains carrying bedaquiline RAVs prior to its clinical use 
augments the need for rapid drug susceptibility testing and individualised regimen selection to safeguard the use 
of bedaquiline in TB care and control.

Keywords Tuberculosis, Phylogenetics, Bedaquiline, Drug resistance, AMR

Background
Drug-resistant tuberculosis (DR-TB) currently accounts 
for 450,000 of the 10 million new tuberculosis (TB) 
cases reported annually [1]. Treatment outcomes for 
multidrug-resistant TB (MDR-TB), resistant to at least 
rifampicin and isoniazid, have historically been poor, 
with treatment success rates of only 50–60% in routine 
programmatic settings [2, 3]. The discovery of bedaqui-
line, a diarylquinoline antimycobacterial active against 
ATP synthase, which is highly effective against Mycobac-
terium tuberculosis (Mtb) [4], was reported in 2004. Fol-
lowing clinical trials, which confirmed reduced time to 
culture conversion in patients with DR-TB [5], in 2012, 
bedaquiline received an accelerated Food and Drug 
Administration (FDA) licence for use in DR-TB [6].

Cohort studies of patients treated with bedaquiline-
containing regimens against MDR-TB report success 
rates of 70–80% [7, 8]. Similar results have been achieved 
for extensively drug-resistant TB (XDR-TB, traditionally 
defined as MDR-TB strains with additional resistance 
to fluoroquinolones and injectables), where treatment 
outcomes without bedaquiline are even worse [9, 10]. 
In light of these promising results, the World Health 
Organization (WHO) now recommends that bedaquiline 
be included in all MDR-TB regimens [11]. It has played 
a central role in the highly successful ZeNix [12] and 
TB-PRACTECAL [13] trials of bedaquiline, pretomanid 
and linezolid (+ / − moxifloxacin) six-month all-oral regi-
mens for DR-TB. These are now incorporated in WHO 
guidance. In addition, bedaquiline is positioned as a key 
drug in multiple phase III clinical trials for drug-suscep-
tible TB (SimpliciTB, ClinicalTrials.gov NCT03338621; 
TRUNCATE-TB [14]).

Resistance in Mtb is typically reported shortly after 
the introduction of a novel TB drug and often appears 
sequentially [15, 16]. For example, mutations conferring 
resistance to isoniazid — one of the first antimycobacte-
rials — tend to emerge prior to resistance to rifampicin, 
the other major first-line drug. These also predate resist-
ance mutations to second-line drugs, so termed because 
they are used clinically to treat patients infected with 
strains already resistant to first-line drugs. This was 
observed, for example, in KwaZulu-Natal, South Africa, 
where resistance-associated mutations accumulated over 
decades prior to their identification, leading to a major 
outbreak of extensively drug-resistant TB (XDR-TB) 

[16]. Unlike other major drug-resistant bacteria, Mtb 
reproduces strictly clonally and systematically acquires 
resistance by chromosomal mutations rather than via 
horizontal gene transfer or recombination [17]. This 
allows genome-based phylogenetic reconstructions to 
infer the timings of emergence and subsequent spread of 
variants in Mtb for which there is evidence of an associa-
tion with phenotypic resistance in at least some genetic 
backgrounds, termed resistance-associated variants 
(RAVs).

A number of mechanisms have been implicated in 
bedaquiline resistance. For example, mutations confer-
ring resistance have been selected in vitro, located in the 
atpE gene encoding the F1F0 ATP synthase, the target of 
bedaquiline [18]. Off-target resistance-conferring muta-
tions have also been found in pepQ in a murine model 
and potentially in a small number of patients [19]. How-
ever, the primary mechanism of resistance observed in 
clinical isolates has been identified in the context of off-
target RAVs in the mmpR5 (Rv0678) gene, a negative 
repressor of expression of the MmpL5 efflux pump. Loss 
of function of MmpR5 leads to pump overexpression [20] 
and increased minimum inhibitory concentrations (MIC) 
to bedaquiline, along with the recently repurposed anti-
mycobacterial clofazimine, fusidic acid, the azole class 
of antifungal drugs (which also have antimycobacte-
rial activity), as well as to the novel therapeutic class of 
DprE1 inhibitors in clinical trials [21, 22]. Aligned with 
this mechanism of resistance, coincident mutations lead-
ing to loss of function of the MmpL5 efflux pump can 
negate the resistance-inducing effect of MmpR5 loss of 
function [23].

A range of single nucleotide polymorphisms (SNPs) 
and frameshift mmpR5 mutations have been associated 
with resistance to bedaquiline and are often present as 
heteroresistant alleles in patients [24–35]. In contrast 
to most other RAVs in Mtb, which often cause many-
fold increases in MIC and clear-cut resistance, mmpR5 
variants may be associated with normal MICs or subtle 
increases in bedaquiline MIC, although they may still be 
clinically important [36]. These increases may not cross 
the current WHO critical concentrations used to classify 
resistant versus susceptible strains (0.25 μg/mL on Mid-
dlebrook 7H11 agar, or 1 μg/mL in Mycobacteria Growth 
Indicator Tube [MGIT] liquid media). The second ver-
sion of the WHO tuberculosis drug resistance catalogue 
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identifies 86 individual bedaquiline RAVs (Group 1 and 
Group 2 assignment, https:// iris. who. int/ handle/ 10665/ 
374061 accessed January 2024) [35]. Bedaquiline has a 
long terminal half-life of up to 5.5 months [6], leading to 
the possibility of subtherapeutic concentrations where 
adherence is suboptimal or treatment is interrupted, 
which could act as a further driver of resistance.

Bedaquiline and clofazimine cross-resistance has now 
been reported across three continents following the rapid 
expansion in usage of both drugs [25, 30, 37–39] and is 
associated in some cases with poor adherence to therapy 
and inadequate regimens. However, baseline isolates in 
8/347 (2.3%) patients from phase IIb bedaquiline trials 
demonstrated mmpR5 RAVs and high bedaquiline MICs 
in the absence of prior documented use of bedaquiline 
or clofazimine [40]. This suggests that bedaquiline RAVs 
may have been in circulation prior to the usage of either 
of these drugs, which may be expected in the case of 
mutations which do not have major fitness consequences 
[41]. While there have been isolated clinical reports 
from multiple geographical regions, the global extent of 
bedaquiline resistance emergence and spread has not yet 
been investigated.

In this study, we characterise and date the emergence 
of variants in mmpR5, including those implicated as 
bedaquiline RAVs, in the two global Mtb lineage 2 (L2) 
and lineage 4 (L4) lineages, which include the majority 
of drug resistance strains [15]. Phylogenetic analyses of 
two datasets comprising 1514 Mtb L2 and 2168 L4 whole 
genome sequences revealed the emergence and spread 
of multiple mmpR5 variants associated to resistance 
or borderline (intermediate) resistance to bedaquiline 
prior to its first clinical use. This pre-existing reservoir of 
bedaquiline/clofazimine-resistant Mtb strains suggests 
mmpR5 RAVs exert a relatively low fitness cost which 
could be rapidly selected for as bedaquiline and clofazi-
mine are more widely used in TB treatment.

Methods
Sample collection
In this study, we curated large representative datasets of 
Mtb whole genome sequences encompassing the global 
genetic and geographic distribution of lineages 2 (L2) and 
L4 (Fig.  1, Additional file  1: Table  S1, Additional file  2: 
Fig S1). The dataset was enriched to include all available 
sequenced isolates with mmpR5 variants, which in some 

Fig. 1 Compiled global Mtb genomic datasets. Panels a and b provide the geographic location of isolates included in the lineage 2 and lineage 
4 datasets respectively. Pies are scaled by the number of samples per country (raw data available in Additional file 1: Table S1) with the colours 
providing the fraction of genomes with any nonsynonymous/frameshift variants detected in mmpR5 (coloured as per the legend). Countries 
comprising samples with known RAVs are highlighted with a red asterisk. Genomic data for which no associated metadata on the geographic 
location of sampling was available are shown in the Pacific Ocean. Panels c and d provide the collection dates associated to each genome 
in the lineage 2 and lineage 4 datasets respectively highlighting those with any variants in mmpR5 (colour, as per legend). Lineage 4 Mtb obtained 
from eighteenth century mummies are excluded from this plot but included in all analyses. The vertical dashed lines indicate the dates of the first 
clinical trials for clofazimine, bedaquiline and FDA approval of bedaquiline for clinical use

https://iris.who.int/handle/10665/374061
https://iris.who.int/handle/10665/374061
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cases included isolates with no, or limited, published 
metadata. In all other cases, samples for which metadata 
on the geographic location and date of collection was 
available were retained. To ensure high-quality consensus 
alignments we required that all samples mapped with a 
minimum percentage cover of 96% and a mean coverage 
of 30 × to the H37Rv reference genome (NC_000962.3). 
We excluded any samples with evidence of mixed strain 
infection as identified by the presence of lineage-specific 
SNPs to more than one sublineage [42] or the presence of 
a high proportion of heterozygous alleles [43]. The total 
number of samples included in these datasets, and their 
source is shown in Additional file 2: Table S2. An index of 
all samples is available in Additional file 1: Table S1.

A large global dataset of 1669 L4 Mtb sequences has 
been previously constructed, which we used as the basis 
for curating our L4 dataset [44]. We refer to this as the 
‘base dataset’ for L4. For L2, we constructed a ‘base data-
set’ by screening the Sequence Read Archive (SRA) and 
European Nucleotide Archive (ENA) using BIGSI [45] 
for the rpsA gene sequence containing the L2 defining 
variant rpsA a636c [42] with a 100% match. This search 
returned 6307 Mtb submissions, of which 1272 repre-
sented unique samples that had the minimum required 
metadata. Metadata from three studies were also added 
manually as they were not included in their respective 
SRA submissions but were available within published 
studies [46–48].

For isolates with only information on the year of sam-
ple collection, we set the date to be equal to the middle 
of the year. For those with information on the month but 
not the date of collection we set the date of collection to 
the first of the month. For sequenced samples which were 
missing associated metadata (32 L2 genomes and 19 L4 
genomes), we attempted to estimate an average time of 
sample collection to impute a sampling date. To do, so we 
computed the average time between the date of collec-
tion and sequence upload date for all samples with asso-
ciated dates separately in each of the L2 and L4 datasets 
(Additional file 2: Fig S1). For L2 we estimated a mean lag 
time of 4.7 years (0.5–12.6 years 95% CI). For L4, having 
excluded three sequences obtained from eighteenth cen-
tury mummies from Hungary [49], we estimated a mean 
lag time of 6.9 years (0.6–19.1 years 95% CI). The esti-
mated dates, where required, are provided in Additional 
file 1: Table S1.

To enrich the datasets for isolates with mmpR5 vari-
ants, we included further sequences from our own 
studies in KwaZulu-Natal, South Africa [50, 51], other 
studies of drug-resistant TB in southern Africa [16, 44, 
52–55], and Peru [56, 57]. We additionally supplement 
the Peruvian data with 163 previously unpublished iso-
lates. In these cases, and to facilitate the most accurate 

possible estimation of the date of resistance emergence, 
we included samples with mmpR5 variants as well as 
genetically related sequences without mmpR5 variants.

To identify further published raw sequencing data with 
mmpR5 variants from studies where bedaquiline/clofa-
zimine resistance may have been previously unidentified, 
we screened the NCBI SRA for sequence data contain-
ing 85 previously published mmpR5 variants [28–30, 50, 
51, 58, 59] with BIGSI [45]. BIGSI was employed against 
a publicly available indexed database of complete SRA/
ENA bacterial and viral whole genome sequences cur-
rent to December 2016 (available here: http:// ftp. ebi. ac. 
uk/ pub/ softw are/ bigsi/ nat_ biote ch_ 2018/ all- micro bial- 
index- v03/), and also employed locally against an updated 
in-house database which additionally indexed SRA sam-
ples from January 2017 until January 2019. Samples added 
using this approach are flagged ‘BIGSI’ in Additional file 1: 
Table S1. We also used the PYGSI tool [60] to interrogate 
BIGSI with the mmpR5 sequence adjusted to include every 
possible single nucleotide substitution. In each instance, 
we included 30 bases upstream and downstream of the 
gene as annotated on the H37Rv Mtb reference genome. 
Samples added following the PYGSI screen are flagged 
‘PYGSI’ in Additional file 1: Table S1. A breakdown of the 
different datasets used is provided in Additional file  2: 
Table S2.

Reference mapping and variant calling
Original fastq files for all included sequences were down-
loaded and paired reads mapped to the H37Rv reference 
genome with bwa mem v0.7.17 [61]. Mapped reads were 
sorted and de-duplicated using Picard Tools v2.20 fol-
lowed by indel realignment with GATK v3.8 [62]. Align-
ment quality and coverage was recorded with Qualimap 
v2.21 [63]. Variant calling was performed using bcftools 
v1.9, based on reads mapping with a minimum mapping 
quality of 20, base quality of 20, no evidence of strand or 
position bias, a minimum coverage depth of 10 reads, 
and a minimum of four reads supporting the alternate 
allele, with at least two of them on each strand. Moreo-
ver, SNPs that were less than 2 bp away from an indel 
were excluded from the analysis. Similarly, only indels 3 
bp apart of other indels were kept.

All sites with insufficient coverage to identify a site as 
variant or reference were excluded (marked as ‘N’), as 
were those in or within 100 bases of PE/PPE genes, or in 
insertion sequences or phages. SNPs present in the align-
ment with at least 90% frequency were used to generate 
a pseudoalignment of equal length to the H37Rv. Sam-
ples with more than 10% of the alignment represented 
by ambiguous bases were excluded. Those positions with 
more than 10% of ambiguous bases across all the samples 
were also removed. To avoid bias on the tree structure, 

http://ftp.ebi.ac.uk/pub/software/bigsi/nat_biotech_2018/all-microbial-index-v03/
http://ftp.ebi.ac.uk/pub/software/bigsi/nat_biotech_2018/all-microbial-index-v03/
http://ftp.ebi.ac.uk/pub/software/bigsi/nat_biotech_2018/all-microbial-index-v03/
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positions known to be associated with drug resistance 
were not included.

A more permissive variant calling pipeline was used 
to identify mmpR5 variants, as they are often present 
at < 100% frequency with a high incidence of frameshift 
mutations. Here we instead employed FreeBayes v1.2 
[64]  to call all variants present in the mmpR5 gene (or 
up to 100 bases upstream) that were present at ≥ 5% fre-
quency (alternate allele fraction − F 0.05) and supported 
by at least four reads including one on each strand. Using 
this more permissive variant calling strategy we also sys-
tematically screened for all mutations in the efflux pump 
proteins mmpS5-mmpL5 operon.

Classification of resistance variants
All raw fastq files were screened using the rapid resist-
ance profiling tool TBProfiler [65, 66] against a curated 
whole genome drug resistance mutations library. This 
allowed rapid assignment of polymorphisms associated 
with resistance to different antimycobacterial drugs and 
categorisation of MDR and XDR Mtb status (Additional 
file 2: Fig S2), together with statistical assessment of the 
co-occurrence of mutations conferring resistance to dif-
ferent drug classes (Additional file 2: Fig S3–S7).

Classification of mmpR5 variants
The diverse range of mmpR5 variants and paucity of wide-
spread MIC testing means limited data is available to infer 
the phenotypic consequences of identified mmpR5 vari-
ants. This was true of our dataset aside from a subset of 
data sampled in Peru for which 30 L4 isolates from Peru 
were subjected to MIC testing using the UKMYC6 plate 
and a further nine were evaluated for MICs reported by 
the Cryptic consortium [67]. The approach we used was 
to assign whether nonsynonymous variants confer a nor-
mal or raised MIC based on published phenotypic tests 
for strains carrying that variant. A full list of the litera-
ture reports used to classify each mutation is provided in 
Additional file  2: Table  S3. We also introduced an inter-
mediate category to describe isolates with MICs at the 
critical concentration (e.g. 0.25 μg/mL on Middlebrook 
7H11 agar), where there is an overlap of the MIC distri-
butions of mmpR5 mutated and wild-type isolates with 
uncertain clinical implications [36]. We assumed that all 
other disruptive frameshift and stop mutations would 
confer resistance considering the role of mmpR5 as a 
negative repressor, where loss of function should lead to 
efflux pump overexpression, unless evidence existed in the 
literature or at other relevant sites in the genome to sug-
gest otherwise. This allowed us to identify two frameshifts 
of currently unclear effect (Additional file  2: Table  S3). 
All other promoters and previously unreported missense 
mutations were categorised as unknown (Additional 

file  2: Table  S3). We identified cases of mmpR5 variants 
in genomes collected prior to 2007 (Additional file  2: 
Table  S4). Where mmpR5 mutations were accompanied 
by an mmpS5 or mmpL5 loss of function mutation, we 
recorded these (Additional File 2: Fig S8–S9, Table  S5) 
and assumed that they would confer susceptibility (or 
hypersusceptibility) to bedaquiline [23]. Resistance pro-
files of sequences containing mmpR5 variants were 
denoted as either “S” for susceptible, “RR” for rifampicin-
resistant and “preXDR” for fluoroquinolone-resistant. For 
mutations for which phenotypic status could not be ascer-
tained a machine learning model was employed to explore 
potentially predictive features using a set of mmpR5 vari-
ants of known phenotypic effect (Additional file  2: Note 
S1; Additional file 2: Fig S10).

Global phylogenetic inference
The alignments for phylogenetic inference were masked 
for the mmpR5 region using bedtools v2.25.0. All variant 
positions were extracted from the resulting global phy-
logenetic alignments using snp-sites v2.4.1 [68], includ-
ing a L4 outgroup for the L2 alignment (NC_000962.3) 
and a lineage 3 (L3) outgroup for the L4 alignment 
(SRR1188186). This resulted in a 67,585 SNP alignment 
for the L4 dataset and 29,205 SNP alignment for the L2 
dataset. A maximum likelihood phylogenetic tree was 
constructed for both SNP alignments using RAxML-NG 
v0.9.0 [69] specifying a GTR + G substitution model, cor-
recting for the number of invariant sites using the ascer-
tainment flag (ASC_STAM) and specifying a minimum 
branch length of 1 ×  10−9 reporting 12 decimal places (–
precision 12).

Estimating the age of emergence of mmpR5 variants
To test whether the resulting phylogenies can be time-
calibrated we first dropped the outgroups from the 
phylogeny and rescaled the trees so that branches were 
measured in unit of substitutions per genome. We then 
computed a linear regression between root-to-tip dis-
tance and the time of sample collection using BactDat-
ing [70], which additionally assesses the significance of 
the regression based on 10,000 date randomisations. 
We obtained a significant temporal correlation for 
both the L2 and L4 phylogenies, both with and without 
imputation of dates for samples with missing metadata 
(Additional file 2: Fig S11).

We employed the Bayesian method BactDating v1.01 
[70], run without updating the root (updateRoot = F), a 
mixed relaxed gamma clock model and otherwise default 
parameters to both global datasets. The MCMC chain 
was run for 1 ×  107 iterations and 3 ×  107 iterations. Bact-
Dating results were considered only when MCMC chains 
converged with an Effective Sample Space (ESS) of at 



Page 6 of 15Nimmo et al. Genome Medicine           (2024) 16:34 

least 100. The analysis was applied to the datasets both 
with and without considering imputed and non-imputed 
collection dates (Additional file 2: Table S6).

To independently infer the evolutionary rates associ-
ated with each of our datasets, we sub-sampled both 
the L4 and L2 datasets to 200 isolates, selected so as to 
retain the maximal diversity of the tree using Treem-
mer v0.3 [71]. As before, we excluded all variants cur-
rently implicated in drug resistance from the alignments. 
This resulted in a dataset for L4 comprising 25,104 SNPs 
and spanning 232 years of sampling and for L2 compris-
ing 8221 SNPs and spanning 24 years of sampling. In 
both cases the L3 sample SRR1188186 was used as an 
outgroup given this has an associated collection date. 
Maximum likelihood trees were constructed using 
RaXML-NG v0.9.0 [69], as previously described, and 
a significant temporal regression was obtained for both 
sub-sampled datasets (Additional file 2: Fig S12).

BEAST2 v2.6.0 [72] was run on both subsampled SNP 
alignments allowing for model averaging over possible 
choices of substitution models [73]. All models were run 
with either a relaxed or a strict prior on the evolution-
ary clock rate for three possible coalescent demographic 
models: exponential, constant and skyline. To speed up 
the convergence, the prior on the evolutionary clock rate 
was given as a uniform distribution (limits 0 to 10) with a 
starting value set to  10−7. In each case, the MCMC chain 
was run for 500,000,000 iterations, with the first 10% 
discarded as burn-in and sampling trees every 10,000 
chains. The convergence of the chain was inspected in 
Tracer 1.7 and through consideration of the ESS for all 
parameters (ESS > 200). The best-fit model to the data for 
these runs was assessed through a path sampling analy-
sis [74] specifying 100 steps, 4 million generations per 
step, alpha = 0.3, pre-burn-in = 1 million generations, 
burn-in for each step = 40%. For both datasets, the best 
supported strict clock model was a coalescent Bayesian 
skyline analysis. The rates (mean and 95% HPD) esti-
mated under these subsampled analyses (L2 7.7 ×  10−8 
[4.9 ×  10−8 − 1.03 ×  10−7] substitutions per site per year; 
L4 7.1 ×  10−8 [6.2 ×  10−8 − 7.9 ×  10−8] substitutions per 
site per year) were used to rescale the maximum likeli-
hood phylogenetic trees generated across the entire L2 
and L4 datasets, by transforming all branch lengths of 
the tree from per unit substitution to per unit substi-
tutions per site per year using the R package Ape v5.3 
[75]. This resulted in an estimated tMRCA of 1332CE 
(945CE–1503CE) for L2 and 853CE (685CE–967CE) for 
L4 (Fig. 2).

The resulting phylogenetic trees were visualised and 
annotated for place of geographic sampling and mmpR5 
variant status using ggtree v1.14.6 [76]. All nonsynony-
mous/frameshift mutations in mmpR5 were considered, 

with the phenotypic status assigned in Additional file 2: 
Table S3. For the purpose of this analysis, and to be con-
servative, ‘unknown’ variants classified using XGBoost 
were still considered ‘unknown’ (Additional file  2: Note 
S1). Clades carrying shared variants in mmpR5 were 
identified and the distributions around the age of the 
node (point estimates − mean − and 95% HPDs) were 
extracted from the time-stamped phylogeny. For iso-
lated samples (single emergences) exhibiting variants 
in mmpR5, the time of sample collection was extracted 
together with the date associated with the upper bound 
on the age of the next closest node of the tree, allowing 
for the mutation to have occurred anywhere over the 
length of the terminal branch (Fig. 3, Additional file 2: Fig 
S13–S14). For the Peruvian clade Bayesian skyline analy-
sis was implemented through the skylineplot analysis 
functionality available in Ape v5.3 [75] (Additional file 2: 
Fig S15).

Results
The global diversity of Mtb lineage L2 and L4
To investigate the global distribution of Mtb isolates with 
variants in mmpR5, we curated two large datasets of 
whole genomes from the two dominant global lineages 
L2 and L4. Both datasets were enriched for samples with 
variants in mmpR5 following a screen for variants in pub-
lic sequencing repositories (see Methods) and retaining 
those samples uploaded with accompanying full meta-
data for geolocation and time of sampling (Fig. 1, Addi-
tional file 1: Table S1, Additional file 2: Fig S1, Table S2). 
The final L2 dataset included 1,514 isolates collected 
over 24.5 years (between 1994 and 2019) yielding 29,205 
SNPs. The final L4 dataset comprised 2,168 sequences 
collected over 232 years, including three samples from 
eighteenth century Hungarian mummies [49], encom-
passing 67,585 SNPs. Both datasets included recently 
generated data from South Africa (155 L2, 243 L4) [50, 
51] and new whole genome sequencing data from Peru (9 
L2, 154 L4).

Consistent with previous studies [44, 77, 78], both 
datasets are highly diverse (Fig.  2). As a nonrecombin-
ing clonal organism, identification of mutations in Mtb 
can provide a mechanism to predict phenotypic resist-
ance from a known panel of genotypes [65, 79]. Based on 
genotypic profiling [65], 911 strains within the L2 data-
set were classified as MDR-TB (60%) and 295 (20%) as 
XDR-TB. Within the L4 dataset, 911 isolates were clas-
sified as MDR-TB (42%) and 115 as XDR-TB (5%). The 
full phylogenetic distribution of resistance profiles is 
provided in Additional file 2: Fig S2. As is commonplace 
with genomic datasets, the proportion of drug-resist-
ant strains exceeds their actual prevalence, due to the 



Page 7 of 15Nimmo et al. Genome Medicine           (2024) 16:34  

overrepresentation of drug-resistant isolates in public 
sequencing repositories.

Both the L2 and L4 phylogenetic trees displayed a 
significant temporal signal following date randomi-
sation (Additional file  2: Fig S11), making them suit-
able for time-calibrated phylogenetic inference [72]. 
We estimated the time to the Most Recent Common 
Ancestor (tMRCA) of both datasets using a Bayesian tip-
dating analysis (BEAST2) run on a representative subset 
of genomes from each dataset (see “Methods”, Additional 
file 2: Fig S12, Table S6). For the final temporal calibra-
tion of the L2 dataset, we applied an estimated clock rate 
of 7.7 ×  10−8 (4.9 ×  10−8 − 1.03 ×  10−7) substitutions per 
site per year, obtained from the subsampled BEAST2 
[48] analysis, to the global maximum likelihood phylo-
genetic tree. This resulted in an estimated tMRCA of 
1332CE (945CE–1503CE HPD intervals). Using the same 

approach for the L4 dataset we estimated a clock rate of 
7.1 ×  10−8 (6.2 ×  10−8 – 7.9 ×  10−8  HPD intervals) substitu-
tions per site per year resulting in an estimated tMRCA 
of 853CE (685CE–967CE  HPD intervals) (Fig.  2). We 
observed a slightly higher, yet statistically not signifi-
cant, clock rate in L2 compared to L4 (Additional file 2: 
Table  S6), with all estimated substitution rates falling 
largely in line with previously published estimates [80].

Identification of variants in mmpR5
Since atpE and pepQ bedaquiline RAVs are found at low 
prevalence (1 L2 isolate [0.03%] and 18 L4 isolates [0.49%] 
[35]), we focused on characterising mutations in mmpR5. 
In total we identified the presence of non-synonymous 
and promoter mmpR5 variants in 437 sequences (193 
L2 [12.8%], 244 L4 [11.3%]). We classified all identified 
frameshift, non-synonymous and promoter mutations 

Fig. 2 Global time-calibrated Mtb phylogenies. Inferred dated phylogenies (x-axis) for the a lineage 2 and b lineage 4 datasets. Tips are 
coloured by the geographic region of sampling as given in the legend. The bar provides the assessed phenotype (colour) based on assignment 
of nonsynonymous/frameshift variants in mmpR5 
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in mmpR5, based on an evaluation of their phenotypic 
impact through review of published literature and asso-
ciated mmpL5 mutations, into six phenotypic categories 
for bedaquiline susceptibility: wild type, hypersuscep-
tible, susceptible, intermediate, resistant, and unknown 
(full references available in Additional file 2: Table S3, Fig 
S3–S7). Across both lineages, 180 sequences were con-
sidered as bedaquiline resistant (i.e. classified as interme-
diate or resistant). The most frequently observed variants 
are listed in Table 1.

We identified a significant relationship between the 
presence of mmpR5 variants and drug resistance sta-
tus in both the L2 and L4 datasets (Additional file 2: Fig 
S6–S7), though in both cases we identified otherwise 
fully phenotypically susceptible isolates carrying mmpR5 
RAVs. Notably, we identified 25 sequenced isolates car-
rying nonsynonymous/frameshift variants in mmpR5 
and its promoter uploaded with collection dates (or per-
muted collection dates) prior to the first clinical trials for 
bedaquiline in 2007. This comprised ten L2 isolates col-
lected before 2007, of which eight harboured variants 
previously associated to phenotypic bedaquiline resist-
ance (RAVs). For L4 we identified 15 sequences with 

Fig. 3 Estimated age of emergence of mmpR5 nonsynonymous/frameshift variants. Inferred point estimates for the age of emergence of clades 
with mmpR5 variants for the lineage 2 (a) and lineage 4 (b) datasets, including a zoomed-in reproduction of the period from 2007 to 2020. Y-axis 
provides the absolute number of sequences descending from the identified and dated nodes. The mmpR5 RAV status is given by the colour 
as defined in the legend at left. *indicates phenotypic data available for considered isolates that are supportive of MIC classification (see text). The 
full mutation timelines are provided in Additional file 2: Fig S13–S14 and Additional file 3: Table S7

Table 1 Frequency of all mmpR5 variants occurring ≥ 5 times 
in dataset and their associated resistance classification. Where 
co-existing mmpL5 mutations were identified these are indicated

Variant Associated phenotype L2 L4 Total

c-11a Hypersusceptible 93 93

Ile67fs + mmpL5 Arg202fs Hypersusceptible 65 65

Asp5Gly Susceptible 20 3 23

Met146Thr Resistant 2 20 22

Ile67fs Resistant 5 17 22

Leu40Val Susceptible 19 19

Arg90Cys Intermediate 2 9 11

Glu49fs Resistant 2 8 10

Val20Ala Intermediate 1 6 7

Ala59Val Resistant 7 7

Met1Ala Resistant 6 6

Gly121Arg Resistant 5 1 6

Asp141fs Unknown 6 6

Asn98Asp Resistant 6 6

Arg96Gly Resistant 5 5

Arg109Leu + Arg156fs Resistant 5 5
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mmpR5 variants predating 2007, of which six have been 
previously classified as carrying mutations conferring a 
bedaquiline resistance phenotype above wild-type (‘inter-
mediate’) (Fig. 1c–d, Additional file 2: Table S4).

Within the datasets, we identified one L2 isolate 
(ERR2677436 sampled in Germany in 2016) which 
already had two mmpR5 RAVs at low allele frequency — 
Val7fs (11%) and Val20Phe (20%) — and also contained 
two low-frequency atpE RAVs: Glu61Asp (3.2%) and 
Alal63Pro (3.7%) [50]. We also identified three isolates 
obtained in 2007–08 from separate but neighbouring 
Chinese provinces carrying the Rv1979c Val52Gly, which 
has been suggested to be associated with clofazimine 
resistance in a study from China [25] but was associated 
with a normal MIC in another [41], with its role in resist-
ance remaining unclear [31]. Furthermore, frameshift and 
premature stop mutations in pepQ have been previously 
associated with bedaquiline and clofazimine resistance. 
In this dataset, we identified 18 frameshift mutations in 
pepQ across 11 patients, one of which also had a mmpR5 
frameshift mutation. In one isolate the pepQ frameshift 
occurred at the Arg271 position previously reported to 
be associated with bedaquiline resistance [19].

Thirty-four genomes harboured nonsynonymous mmpR5 
variants of unknown phenotypic effect (7 L2, 27 L4), corre-
sponding to 22 unique mutations or combinations of muta-
tions. To assess properties associated to RAVs which may be 
useful predictors of the phenotypic effect of these unknown 
variants we employed a machine learning approach, provid-
ing a foundation for further exploration of genomic features 
associated to RAV status (see Additional file  2: Note S1), 
although this was not used for the categorisation of RAVs in 
the main analysis.

The time to emergence of mmpR5 variants
To estimate the age of the emergence of different mmpR5 
non-synonymous variants, we identified all nodes in each 
of the L2 and L4 global time-calibrated phylogenies delin-
eating clades of isolates carrying a particular mmpR5 
variant (Fig.  3, Additional file  3: Table  S7). For the L2 
dataset, we identified 49 unique phylogenetic nodes 
where mmpR5 mutations emerged. The point estimates 
for these nodes ranged from March 1845 to Novem-
ber 2018. Eight nonsynonymous/frameshift variants in 
mmpR5, including four bedaquiline RAVs (Met139Ile, 
Cys46fs, Ala59Val, Asn98fs) and one case expected to 
lead to an intermediate phenotype (Arg90Cys), were esti-
mated to have emergence dates (point estimates) predat-
ing the first bedaquiline clinical trial in 2007 (Additional 
file 2: Fig S13).

For the L4 dataset, we identified 84 unique nodes 
where mmpR5 mutations emerged. The point esti-
mates for these nodes ranged from September 1701 to 

January 2019 (Fig.  3, Additional file  2: Fig S14). Nine-
teen mmpR5 mutations, including five unique bedaqui-
line RAVs (Gln22Arg, Asn98Asp, Ile67fs × 2, Arg96Gly, 
Met146Thr) and three predicted to have an intermedi-
ate phenotype (Arg90Cys, Val20Ala, Ser53Leu), were 
estimated to have emerged prior to 2007. We esti-
mate that Arg90Cys emerged between 1930 and 1947, 
an example of the likely circulation of variants which 
lead to a response to bedaquiline above wild-type lev-
els pre-existed the first clinical trials for clofazimine in 
the 1960s. While we identified no nodes with a second-
ary emergence of mmpR5 nonsynonymous/frameshift 
mutations across the L4 dataset, eight nodes were iden-
tified in the L2 dataset where a clade already carrying 
a nonsynonymous/frameshift variant in mmpR5 subse-
quently acquired a second nonsynonymous/frameshift 
mutation.

In the L4 dataset, we noted one large clade of 66 sam-
ples, predominantly collected in Peru (henceforth Peru-
vian clade), which all carry the Ile67fs mmpR5 mutation, 
which when observed independently has been linked to 
bedaquiline resistance [37, 81, 82]. While it is not incon-
ceivable that multiple independent emergences of Ile67fs 
occurred in this clade, the more parsimonious scenario 
is a single ancestral emergence. We estimate the time 
of this emergence to 1702 (1657–1732) (Fig.  3, Addi-
tional file 2: Fig S14–S15). Of significance, we identified a 
frameshift mutation in the adjacent MmpL5 efflux pump 
(Arg202fs) in isolates from this Peruvian clade, the pro-
tein whose overexpression mediates bedaquiline resist-
ance following loss-of-function of the MmpR5 regulatory 
protein. This frameshift, which leads to a premature 
stop codon at amino acid 206, is expected to counter-
act the otherwise resistance-conferring mutation. This 
epistatic interaction restoring bedaquiline susceptibil-
ity has recently been described elsewhere [23, 41]. The 
mmpL5 frameshift mutation was present in all isolates in 
the Peruvian clade bar one (ERR7339051/LN3756) which 
had mmpL5 Arg202Leu. This event of reading-frame res-
toration is likely explained by a recent secondary dupli-
cation of a T downstream of the initial deletion (777876 
GGCAT > GGAT, GGAT > GGATT). We considered the 
phenotype of this strain as unknown. No other mmpL5 
mutations were found in any isolate containing mmpR5 
mutations within this study though we did identify a low 
prevalence of variants in mmpL5 and mmpS5 independ-
ent of mmpR5 mutations across both lineages (Additional 
file 2: Fig S8–S9).

We also noted a tendency for mmpR5 mutations to 
emerge in clades that also displayed genetic markers of 
rifampicin resistance. This was more common in muta-
tions emerging after 2007 (77.2%) than before 2007 
(58.3%). Most of the oldest Ile67fs Peruvian clade was 
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rifampicin resistant (58/66 samples), with the remaining 
samples demonstrating only isoniazid resistance.

Phenotypic validation of mmpR5 variants
Given documented epistasis as a modulator of bedaqui-
line resistance phenotype, we performed MIC testing 
on a selection of available isolates and identified further 
MICs that have been recently published as part of the 
Cryptic consortium using microtitre plates (Additional 
file  3: Table  S7) [67, 83]. The epidemiological cut-off 
(ECOFF, defined as MIC of 95–99% of wild-type isolates) 
for bedaquiline has been proposed to be 0.12 or 0.25 μg/
mL depending on the method used, although the final 
decision was to use an ECOFF of 0.25 μg/mL [83].

We were able to identify 30 L4 isolates from Peru 
(including members of the aforementioned Peruvian 
clade) for MIC testing, and a further 9 MICs for L4 that 
had recently been published by the Cryptic consortium 
[67]. For the oldest dated mmpR5 mutation emergence 
— the L4 Ile67fs mutation in Peruvian isolates with an 
associated MRCA estimated to 1701—10/11 (90.9%) had 
a MIC below the lower proposed ECOFF of 0.12 μg/mL, 
presumably due to the co-existing mmpL5 loss of func-
tion mutation. Hence, we denote isolates from this clade 
as having a hypersusceptible phenotype. The second old-
est predicted resistance mutation (Arg90Cys, dated to 
1940) was however associated with MICs ≥ 0.12 μg/mL 
in 6/7 (85.7%) instances, and in 3/4 (75%) instances for 
the third oldest predicted resistance-associated mutation 
for which data were available (Asn98Asp, dated to 1987). 
These MICs are above the wild-type range, if not formally 
classified as resistant. Clades with associated MIC confir-
mation are highlighted in Fig. 3b.

Discussion
Our work establishes that the emergence of variants in 
mmpR5, including bedaquiline RAVs, is not solely driven 
by bedaquiline use. We identified up to 11 events where 
RAVs (classified as resistant) emerged prior to the first 
clinical trials of bedaquiline in 2007 and a further four 
cases of variants emerging prior to the clinical use of 
bedaquiline which are expected to give rise to an inter-
mediate phenotype. These are highlighted red and orange 
respectively in Additional File 3: Table S7, not including 
the oldest emergence of Ile67fs as its resistant pheno-
type is negated by the epistatic interaction with mmpL5 
mutations. Phylogenetic inference estimated the oldest 
clade containing mmpR5 mutations, composed mostly of 
samples from Peru carrying mmpR5 Ile67fs and mmpL5 
Arg202fs, to have emerged around 1702 (1657–1732). We 
identify two further early emergences of mmpR5 muta-
tions, estimated to 1871 and 1940 (Asp141fs and Arg-
90Cys; point estimates), with samples from the latter 

clade confirmed to have MICs above the wild-type range 
justifying classification of an intermediate phenotype. 
Asp141fs has been detected in a bedaquiline susceptible 
isolate by Rancoita et  al. [84] (SRR6479538), accompa-
nied by an I948V mmpL5 mutation. In the latest WHO 
catalogue v2, Asp141fs is classified as ‘interim association 
with resistance’ to bedaquiline [35]. Thus, the phenotypic 
implications of Asp141fs remain unclear.

Together our work suggests the likely circulation of 
variants exhibiting at least borderline resistance even 
prior to the first clinical trials for clofazimine. Our phy-
logenetic inference method, which points to multiple 
emergences of mmpR5 nonsynonymous/frameshift 
variants predating the use of bedaquiline, is also con-
firmed by the direct observation of eight Mtb genomes 
carrying mmpR5 RAVs sampled prior to 2007 (Addi-
tional File 2: Table  S4). We also identified, within the 
aforementioned Peruvian clade, a frameshift mutation 
in mmpL5, which seemed to counteract the otherwise 
resistance-associated phenotype conferred by mmpR5 
Ile67fs through an epistatic interaction (MIC < 0.12 μg/
mL). While Ile67fs is central for bedaquiline resistance 
in Mtb, and this mutation has clearly emerged well prior 
to the use of bedaquiline and clofazimine in this clade, 
its phenotypic impact is influenced by the strain genetic 
background. This observation, together with the uncer-
tainty surrounding Asp141fs, suggests that an extension 
of resistance prediction frameworks, for example along 
the lines of the machine learning approach we implement 
here, that jointly considering mutations in both mmpR5 
and mmpL5 may help to better ascertain bedaquiline 
resistance status. Indeed, the WHO now formally rec-
ognises the importance of epistasis when interpreting 
the phenotypic impact of mmpR5 variants on bedaqui-
line resistance [35]. Though additional linked genomic 
and phenotypic (MIC) data will be required to develop a 
model with satisfactory predictive power.

We identified other localised clusters with mmpR5 
mutations, reinforcing the need for concern even in sit-
uations where such mutations are globally rare. This 
included Met146Thr carrying isolates found in lineage 4 
isolates from Eswatini. Met146Thr mutations have been 
previously associated with a clade that has a rifampicin-
resistance conferring mutation located outside of the 
canonical rifampicin-resistance determining region, and 
these isolates exhibit elevated bedaquiline MICs [85]. The 
emergence of the Met146Thr mutation has previously 
been dated to have emerged in approximately 2003 [23, 
41, 85]. This is in reasonable agreement with our analy-
sis on a much larger dataset which inferred an emergence 
in 2005.6 (95% confidence intervals 2004.8–2006.0). The 
long-standing presence of variants implicated in resist-
ance and borderline resistance to bedaquiline predating 
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the use of the drug and at high prevalence in geographi-
cally notable cases is of concern, as it suggests that non-
synonymous mutations in mmpR5 exert little fitness cost.

Together, our work suggests the existence of pre-
existent reservoirs of bedaquiline-resistant Mtb. These 
may have been selected for through historic clofazimine 
use, though we inferred at least one case of intermediate 
resistance to bedaquiline emerging as early as 1930–1947. 
We note that detected variants in mmpR5 tend to exist in 
strains already displaying rifampicin resistance, though 
they are also found in otherwise fully susceptible strains 
(Additional File 3: Table  S7). Together this suggests the 
important role of prior drug exposure in selecting for 
strains with pre-existing (cross-)resistance potential. This 
reservoir of putatively adaptive variants is expected to 
expand under drug pressure with the increasing use of 
bedaquiline and clofazimine in TB treatment. Further, 
these reservoirs may also pose a threat for other candi-
date TB agents from different drug classes that are also 
exported by mmpS5 and mmpL5 [19, 22, 64].

The identification of resistance variants occurring 
before the clinical use of a drug is not limited to M. 
tuberculosis and mmpR5 alone. To illustrate, within M. 
bovis, there is evidence indicating that the pncA H57D 
mutation, which is associated with resistance to pyrazi-
namide (PZA), emerged approximately 900 years ago, 
providing inherent resistance to PZA in the majority of 
M. bovis [86]. Similarly, variations in intrinsic susceptibil-
ity to pretomanid have been observed across the MTBC, 
including Mtb lineages, even without prior exposure to 
nitroimidazoles [87]. It is likely that there are numerous 
other instances of such loss of function mutations with 
minimal or no impact on fitness, similar to the case of 
mmpR5. Furthermore, the existence of antimicrobial 
resistance in different forms has persisted throughout the 
natural history of various bacteria [88].

Nevertheless, it is crucial to determine the age and 
diversity of variants that have been implicated in drug 
resistance to gain a better understanding of the poten-
tial for widespread resistance as a contemporary chal-
lenge. We identified a large number of different mmpR5 
nonsynonymous/frameshift variants across both of our 
Mtb lineage cohorts; 46 in L2 and 67 in L4. This sug-
gests the mutational target leading to bedaquiline resist-
ance is wider than for most other current TB drugs and 
raises concerns about the ease with which bedaquiline 
resistance can emerge during treatment. It is further con-
cerning that resistance to the new class of nitroimidazole 
drugs, such as pretomanid and delamanid, is also con-
ferred by loss of function mutations in any of at least six 
genes, suggesting that they may also have a low barrier to 
resistance [89], though current studies suggest acquired 
resistance rates are low [39].

While we identified many non-synonymous variants 
in mmpR5, only one (Ile67fs) has been previously defin-
itively linked to resistance. We acknowledge that sev-
eral of our detected variants have no associated MIC 
values available in the literature and are thus currently 
not fully phenotypically validated, and we treat them 
as ‘unknown’ in this work. As some of these ‘unknown’ 
variants will likely be associated with a phenotype in 
the future, and possibly confirmed as RAVs, a subset of 
the early emerging ‘unknown’ variants may turn out to 
represent additional instances of bedaquiline resistance 
predating the use of the drug. Though, determining the 
phenotypic consequences of mmpR5 variants remains 
challenging as reports correlating MICs to genotypes 
remain scarce. Moreover, at least four different meth-
ods are used to determine MICs, some of which do not 
have associated critical concentrations. Even where 
critical concentrations have been set, different isolates 
carrying the same mutations can fall on either side of 
the breakpoint between wild-type and drug-resistant 
[36]. The choice of breakpoints has also been called 
into question [90, 91] underlying the need to validate 
broth microdilution assays comprehensively [92].

Prediction of phenotypic bedaquiline resistance from 
genomic data is further complicated by the existence 
of hypersusceptibility variants. For example, the c-11a 
variant located in the promoter of MmpR5, which 
appears to increase susceptibly to bedaquiline [40], was 
observed to be fixed throughout a large clade within L2. 
The early emergence of this variant and its geographi-
cal concentration in South Africa and Eswatini may 
suggest the role of non-pharmacological influences on 
MmpR5 which regulates multiple MmpL efflux systems 
[20]. Further, analysis of hypersusceptibility is lim-
ited by the truncated lower MIC range of the UKMYC 
microtitre plates, with many isolates giving MICs below 
the lower end of the measured range. While large-scale 
genotype/phenotype analyses will likely support the 
development of rapid molecular diagnostics, targeted 
or whole genome sequencing, at reasonable depths, 
may provide the only opportunity to detect all possible 
mmpR5 RAVs, and possible co-occurring mutations, in 
clinical settings.

Bedaquiline resistance can also be conferred by other 
RAVs including in pepQ (bedaquiline and clofazimine), 
atpE (bedaquiline only) [82] and Rv1979c (clofazimine 
only). We only found atpE RAVs at low allele frequency 
in one patient who also had mmpR5 variants (sample 
accession ERR2677436), which is in line with other evi-
dence suggesting they rarely occur in clinical isolates, 
likely due to a high fitness cost. Likewise, we only identi-
fied Rv1979c RAVs in three patients in China, although 
there were other variants in Rv1979c for which the ability 
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to cause phenotypic resistance has not been previously 
assessed. Frameshift pepQ mutations that are potentially 
causative of resistance were identified in 11 cases, in 
keeping with its possible role as an additional rare resist-
ance mechanism.

Conclusion
Our findings, of reservoirs of mmpR5 RAVs predating the 
therapeutic use of bedaquiline, are of high clinical rele-
vance as the presence of mmpR5 variants during therapy 
in clinical strains has been associated with substantially 
worse outcomes in patients treated with drug regimens 
including bedaquiline [37]. Although it is uncertain what 
the impact of mmpR5 RAVs is on outcomes when present 
prior to treatment [93, 94], it is imperative to monitor and 
prevent the wider transmission of bedaquiline-resistant 
clones, particularly in high MDR/XDR-TB settings. Early 
evaluation of new TB drug candidates entering clinical 
trials will also be vital given early data suggesting possible 
cross-resistance for DprE1 inhibitors such as macozinone 
[22]. The large and disparate set of mutations in mmpR5 
we identified, with differing phenotypes and some having  
been in circulation historically, adds further urgency to 
the development of rapid drug susceptibility testing for 
bedaquiline to inform effective treatment choices and 
mitigate the further spread of DR-TB.
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Additional file 1: Table S1. Full metadata, including estimated date of 
collection where relevant, and predicted bedaquiline resistance status for 
accessions included in the Lineage 2 and Lineage 4 datasets (see sheets 
Lineage 2 and Lineage 4)

Additional file 2: Fig S1. Distribution of difference (in decimal years) of 
collection date to release date for sequences in the lineage 2 (L2) and 
lineage 4 (L4) dataset. For lineage 4, having excluded samples from three 
eighteenth century mummies, an average of 6.9 years (0.6–19.1 years 95% 
CI) was obtained. For lineage 2, an average lag-time of 4.7 years 
(0.5–12.6 years 95% CI) was obtained. Fig S2. Maximum likelihood 
phylogenetic tree of the lineage 2 (a) and lineage 4 (b) datasets. Tip 
colours provide the country of sample collection and outer bars give the 
resistance to four antimycobacterial drugs: fluroquinolones (FLQ), isoniazid 
(INH), kanamycin (KAN) and rifampicin (RMP). Fig S3. Number (count) of 
mmpR5 variants split by predicted phenotype (x-axis) for each geographic 
region included in each of the lineage 2 (a) and lineage 4 b) datasets. Fig 
S4. Co-occurrence count of mmpR5 variant phenotype predictions (x-axis) 
and resistance status a) and genotypic resistances b) for the lineage 2 
dataset. Fig S5. Co-occurrence count of mmpR5 variant phenotype 
predictions (x-axis) and resistance status a) and genotypic resistances b) 
for the lineage 4 dataset. Fig S6. Contingency tables and χ2 results for the 
distribution of susceptible, MDR and XDR Mtb amongst strains carrying 
variants in mmpR5 in the lineage 2 dataset. Plots provide the squared 
standardised residuals contributing to the rejection of the null hypothesis. 
The colour intensity and size of the circle is proportion to the contribution 
with positive displayed in blue and negative in red. Fig S7. Contingency 
tables and χ2 results for the distribution of susceptible, MDR and XDR Mtb 
amongst strains carrying variants in mmpR5 in the lineage 4 dataset. Plots 
provide the squared standardised residuals contributing to the rejection 

of the null hypothesis. The colour intensity and size of the circle is 
proportion to the contribution with positive displayed in blue and 
negative in red. Fig S8. Phylogenetic distribution of LOF mutations 
identified in mmpL5 and mmpS5 identified in L2 isolates. Phylogeny is 
provided with tip colours according to inferred bedaquiline resistance 
status. Heatmap provides colour for presence of a mutation as ordered by 
the vertical columns. Fig S9. Phylogenetic distribution of LOF mutations 
identified in mmpL5 and mmpS5 identified in L4 isolates. Phylogeny is 
provided with tip colours according to inferred bedaquiline resistance 
status. Heatmap provides colour for presence of a mutation as ordered by 
the vertical columns. Fig S10. Summary plot of SHAP values. Each point 
represents the SHAP value of a single prediction for a particular feature. 
Points are stacked vertically using density estimation. ‘WT’, ‘mutant’ and 
‘MW’ denotes the wild type amino acid, amino acid variant and molecular 
weight (Da) respectively. ‘Property’ refers to whether an amino acid was 
non-polar, polar, positively charged or negatively charged. ‘Ligand_bind-
ing’, ‘dna_binding’ and ‘dimerisation’ refer to whether the amino acid 
residue is involved in ligand binding, DNA binding or dimerisation. 
‘Position’ refers to the integer 5’-3’ position of the variant. Positive SHAP 
values imply an increase in the predicted probability of resistance due to 
the presence of the feature. Fig S11. Linear regressions of root-to-tip 
distance (y-axis) versus sampling dates (x-axis) for global Mtb datasets; 
lineage 2 (a-b) and lineage 4 (c-d). Regressions are performed both 
without (a-c) and with (b-d) imputation of missing dates (see Methods). 
Here, the p-value (tiprandomisation test) is calculated by fitting a linear 
regression to the root to tip distance vs sampling date for 10,000 
randomisations and adding the number of randomised fits that present a 
better regression coefficient than the real data (divided by 10,000). Fig 
S12. Sub-sampled datasets temporal regression. The lineage 2 data 
covered 24 years of molecular evolution. The lineage 4 dataset comprised 
232 years of evolution. Fig S13. Full mutational timeline for the estimated 
date of emergence (x-axis) and confidence intervals of nodes with 
descendent tips carrying nonsynonymous variants in mmpR5 in the 
lineage 2 dataset. All nonsynonymous variants are depicted. Confidence 
bars are coloured according to the region where the isolate was collected. 
Symbols provide the point estimates of the age of the node coloured by 
mmpR5 predicted phenotype. Symbols are used for all mutations 
occurring in ≥5 isolates, in this case. Grey dashed lines provide the 
collection date of all sequenced isolates included in the analysis with 
mmpR5 variants. Data available in Supplementary Table S7. Fig S14. Full 
mutational timeline for the estimated date of emergence (x-axis) and 
confidence intervals of nodes with descendent tips carrying nonsynony-
mous variants in mmpR5 in the lineage 4 dataset. All nonsynonymous 
variants are depicted. Confidence bars are coloured according to the 
region where the isolate was collected. Symbols provide the point 
estimates of the age of the node coloured by mmpR5 predicted 
phenotype. Symbols are used for all mutations occurring in ≥5 isolates. 
Grey dashed lines provide the collection date of all sequenced isolates 
included in the analysis with mmpR5 variants. Data available in Supple-
mentary Table S7. Fig S15. a) Lineage 4 Peruvian mmpR5 Ile67fs + mmpL5 
Arg202fs carrying clade phylogeny, which has a tMRCA dating to 1702 
(1657–1732). Phenotypic resistances for fluoroquinolones (FLQ), isoniazid 
(INH), kanamycin (KAN) and rifampicin (RMP) are provided as outer 
coloured rings. Most samples are from Peru (purple), though two samples 
are from Europe (Sweden and the Netherlands). b) Provides the 
generalised skyline plot estimate of effective population size through time 
based on the timed phylogeny of this clade. Grey lines provide the full 
skyline plot, black lines provide the coalescent intervals. The first clinical 
use of clofazimine and bedaquiline are provided by the axis at top. 
Table S2. Source of whole genome sequences included in the global 
lineage 2 and lineage 4 alignments following quality checks and as given 
in Table S1. The number in brackets designate those with mmpR5 differing 
from wild type. Table S3. Classification of previously observed resistance 
associated with mmpR5 variants identified in this study. Table S4. 
Sequence data identified with mmpR5 variants predating 2007. Dates 
flagged with an asterisk (*) indicate those dates which have been 
permuted using the metadata of all samples (see Est. column of 
Supplementary Table S1). Table S5. Number of estimated emergence 
(homoplasic) events for major mmpR5 variants considered. Table S6. 
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Summary of phylogenetic dating approaches applied to the L4 and L2 
datasets. BactDating was run in both cases but failed to converge after  1e7 
or  3e7 MCMC iterations for the L4 dataset. The subsampled BEAST2 runs 
highlighted yellow provided the highest likelihood following path 
sampling over all strict clock models and were run only on accessions with 
associated collection dates. These rates were applied to the maximum 
likelihood phylogenetic tree for temporal estimation of resistance 
emergence (main text Fig. 2, see Methods). Table S7 [external excel 
document]. Inferred age of nodes and preceding nodes for L2 samples 
with mmpR5 nonsynonymous variants. Cells are coloured as per 
phenotype annotations (see main text Fig. 1, 2, 3). Presence of mmpL5 
variants is noted, as are MICs where available. TBProfiler resistance profiles 
as either “S” for susceptible, “RR” for rifampicinresistant and “preXDR” for 
fluoroquinolone-resistant. Table S8 [external excel document]. 
Predicted probability of bedaquiline resistance based on the amino acid 
properties of mmpR5 variants following a machine learning predictive 
approach (see Methods and Supplementary Note 1). Table S9. Precision, 
recall, F1, AUPRC, sensitivity and specificity scores for gradient-boosted 
tree classifier. Standard deviation was calculated across the 10 outer loops 
of the nested crossvalidation protocol. Supplementary Note 1. 
Predicting bedaquline resistance using machine learning techniques.

Additional file 3: Table S7. Inferred age of nodes and preceeding nodes 
for L2 samples with mmpR5 nonsynonymous variants. Cells are coloured 
as per phenotype annotations (see main text Fig. 1, 2, 3).

Additional file 4: Table S8. Predicted probability of bedaquiline resist-
ance based on the amino acid properties of mmpR5 variants following 
application of a machine learning predictve approach (see Methods and 
Supplementary text S1).
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