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Abstract 

Background Biological processes are controlled by groups of genes acting in concert. Investigating gene–gene 
interactions within different cell types can help researchers understand the regulatory mechanisms behind human 
complex diseases, such as tumors.

Methods We collected extensive single-cell RNA-seq data from tumors, involving 563 patients with 44 different 
tumor types. Through our analysis, we identified various cell types in tumors and created an atlas of different immune 
cell subsets across different tumor types. Using the SCINET method, we reconstructed interactome networks spe-
cific to different cell types. Diverse functional data was then integrated to gain biological insights into the networks, 
including somatic mutation patterns and gene functional annotation. Additionally, genes with prognostic relevance 
within the networks were also identified. We also examined cell–cell communications to investigate how gene inter-
actions modulate cell–cell interactions.

Results We developed a data portal called CellNetdb for researchers to study cell-type-specific interactome net-
works. Our findings indicate that these networks can be used to identify genes with topological specificity in different 
cell types. We also found that prognostic genes can deconvolved into cell types through analyzing network connec-
tivity. Additionally, we identified commonalities and differences in cell-type-specific networks across different tumor 
types. Our results suggest that these networks can be used to prioritize risk genes.

Conclusions This study presented CellNetdb, a comprehensive repository featuring an atlas of cell-type-specific 
interactome networks across 44 human tumor types. The findings underscore the utility of these networks in delineat-
ing the intricacies of tumor microenvironments and advancing the understanding of molecular mechanisms under-
pinning human tumors.
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Background
The cellular processes are achieved by groups of genes 
acting in concert to shape the cellular responses. Dis-
ruption of gene interaction networks could impair cellu-
lar functions, leading to diseases such as human tumors 
[1–3]. Understanding how gene–gene interactions are 
organized is critical for gaining global insights into the 
disease mechanisms. Therefore, large efforts have been 
devoted to building reference interactome networks [4–
6]. However, the precise gene interaction networks may 
be remodeled within their spatiotemporal context [7, 8]. 
The accumulation of multi-omics data has provided an 
opportunity to infer accurate tissue-specific gene inter-
action networks [9, 10]. With the advancement of single-
cell RNA sequencing (scRNA-seq) technologies, it is now 
possible to dissect heterogeneous tissues at a single-cell 
level [11–13]. The tumor is a heterogeneous mixture 
comprising of different cell types. scRNA-seq has been 
widely used to resolve the cellular heterogeneity of tumor 
microenvironments [11, 14, 15]. Thus, leveraging accu-
mulated scRNA-seq data from human malignancies to 
examine gene interaction networks within cellular heter-
ogeneity could complement expression-based approaches 
to elucidating underlying molecular mechanisms.

Therefore, we curated a large-scale compendium of 
tumor scRNA-seq datasets and built an atlas of cell-type-
specific interactome networks across various human 
tumors. We first collected and uniformly processed 
scRNA-seq data of 44 different tumor types, totaling 
approximately 2.2 million single cells from 563 tumor 
patients. Tumor cells, immune cells, endothelial cells, 
and other cells were identified using the curated scRNA-
seq datasets. Furthermore, by coordinating cell-type 
annotation across tumor types, a pan-tumor atlas of dif-
ferent immune cell subsets in tumor immune microenvi-
ronments (TIMEs) were constructed. Then, we applied 
the SCINET method to reconstruct interactome net-
works specific to different cell types and immune cell 
subsets [16]. SCINET is a reference-guided method for 
inferring gene interactions from single-cell transcriptome 
data [16]. Four widely used network resources, including 
STRING, ConsensusPathDB, HumanNet, and Reactome, 
were used as the reference interactome [4–6, 17].

We created a data portal, CellNetdb (http:// www. bioai 
lab. com: 3838/ CellN etdb), by designing an interactive 
user interface that allows users to browse, query, and 
visualize the cell-type-specific interactome networks. 
Multifaceted functional data were incorporated to gain 
more biological insights. The somatic mutation spec-
tra were mapped to the interactome networks. Func-
tional analysis and annotation, including Gene Ontology 
enrichment and disease enrichment, were also imple-
mented for the networks. Additionally, survival analysis 

was incorporated to reveal the prognostic relevance 
of genes implicated in the networks. To speculate the 
underlying molecular mechanisms modulating ligand-
receptor interactions in cell–cell communications, we 
also inferred cell–cell communications from single-cell 
transcriptomes and integrated them with the cell-type-
specific interactome networks. Furthermore, we found 
that these cell-type-specific interactome networks ena-
ble the distinction of topologically specific genes, whose 
overall interaction strength is highly cell-type-specific. 
Through connectivity analysis on different cell-type-spe-
cific networks, we can deconvolve prognostic signatures 
into cell types and found that the prognostic effects of 
ITGB1 are linked to CAF-mediated tumor progression. 
Notably, we have implemented an analysis platform that 
allows users to prioritize risk genes within cellular het-
erogeneity. The utility of CellNetdb in prioritizing risk 
genes have been demonstrated using examples of tumor 
drivers and T cell exhaustion. We envision that the atlas 
of cell-type-specific interactome networks in tumors and 
the CellNetdb portal will help to characterize the tumor 
microenvironments and reinforce the understanding of 
molecular mechanisms underlying tumor development 
and progression.

Methods
scRNA‑seq data collection and processing
The scRNA-seq data utilized in this study was obtained 
from a variety of publicly available sources, including the 
Gene Expression Omnibus (GEO), ArrayExpress, Euro-
pean Nucleotide Archive (ENA), European Genome-
phenome Archive (EGA), and Genome Sequence Archive 
(GSA) (Additional file  1: Table  S1). From all curated 
datasets, the cancer types were categorized based on 
the original studies, and only malignant samples were 
included in our analysis (Additional file 1: Table S2 and 
S3). The raw sequencing data was aligned to the human 
reference genome (hg38/GRCh38) and UMI count 
matrices were constructed using Cell Ranger (version 
5.0.1) [18]. The resulting gene expression matrices were 
further processed and analyzed using Seurat (version 
4.1.1) [19]. Quality controls were implemented to filter 
out cells with low quality based on mitochondrial gene 
counts, total UMIs, and detected gene counts (percent-
age of mitochondrial genes > 20%, UMIs < 800 or detected 
genes counts < 200). The filtered gene expression matrix 
was then normalized using the NormalizeData function. 
The Seurat CCA was applied to integrated multiple data-
sets and remove potential batch effects [19]. Dimension 
reduction and unsupervised clustering were then used to 
cluster single cells, which were subsequently annotated 
into distinct cell types using curated marker gene sets 
(Additional file 1: Table S4). CopyKAT (version 1.0.8) was 

http://www.bioailab.com:3838/CellNetdb
http://www.bioailab.com:3838/CellNetdb


Page 3 of 18Li et al. Genome Medicine           (2024) 16:30  

utilized to assess CNV for each single cell and distinguish 
malignant cells from normal cells [20]. Malignant cells 
were identified as cell clusters with significantly abnor-
mal CNV levels.

To construct a pan-tumor TIME atlas of solid tumors, 
single cells identified as immune cells (myeloid cells, B 
cells, CD4+, and CD8+ T cells) were obtained from the 
single-cell dataset of each solid tumor type. The Seurat 
CCA was conducted to integrate immune cells identi-
fied as myeloid cells, B cells, CD4+ T cells, and CD8+ T 
cells, respectively, to remove batch effects. Following 
dimension reduction and unsupervised clustering, the 
integrated immune cell single-cell transcriptomes were 
further manually annotated into cell subsets with curated 
marker gene sets (Additional file 1: Table S5).

Batch‑effect correction and evaluation
As multi-source scRNA-seq data were utilized to con-
struct the single-cell atlas, we conducted an evaluation 
of the effectiveness of various commonly employed data 
integration methods, namely BBKNN [21], ComBat [22], 
Harmony [23], Scanorama [24], scDML [25], scVI [26], 
and Seurat CCA [19]. Drawing inspiration from previous 
research, we employed six metrics to assess the trade-
offs between batch integration and clustering perfor-
mance [25]. These metrics encompassed adjusted rand 
index (ARI), normalized mutual information (NMI), and 
average silhouette width for cell type (ASW_celltype) to 
evaluate clustering performance, as well as inverse Simp-
son’s index of integration (iLISI), KL divergence of batch 
mixing (BatchKL), and average silhouette width for batch 
(ASW_batch) to evaluate the ability to mitigate batch 
effects. ARI and NMI were employed to quantify cluster-
ing accuracy, with higher values indicating greater simi-
larity between the clustering results and true cell types. 
iLISI was utilized to evaluate the extent of local batch 
mixing, with higher values indicating superior perfor-
mance in batch mixing. BatchKL was employed to meas-
ure the divergence of batch mixing, with lower values 
indicating better batch mixing performance. ASW_cell-
type was used to assess the purity of cell types in clus-
tering, with higher values indicating improved clustering 
performance. Conversely, ASW_batch was employed to 
evaluate the extent of global batch mixing after data inte-
gration, with lower values indicating better batch-effect 
correction performance.

Summarizing the benchmarking results of data integra-
tion for each tumor type, the overall performance of CCA 
was found to be either superior or comparable to other 
methods (Additional file  2: Figure S1A-E). Additionally, 
the metrics for batch mixing, including distinct studies 
in our study, were also assessed (Additional file 2: Figure 
S1F). These observations revealed that CCA exhibited 

relatively satisfactory performance across all datasets 
of different tumor types. In evaluating the data integra-
tion of pan-tumor TIMEs, CCA demonstrated supe-
rior or comparable performance in terms of ARI, NMI, 
ASW_celltype, and ASW_batch (Additional file 2: Figure 
S2A-D). Furthermore, the evaluation of batch mixing 
indicated that CCA achieved the best performance in 
data mixing in our study (Additional file 2: Figure S2E). 
Overall, these results highlight the Seurat CCA approach 
as displaying superior and comparable performance 
compared to other methods. It exhibits a commendable 
ability to mix batches while preserving cell type purity, 
suggesting that CCA is a suitable method for our study.

Reconstruction of cell‑type‑specific interactome networks
The SCINET method was employed to reconstruct inter-
actome networks specific to individual cell types [16]. 
To serve as references, the widely used interactome net-
works STRING, HumanNet, ConsensusPathDB, and 
Reactome were downloaded [4–6, 17] (Additional file 1: 
Table  S6). Employing the workflow of SCINET imple-
mented in ACTIONet, the cell-type-specific interactome 
networks were reconstructed for each cell type. Within 
each tumor type, only cell types with a minimum of 100 
cells were utilized for network construction. Leveraging 
the cell-type annotation, the specificity of genes for each 
cell type was estimated using the compute.cluster.feature.
specificity function, followed by the construction of cell-
type-specific networks using the run.SCINET.clusters 
function.

Enrichment analysis of GO terms and disease‑associated 
genes
To facilitate users in acquiring functional insights into 
the network, we conducted enrichment analysis on Gene 
Ontology and disease-associated gene sets. The GO gene 
sets were obtained from the Gene Ontology database 
(release 2022–06-15, https:// relea se. geneo ntolo gy. org/ 
2022- 06- 15, doi: 10. 5281/ zenodo. 66872 03), while the 
disease-associated gene sets were sourced from the Dis-
GeNET database (v7.0) [27]. The statistical significance 
of the enrichment of genes in GO terms or disease-asso-
ciated gene sets within each queried local network was 
determined using the hypergeometric test. The adjusted 
P-values were also calculated using the Benjamini–Hoch-
berg method to correct for multiple testing.

Integration of somatic mutation
The somatic mutation spectra for each tumor type were 
obtained from the Catalogue of Somatic Mutations in 
Cancer (COSMIC) database (v96) [28], which is a com-
prehensive resource for investigating somatic muta-
tions (Additional file 1: Table S7). Then we assigned the 

https://release.geneontology.org/2022-06-15
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somatic mutation spectra to each gene involved in each 
cell-type-specific networks across various tumor types 
and pan-tumor TIMEs.

Survival analysis
We gathered clinical data from several large-scale 
cohorts, including The Cancer Genome Atlas (TCGA), 
Multiple Myeloma Research Foundation (MMRF), and 
Therapeutically Applicable Research to Generate Effec-
tive Treatments (TARGET). Univariate Cox regres-
sion analysis was performed to assess the relationship 
between survival time and gene expression level. Addi-
tionally, patients were categorized into two groups based 
on the median expression level of each gene within cell-
type-specific interactome networks. The log-rank test 
was employed to compare the survival times of high- 
and low-expression groups, while the Kaplan–Meier 
curve was utilized to visually represent the observed 
differences.

Inference of cell–cell communication
Cell–cell communications were inferred using the R 
package CellChat (version 1.1.3) [29]. A CellChat object 
was created from the Seurat object using the createCell-
Chat function. The CellChat object utilized the Cell-
ChatDB.human ligand-receptor interaction database. 
The computeCommunProb function was employed to 
infer the cell–cell communication probability after iden-
tifying overexpressed ligands or receptors. The aggre-
gated cell–cell communication network was determined 
by counting the number of links or summarizing the 
communication probability. Additionally, the cell–cell 
communication mediated by the ligand-receptor pairs 
implicated in the cell-type-specific interactome networks 
were selected for inclusion in CellNetdb to investigate 
network genes that modulate cell–cell communications.

Gene prioritization
We have implemented the random walk with restart 
(RWR) algorithm to prioritize interested genes based on 
the cell-type-specific interactome networks. Specifically, 
the random walk with restart is mathematically defined 
as follows:

W represents the column-normalized adjacency matrix 
of the network. The vector pt denotes the probability for 
the random walk to be at node v at time t, while p0 is the 
initial probability vector where only the seed genes have 
non-zero values. The restart probability, γ , is set to 0.5. 
By iteratively repeating the process until the difference 
between pt and pt+1 falls below  10−10, we can numeri-
cally approximate the steady-state probability vector. 

pt+1
= (1− γ )Wpt + γ p0

Ultimately, this allows for the ranking of all genes in the 
network.

Topological specificity and transcriptional specificity 
analysis
Topological specificity enables the quantification of the 
influence of a gene within a cell-type-specific interac-
tome network [16]. In order to evaluate the centrality 
of genes within a cell-type-specific network, we initially 
computed the total strength of their local neighbors, 
represented as w(celltype)(i), for each gene i. Subsequently, 
a random model was constructed to preserve the under-
lying network topology while uniformly reshuffling 
the edge weights. This ensemble of random networks 
allowed us to recompute the strength of interactions, 
thereby enabling the generation of a distribution of gene 
neighborhood strengths for each gene. By utilizing the 
mean μR

(celltype)(i) and standard deviation σR
(celltype)(i) of 

each distribution, the topological specificity of each gene 
in a given cell-type-specific network can be defined as 
follows:

Transcriptional specificity of genes pertains to their 
degree of specificity in expression within a particular 
cell type [16]. To determine this, we employed the gene 
expression profile to calculate the average expression of 
various genes in a given cell type xcelltype(i) and other cell 
types xelse(i). By considering the variance of each group 
s2

celltype(i) and s2
else(i), the transcriptional specificity of 

each gene in a given cell type can be defined as:

Network similarity evaluation
We employed two distinct metrics, namely shared-edge 
similarity, and topology similarity, to assess the degree of 
similarity between networks [30]. Initially, shared nodes 
were identified between any pair of networks. To quan-
tify the shared-edge similarity, the edges connecting 
these nodes were extracted from both networks, result-
ing in the creation of subgraphs for each network. The 
shared-edge similarity was subsequently determined by 
calculating the Spearman correlation coefficient between 
the weights assigned to the shared edges in the respec-
tive subgraphs of both networks. To evaluate the topol-
ogy similarity, the Spearman correlation coefficient was 
computed for the transformed topological specificity 

topS(i) =
w(celltype)(i)− µ

(celltype)
R (i)

σ
(celltype)
R (i)

tranS(i) =
xcelltype(i)− xelse(i)

s2celltype(i)

ncelltype
+

s2else(i)

nelse
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(topStransf) across all shared nodes. The transformation 
function used for topStransf was defined as:

Results
A large‑scale single‑cell atlas across 44 tumor types
To build the atlas of cell-type-specific interactome net-
works, 563 patients’ scRNA-seq datasets were manually 
curated through literature searching (Additional file  1: 
Table  S1). We manually filtered, collected, and uni-
formly processed scRNA-seq data of 44 different tumor 
types, including 36 solid tumor types and 8 hematologi-
cal malignancies (Fig.  1, Additional file  2: Figure S3). 
Following strict quality control and filtration, 1,897,076 
cells from solid tumors and 310,965 cells from hemato-
logical malignancies were retained. Cell counts ranged 
from 4590 in gastrointestinal neuroendocrine tumor to 
192,889 in colorectal tumor, with a median of 26,299 per 
tumor type. The sample sizes ranged from 1 in cervical 
squamous cell carcinoma to 78 in colorectal tumor, with 
a median of 10 per tumor type (Additional file 2: Figure 
S3). For each tumor type, we integrated scRNA-seq data 
from different samples and performed unsupervised 
clustering to cluster cells into different groups. Then, 
we assigned cells to distinct cell types, while ensuring 
expression of canonical cell-type marker genes (Addi-
tional file  1: Table  S4). A total of 35 different cell types 
were annotated in solid tumors, and 14 different cell 
types were annotated in hematological malignancies 
(Additional file 2: Figure S4).

Furthermore, the annotated CD4+ T cells, CD8+ 
T cells, B cells, and myeloid cells from different solid 
tumors were integrated with batch-effect correction to 
define the TIME landscape across solid tumor types. As 
a result, we built a large-scale pan-tumor atlas of 422,761 
immune cells. Subsequently, we performed unsuper-
vised graph-based clustering to identify various cell sub-
sets for each immune cell type (Additional file 2: Figure 
S5A-D, Additional file  1: Table  S5). The CD4+ T cells 
were clustered into seven subsets: Trm (NR4A1+, tis-
sue-resident memory T cells), Th1 (STAT1+, T helper 1 
cells), Th17 (IL23R+ and RORC+, T helper 17 cells), Treg 
(FOXP3+ and IL2RA+, regulatory T cells), Tn (CCR7+, 
naïve T cells), Tfh (PDCD1+, follicular T helper cells), 
and Tem (GZMK+ and CCL5+, effector memory T cells) 
(Additional file  2: Figure S5B). The CD8+ T cells were 
grouped into five subsets, including Tc17 (CCL20+, Type 
17 cytotoxic T cells), Temra (KLRG1+, terminally dif-
ferentiated effector memory T cells), Tn (CCR7+, naïve 
T cells), Tex (HAVCR2+, exhausted T cells), and Tem 
(GZMK+, effector memory T cells) (Additional file  2: 

topStransf (i) =
1

1+ e−topS(i)

Figure S5C). In addition, B cells and Myeloid cells were 
also partitioned into different subsets (Additional file 2: 
Figure S5A and S6D).

An atlas of cell‑type‑specific interactome networks 
across different tumor types
Utilizing the constructed single-cell atlas across 44 
tumor types, we employed SCINET, a reference-guided 
method for inferring gene interactions from single-cell 
transcriptome data, to reconstruct interactome networks 
specific to different cell types. The reference interac-
tome networks employed in this study include STRING, 
ConsensusPathDB, HumanNet, and Reactome [4–6, 17] 
(Additional file 1: Table S6). While STRING, HumanNet, 
and ConsensusPathDB incorporate physical protein–
protein interactions as well as other sorts of interactions, 
such as genetic interactions, Reactome focuses primar-
ily on reactions, pathways, and biological circuits. Both 
the number of nodes and number of edges in Reactome 
are lower than that in other networks (Additional file 2: 
Figure S6A-B). As a result, the scale of Reactome-guided 
networks is found to be lower than others when compar-
ing cell-type-specific interactome networks estimated 
from different reference networks (Additional file 2: Fig-
ure S6C-D, Additional file 1: Table S8 and S9).

In addition, we applied the methodology developed 
by Huang et  al. to compare cell-type-specific networks 
guided by various reference networks [30]. Two metrics, 
performance and performance gain, were employed to 
evaluate these networks. Performance was determined 
by the robust z-score of the true AUPRC of the gene set 
recovery task relative to the background of AUPRCs from 
the degree-matched null networks. Performance gain 
was computed as the difference between the AUPRC of 
a given network and the median AUPRC of its null net-
works, divided by the median AUPRC of its null net-
works. Specifically, we focused on the comparison of 
networks guided by various reference networks using the 
malignant cell-specific networks as an example. Tumor-
associated gene sets for 16 different tumor types were 
sourced from the DisGeNET database (Additional file 1: 
Table  S10). Performance and performance gain were 
assessed for the malignant cell-specific network of each 
tumor type (Additional file  2: Figure S7A-B). A strong 
correlation between performance and performance gain 
was observed (Additional file 2: Figure S7C). Our analy-
sis revealed that cell-type-specific networks guided by 
STRING demonstrated the best overall performance 
(Additional file 2: Figure S7D).

CellNetdb access
We have developed CellNetdb, a comprehensive data 
portal that facilitates the querying and visualization of 
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cell-type-specific interactome networks (Fig. 1). To facili-
tate the interpretation of these networks, we have imple-
mented versatile functional panels.

The “Taxonomy” page provides an overview of cellular 
taxonomy based on single-cell transcriptomes (Fig.  1). 
It also includes information on the cellular taxonomy 
of pan-tumor immune cell subsets. The use of Uniform 
Manifold Approximation and Projection (UMAP) allows 

users to visualize the 2D representation of different cell 
types and the expression levels of marker genes. Addi-
tionally, circle plots are utilized to visualize cell–cell com-
munications based on aggregated signaling pathways. 
The number of cells for each cell type is presented in a 
summary table, accessible through the “Summary” panel. 
As an example, Fig. 2A illustrates the cellular taxonomy 
of lung adenocarcinoma (LUAD).

Fig. 1 Schematic outline of the overall content is this study. The upper panel depicts the data integration and analysis workflow, including data 
collection, cell-type annotation, and the reconstruction of cell-type-specific interactome networks. The lower panel shows the function modules 
of CellNetdb, which provides versatile ways to investigate cell-type-specific interactome networks



Page 7 of 18Li et al. Genome Medicine           (2024) 16:30  

The “CellNet” page is designed to investigate cell-
type-specific interactome networks with multifac-
eted function modules (Fig.  1). Users can input gene 
symbols after selecting the tumor type and cell type 
to obtain and visualize a local network containing the 
queried gene and its neighboring genes. Versatile func-
tion modules are employed to facilitate the understand-
ing of biological insights. To demonstrate the resource’s 
usage, we focus on the MDK gene in LUAD. MDK is 
frequently upregulated in various human tumors and 
plays a crucial role in tumor development and progres-
sion [31–33]. By selecting lung adenocarcinoma and 
epithelial cells, users can enter MDK to visualize the 
local network of MDK (Fig. 2B). To enhance clarity, the 
nodes, edges, and edge weights are presented in tabu-
lar form. According to the local network, MDK exhibits 
strong connections to ERBB2 and ERBB3. Furthermore, 
the “Expression” and “Mutation” panels provide gene 
expression profiles and somatic mutation spectra of 
MDK and its neighbors, respectively (Fig.  2B,C). In 
terms of functional analysis, the “GO” panel indicates 
significant enrichment of GO terms related to cell 
adhesion (GO:0010811, P-value = 1.97 ×  10−9), growth 
(GO:0040007, P-value = 3.56 ×  10−8), and the ERBB2 
signaling pathway (GO:0038128, P-value = 1.79 ×  10−6) 
within the queried local network (Fig.  2D). Addition-
ally, the local network shows significant associations 
with disease exacerbation (P-value = 4.72 ×  10−6), malig-
nant neoplasms (P-value = 1.12 ×  10−5), and carcinoma 
(P-value = 4.50 ×  10−5), as revealed by the “Disease” 
panel (Fig. 2E). By switching to the “Survival” panel, we 
observe that the neighboring gene SLC2A1 is associated 
with overall survival in LUAD patients (log-rank test 
P-value = 1.59 ×  10−5) (Fig. 2F).

Finally, the “Communication” panel allows users to 
investigate how the local network influences cell–cell 
interactions between different cell types. We found 
that myeloid cells respond to malignant epithelial cells 
through the interaction of MDK and its receptor LRP1 

(Fig.  2G). This aligns with previous study showing that 
MDK can interact with LRP1 to promote immunosup-
pressive macrophage differentiation in ERBB pathway-
mutated tumors [34]. Additionally, we discover that the 
MDK-LRP1 pair is involved in the response of fibroblasts 
to malignant epithelial cells. Through interrogating the 
gene–gene interactions in the malignant cell-specific 
networks and cell–cell interactions between malignant 
cells and other cells, we identified several other genes 
may affect the MDK-LRP1-mediated intercellular cross-
talk, such as ERBB2, ERBB3, HRAS, and ESR1. The ERBB 
pathway mutations have been shown to upregulate MDK 
expression in bladder cancer in previous studies. There-
fore, CellNetdb can help researchers identify candidate 
genes that may affect intercellular crosstalk. Overall, 
CellNetdb aids in unraveling the cellular heterogeneity of 
gene–gene interactions, enhancing our understanding of 
the functional roles of genes within the cellular context of 
tumor development and progression.

Cell‑type‑specific network reveals topological specific 
genes with preferential cell‑type influence
Rewiring gene interactions across different cell types 
can lead to changes in the network topology, which may 
have varied functional importance depending on the cel-
lular context. Previous studies have demonstrated that 
constitutive proteins can acquire context-specific effects 
through tissue-specific interactions [35]. To assess the 
functional application of cell-type-specific networks in 
understanding the context-specific role of genes, we uti-
lized a metric called topological specificity (topS), intro-
duced by SCINET [16]. This metric allows for the direct 
quantification of a gene’s influence in a network, beyond 
what is captured by connectivity and strength alone. The 
topS metric measures the deviation between the observed 
overall interaction strength of a gene within a specific 
cell type and the expected strength derived from a ran-
dom model that preserves the network’s topology while 
reshuffling the cell-type-specific interaction strengths.

Fig. 2 The schematic features in each function module of CellNetdb. A The scatterplot represents the UMAP projection of different cell 
types. The hexbin scatterplot depicts the expression level of EPCAM that is a marker gene of epithelial cells. The circle plots show the cell–cell 
communication between different cell types. Additionally, the number of cells and marker genes for each cell type were described in a tabular 
form. B The graph plot depicts the local network connected to MDK gene queried from malignant epithelial cell-specific interactome networks 
in lung adenocarcinoma. The expression levels of all genes implicated in the local network are shown in the dot-plot heatmap where the color 
intensity represents the average expression level, and the size of dot represents the percentage of cells. C The somatic mutation spectra of each 
gene implicated in the local network of MDK is described in a table. D, E GO terms (D) and disease gene sets (E) enriched for the local network 
of MDK. The bar plots depict the enrichment P-values. Those genes of the corresponding GO term (D) or disease (E) implicated in the local 
network are labeled in purple. F The Kaplan–Meier curve depicts the difference between low- and high-expression level of SLC2A1 in TCGA lung 
adenocarcinoma (LUAD) cohort. The log-rank test P-value and univariate cox regression hazard ratio are labeled. SLC2A1 is implicated in the local 
network of MDK. G The circle plot shows the cell–cell communication between different cell types mediated by the MDK-LRP1 ligand-receptor pair 
in lung adenocarcinoma. The line weights represent the strengths of cell–cell communications

(See figure on next page.)
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To illustrate the application of cell-type-specific net-
works in understanding the context-specific roles of 
genes, we focused on myeloid cells in pan-tumor TIMEs 
as an example. We initially investigated whether known 
canonical cell-type signature genes play a distinct role 

in the networks [16] (Additional file  1: Table  S11). Our 
findings revealed that these signature genes exhibited 
significantly higher topS values in the corresponding cell 
subsets, indicating that the inferred local-interaction 
topology effectively captures context-relevant biological 

Fig. 3 Topologically specific genes with cell-type-specific influence in pan-tumor myeloid cells. A The distribution of topologically specific 
scores (topS) is presented for each cell-type-specific network, focusing on canonical marker genes for a specific cell subset in pan-tumor myeloid 
cells. B Comparisons of genes prioritized by topS and tranS in various cell subsets of pan-tumor myeloid cells is depicted, with Jaccard indices 
calculated for the top-ranked 500 topS and tranS genes in each cell subset, and the number of shared genes displayed. C Scatterplots illustrating 
topologically specific genes with broad expression across different cell subsets in pan-tumor myeloid cells, with the best linear regression fit 
represented by the blue line and the top 5 genes with log2FC(PRtopS/PRtranS) are highlighted. The log2FC(PRtopS/PRtranS) represents log2 fold change 
between percentile ranks of topS and tranS 



Page 10 of 18Li et al. Genome Medicine           (2024) 16:30 

roles (Fig. 3A). Additionally, we identified top 500 genes 
for each cell subset based on their topS and tranS scores, 
respectively. Notably, there was a moderate concordance 
between the candidate genes identified by topS and tranS, 
even when both transcriptional and topological specific-
ity correlate globally (Fig. 3B, Additional file 2: Figure S8), 
suggesting that cell-type-specific networks can comple-
ment conventional expression analysis.

Furthermore, we identified several sets of genes that 
exhibited high topS scores but low tranS scores for 
each cell subset (Fig. 3C). These genes were found to be 
expressed in multiple cell subsets but had distinct topo-
logical roles across different cell-type-specific networks. 
Among the top 5 genes with the strongest deviation 
in topS relative to tranS per cell subset, we identified 
genes involved in generic functions such as actin bind-
ing (CAP1), protein folding (HSPA1B), and growth factor 
activity (MDK), as well as genes with more specific func-
tions such as the regulation of macrophage inflammation 
(CD74, a cell membrane high-affinity receptor for MIF). 
Overall, the cell-type-specific networks enabled us to 
investigate genes with a preferentially influential role in a 
cell-type network that cannot be solely explained by their 
expression pattern.

Identifying prognosis‑associated cell types 
through network connectivity analysis
The rewiring of molecular networks in diverse cell types 
with functional relevance can also benefit identifying dis-
ease-associated cell types. Previous studies have shown 
that disease genes tend to form cohesive neighborhoods 
in the human interactome network [36]. We proposed to 
deconvolve disease-associated gene sets into individual 
cell types through evaluating the topological properties 
of these genes in the cell-type-specific networks, inspired 
by previous studies [25]. To evaluate the statistical sig-
nificance of the observed connectivity of a gene set, we 
employed permutation test approach by generating a null 
distribution by repeatedly randomly subsampling the 
same number of genes from the network. Therefore, by 
applying network connectivity analysis on cell-type-spe-
cific networks, we could potentially identify individual 

cell types associated with tumor patients’ prognosis. 
With clinical data in TCGA project, we first identified 
the top 500 prognostic genes based on their expression 
levels. We ranked these genes using the adjusted p-value 
of the log-rank test, which compares the overall survival 
of patients with high and low gene expression levels. 
Through connectivity analysis on different cell-type-spe-
cific networks, we found strong network connectivity for 
prognostic genes in non-cancerous cells, including stro-
mal cells and immune cells (Fig. 4A), indicating that some 
prognostic genes may function within the non-cancerous 
cells of the tumor microenvironment.

Next, we focused on the strong connectivity of prog-
nostic genes in the fibroblast-specific interactome 
networks in gastric cancer. Tumors can activate stro-
mal fibroblast to become cancer-associated fibroblasts 
(CAFs), which then promote cancer aggressiveness [37]. 
We identified 128 top prognostic genes in the fibroblast-
specific network, with 78 genes closely connected to 
each other (P-value = 0.0028). Among these prognostic 
genes, several were associated with the metastatic spread 
of tumors, such as ITGB1, CAV1, BMP4, and PDGFRB 
[38–41], and exhibited a high degree of centrality in the 
fibroblast-specific network (Fig. 4B). To gain insight into 
the role of these top-ranked prognostic genes in fibro-
blasts, we examined the top hub genes directly connected 
to them (Fig.  4C) and found that top 30 direct neigh-
bor genes were enriched in estrogen signaling pathway 
and focal adhesion (Fig.  4D). Interestingly, several hub 
genes directly connected to ITGB1, which had the high-
est degree of centrality among the prognostic genes in 
the fibroblast-specific networks, included EGFR, FN1, 
and COL1A1 (Fig.  4E). EGFR is a member of the ErbB 
receptor family, known to be involved in CAFs-mediated 
promotion of tumor invasion and metastasis [42]. FN1, 
encoding fibronectin 1 derived from CAFs, can also pro-
mote invasion and metastasis [43]. COL1A1, encoding 
collagen type I alpha 1, has been shown to play a critical 
role in tumor progression [44]. Besides, the association of 
ITGB1 with poor survival has been corroborated by the 
median expression observed in TCGA-STAD samples 
(Fig. 4F). Thus, we propose that the prognostic effects of 

Fig. 4 Cell-type deconvolution of cancer prognostic gene signatures. A Scaled within-group connectivity of top-ranked cancer prognostic gene 
sets in different cell-type-specific networks. Cell types presented in more than 10 cancer types were included for analysis. B Weighted degree 
centrality of the 128 prognostic genes in the fibroblast-specific network in gastric cancer, with emphasis on the top 10 genes. C Weighted degree 
centrality of genes neighboring the 128 prognostic genes in the fibroblast-specific network in gastric cancer, highlighting the top 10 genes. D Gene 
set enrichment analysis on the KEGG pathway for the top-ranked 30 genes neighboring the 128 prognostic genes in the fibroblast-specific network 
in gastric cancer. E Visualization of the network of genes neighboring ITGB1 and several focal adhesion-related genes of the fibroblast-specific 
network in gastric cancer, with the size of nodes representing the centrality of genes. Brown nodes denote the prognostic genes in the network. 
F Kaplan–Meier plot for gastric cancer patients of TCGA cohort based on the expression of ITGB1, showcasing the classification of patients 
into high-expression and low-expression groups by median value for analysis

(See figure on next page.)
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Fig. 4 (See legend on previous page.)
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ITGB1 are linked to CAF-mediated tumor progression. 
Overall, our findings demonstrate the potential of decon-
volving tumor prognostic genes into specific cell types 
and identifying key target genes within these cell types.

Additionally, tumors which respond well to immune 
checkpoint blockage (ICB) therapy often have high levels 
of tumor-infiltrating lymphocytes in their tumor lesions, 
indicating hot tumors [45]. On the other hand, tumors 
which do not respond well typically with low T cell infil-
tration, known as cold tumors [46]. Therefore, we tried to 
see if the connectivity of cytotoxic gene sets in the CD8+ 
T cells can differentiate between hot and cold tumors. 
We curated 159 cytotoxic genes from the Gene Ontol-
ogy database and calculated their connectivity in each 
CD8+ T cell-specific network for different cancer types. 
We found that the connectivity of these cytotoxic genes is 
positively correlated with the proportion of CD8+ T cells 
in each tumor sample, serving as a potential indicator of 
tumor immune profile categorization into hot and cold 
tumors (Additional file 2: Figure S9). For example, tumor 
types characterized as hot, such as lung adenocarcinoma, 
lung squamous cell carcinoma, and head and neck squa-
mous cell carcinoma had high levels of CD8+ T cells and 
connectivity of cytotoxic genes. In contrast, cold tumors 
like glioblastoma and pancreatic ductal adenocarcinoma 
had low CD8+ T cell infiltration and connectivity of cyto-
toxic genes (Additional file 2: Figure S9). Collectively, our 
findings suggest that the connectivity of cytotoxic genes 
may serve as a discriminatory factor in distinguishing hot 
and cold tumors.

Cell‑type‑specific interactome network commonality 
and difference across different tumor types
We conducted a comparative analysis of networks spe-
cific to various cell types derived from different solid 
tumor types. To compare the networks, we employed 
two metrics based on node topological specificity and 
interaction strengths, respectively (see “ Methods”) [30]. 
Our findings suggest that networks specific to the same 
cell type consistently clustered together, even across dif-
ferent tumor types, indicating that the cellular context 
primarily shapes the cell-type-specific interactome net-
works rather than the tumor or tissue types (Additional 

file 2: Figure S10). Moreover, we observed that the ratio 
of unique edges to shared edges across tumor types was 
higher than that of unique nodes to shared nodes, sug-
gesting that networks for the same cell type undergo 
rewiring in different tissue contexts (Additional file  2: 
Figure S11). Additionally, we expanded our analysis to 
include networks specific to various cell types derived 
from five hematologic malignancies, encompassing all six 
cell types. Like the analysis of solid tumor types, network 
similarity analysis revealed a similar clustering pattern 
(Additional file 2: Figure S12).

We retrieved and compared malignant cell-specific net-
works from various solid tumor types, revealing correla-
tion blocks aligned with known physiological conditions 
of malignancies (Fig.  5A). Notably, malignant epithelial 
tumors were found to group together, and prominent 
correlation blocks emerged among different tumor types, 
such as gastric cancer, colorectal cancer, and pancre-
atic ductal adenocarcinoma (Fig. 5A). Application of the 
network community detection method Infomap iden-
tified core subnetworks enriched for functional terms 
related to glycolysis, metabolic processes, protein phos-
phorylation, MAPK signaling pathway, cell adhesion, 
and inflammatory response (Fig.  5B–E). The functional 
interpretation of these core subnetworks aligned with 
the properties of these tumors, such as hypoxia/Warburg 
effect, epithelial-to-mesenchymal transition, and tumor-
associated inflammation. Hub genes with high centrality, 
including PTK6, FGFR3, and FGFR4, which have been 
recognized as therapeutic targets in tumor treatment. 
Additionally, MAGI3, a hub gene connected to them, has 
been identified as a novel substrate-binding subunit of 
E3 ligase, suggesting potential regulatory roles of MAGI3 
associated with protein tyrosine kinases that require fur-
ther verification. Overall, the core subnetworks identified 
from the shared interactome specific to malignant cells 
can provide insights into candidate tumor genes and gen-
erate testable hypotheses.

Moreover, similar patterns were observed in the com-
parisons of CD8+ T cell and CD4+ T cell-specific net-
works (Additional file 2: Figure S13 and S14). Several core 
subnetworks were identified for CD8+ T cell and CD4+ 
T cell-specific networks, respectively. Notably, a core 

(See figure on next page.)
Fig. 5 Comparative analysis of interactome networks specific to malignant cells across different tumors. A The heatmap depicts the comparison 
of interactome networks specific to malignant cells identified from different tumor types. The red gradient panel represents the topology similarity 
estimated from shared nodes’ topological specificity. The green gradient panel represents the edge similarity estimated from shared edges’ 
interaction strengths. Network sizes are shown by number of nodes (red bars) and number of edges (blue bars). The corresponding tumor types 
and physiological cell types of different malignant cells are also labeled. B–E The graph plots depict four representative core subnetworks identified 
from the shared network of gastric cancer, colorectal cancer, and pancreatic ductal adenocarcinoma. The centrality of each gene implicated 
in the subnetwork is labeled in color. The bar plots under each graph plot shows the GO (yellow bars) and KEGG (blue bars) pathway enriched 
for each core subnetwork
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subnetwork enriched for stress response was identified 
in the shared CD8+ T cell-specific network (Additional 
file  2: Figure S13E). These findings align with a recent 
study indicating that a cellular stress response state of T 
cells [47]. Collectively, our findings underscore the signif-
icance of considering the cellular context.

Application to prioritizing risk genes
The identification of genes involved in cancer progression 
presents a significant challenge with critical implications 
for understanding biological processes. The use of cell-
type-specific networks provides a promising approach 
for extending gene prioritization within the context of 
specific cell types. Several network-based prioritization 
methods have been developed to rank disease-associated 
genes, prompting the need to determine the most suita-
ble method. To address this, a benchmarking analysis was 
conducted to evaluate the performance of four represent-
ative methods—RWR [48], GenePanda [49], Node2Vec 
[50], and DIAMOnD [51]. Utilizing genes annotated in 
the Cancer Gene Census (CGC) as seed genes [52], the 
prioritization of risk genes was performed using malig-
nant cell-specific networks from six different tumor 
types. Subsequently, the NCG 6.0 database was used as 
a benchmark to assess the performance of each method 
[53]. The results indicated that the RWR outperformed 
the others in prioritizing risk genes by leveraging biologi-
cal networks (Additional file 2: Figure S15). As a result, 
the RWR method has been implemented into CellNetdb 
for prioritizing risk genes within the context of cell-type-
specific interactome networks. The platform allows users 
to upload a gene list as seed genes for prioritizing risk 
genes within cell-type-specific networks. Case studies in 
uveal melanoma and acute myeloid leukemia were pro-
vided to demonstrate the utility of this platform, reveal-
ing a high proportion of candidate genes annotated as 
cancer drivers (Fig. 6A,B and Additional file 2: Figure S16 
and S17). Additionally, genes not reported by NCG may 
also have roles in tumors, as demonstrated by the exam-
ples of BCL2L1, PLEKHA4, and RUNX2 [54–56].

Additionally, users can use interactome networks spe-
cific to different immune cell subsets to prioritize risk 
genes. For example, inputting a list of genes associated 
with T cell exhaustion as seed genes will return a list 
of candidate genes prioritized using the networks spe-
cific to CD8+ exhausted T cells (Fig.  6C and Additional 
file  2: Figure S18). Some of the top-ranked genes, such 
as PTPN11 (SHP2) and PTPN6 (SHP1), have been linked 
to T cell exhaustion [57–61]. To validate additional top-
ranked candidate genes, six ICB therapy-related cohorts 
were collected (Additional file 1: Table S12), totaling 399 
samples treated with CTLA-4 or PD1/PD-L1 inhibitors 
in skin cutaneous melanoma (SKCM), clear cell renal cell 
carcinoma (ccRCC), and non-small cell lung carcinoma 
(NSCLC) [62–67]. Comparative analysis revealed that 
the expression levels of several top-ranked genes differ 
among patients based on their response to ICB therapy 
(Fig.  6D–F, Additional file  2: Figure S19). For example, 
the KLRD1 gene is significantly downregulated in pre-
treatment patients of non-response groups compared to 
response groups. Additionally, high-expression groups of 
KLRD1, CD27, and LAGLAS9 significantly outlive low-
expression groups in terms of both progression-free sur-
vival (PFS) and overall survival (OS) (Fig.  6G–I). These 
findings suggest that the top-ranked genes in the prior-
itization analysis may be involved in T cell exhaustion, 
potentially affecting the effectiveness of ICB treatment. 
This indicates that interactome networks specific to dif-
ferent immune cell subsets may be a valuable resource 
for prioritizing important genes involved in cancer 
immunity.

Discussion
In this study, we provided a high-resolution view of tumor 
microenvironments across 44 different tumor types. 
Given the heterogeneity of intratumoral immune cells, 
we have also undertaken the creation of a pan-tumor 
single-cell atlas of the tumor immune microenviron-
ments, which span 36 solid tumor types, thereby supple-
menting prior research. Our analyses have facilitated the 

Fig. 6 Prioritize risk genes in CellNetdb. A Prioritize risk genes using the interactome network specific to malignant melanocytes in uveal 
melanoma. The bar plot depicts the stationary probability for each top-ranked gene from random walk with restart. The reported cancer driver 
genes in the NCG 6.0 database are labeled in red. B Prioritize risk genes using the interactome network specific to malignant myeloid cells in acute 
myeloid leukemia. The reported cancer driver genes in the NCG 6.0 database are labeled in red. C Prioritize risk genes using the interactome 
networks specific to exhausted T cells in the pan-tumor TIMEs. D–F The expression levels of KLRD1 (D), CD27 (E), and LGALS9 (F) in six ICB therapy 
cohorts. The boxplots show the difference of their expression levels between ICB therapy response and non-response groups. The cohorts 
of different tumor types are labeled, including skin cutaneous melanoma (SKCM), clear cell renal cell carcinoma (ccRCC), and non-small cell lung 
carcinoma (NSCLC). The asterisks represent the degree of significance calculated using Limma (* P-value < 0.05, ** P-value < 0.01, *** P-value < 0.001). 
G–I The Kaplan–Meier curves of overall survival (OS) and progression-free survival (PFS) depict the differences between patients’ groups stratified 
by the expression level of KLRD1 (G), CD27 (H), and LGALS9 (I), respectively

(See figure on next page.)
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construction of a compendium of cell-type-specific inter-
actome networks in tumors, by employing four reference 
interactomes of high performance.

In the realm of network biology, our study highlights the 
importance of topological specificity in accurately quanti-
fying a gene’s influence within a cell-type-specific network. 
This attribute holds promise for identifying genes with 
broad expression but condition-specific interactions in 
future studies. Furthermore, we have demonstrated appli-
cations of cell-type-specific networks in investigating the 
cell-type specificity of disease-associated genes. Firstly, 
disease genes can be deconvolved into cell types based on 
network connectivity across cell-type-specific networks. 
For instance, deconvolution of gastric cancer prognostic 
signatures revealed high connectivity in non-cancerous 
cells, where stromal fibroblasts can be activated by tumors 
to differentiate into CAFs, promoting cancer aggressive-
ness. We identified ITGB1, one of the hub genes, as having 
prognostic effects linked to CAF-mediated tumor progres-
sion. Future efforts may involve expanding the deconvo-
lution of disease gene sets for all cell types of each tissue 
and identifying pivotal target genes within these cell types. 
Secondly, we could identify potential cancer drivers by 
using well-known cancer drivers as seed genes to prioritize 
genes in malignant cell-specific networks. Furthermore, 
we developed CellNetdb, a web portal that facilitates inter-
active exploration of cell-type-specific interactome net-
works. Diverse functionalities were incorporated to obtain 
comprehensive biological insights into cell-type-specific 
interactome networks. Users can query genes of interest to 
obtain a local network with multifaceted functional data, 
enabling them to generate testable hypotheses. Addition-
ally, we have implemented an analysis platform in Cell-
Netdb for prioritizing risk genes.

Nevertheless, this study has some limitations, particu-
larly in comparison to previous research focused on spe-
cific tumor types. The pan-tumor single-cell atlas in this 
study offers relatively coarse resolutions for cell types or 
cell states, potentially hindering the inference of cell-type-
specific interactome networks due to the noisy and sparse 
nature of single-cell transcriptome data. Additionally, 
while the reference-guided approach employed in this 
study allowed for an accurate reconstruction of cell-type-
specific networks, it limited the discovery of novel unique 
interactions specific to the cell type. Addressing these lim-
itations will require the collection of more tumor scRNA-
seq data and additional analyses in future research.

Conclusions
In this study, we introduce CellNetdb, a comprehen-
sive database containing a large-scale atlas of cell-
type-specific interactome networks within tumor 

microenvironments. We created these networks by 
analyzing single-cell RNA-seq data from 563 patients, 
which included over two million cells from 44 different 
tumor types. The database offers various functionalities 
designed to provide in-depth biological insights. We also 
showcased the practical application of the cell-type-spe-
cific networks, including the identification of topologi-
cally specific genes, cell-type deconvolution of prognostic 
genes, and the prioritization of risk genes. We believe 
that CellNetdb has the potential to be a valuable resource 
for exploring candidate genes and generating testable 
hypotheses, ultimately contributing to a deeper under-
standing of tumor microenvironments and the advance-
ment of precision oncology.
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