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Abstract 

Polygenic scores (PGS) can be used for risk stratification by quantifying individuals’ genetic predisposition to disease, 
and many potentially clinically useful applications have been proposed. Here, we review the latest potential benefits 
of PGS in the clinic and challenges to implementation. PGS could augment risk stratification through combined use 
with traditional risk factors (demographics, disease-specific risk factors, family history, etc.), to support diagnostic 
pathways, to predict groups with therapeutic benefits, and to increase the efficiency of clinical trials. However, there 
exist challenges to maximizing the clinical utility of PGS, including FAIR (Findable, Accessible, Interoperable, and Reus-
able) use and standardized sharing of the genomic data needed to develop and recalculate PGS, the equitable 
performance of PGS across populations and ancestries, the generation of robust and reproducible PGS calculations, 
and the responsible communication and interpretation of results. We outline how these challenges may be overcome 
analytically and with more diverse data as well as highlight sustained community efforts to achieve equitable, impact-
ful, and responsible use of PGS in healthcare.

Keywords Polygenic score (PGS), Clinical utility, FAIR (Findable, Accessible, Interoperable, And Reusable), Genome-
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Introduction
Genome-wide association studies (GWAS) have linked 
genetic loci across the genome with many hundreds 
of diseases and quantitative traits [1, 2], and found that 
many of these complex traits have a polygenic archi-
tecture, where phenotypic variance is accounted for by 
many genetic variants of small effect. GWAS informa-
tion, either individual-level or summary statistics, can be 
leveraged to estimate an individual’s genetic predisposi-
tion for a given phenotype [3–9]. This genetic predispo-
sition is typically represented as a score and is referred 
to as a polygenic score (PGS), polygenic risk score (PRS) 
or genetic/genomic risk score (GRS). PGS are based on 
cost-effective technology (e.g. genome-wide genotyp-
ing array or sequencing) which, since it is measuring 
the germline genome, only needs to be performed once 
in an individual’s lifetime. Further, PGS for hundreds of 
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diseases and/or clinically relevant traits can be calculated 
from one genome-wide array or sequence.

For many clinical use cases, PGS are being evaluated 
around the world to determine what clinical utility they 
may have. For example, Genomics PLC and GP practices 
in the North of England are piloting PGS as part of an 
integrated risk tool for cardiovascular risk assessment 
[10]. The PGS-augmented CanRisk tool [11] for breast 
and ovarian cancer is being evaluated as part of the PER-
SPECTIVE I&I study [12], and additional trials of PGS-
augmented integrated risk tools (IRTs) for breast cancer 
are in progress, including WISDOM [13] and MyPEBS 
[14]. The GPPAD, PLEDGE and CASCADE trials are 
evaluating PGS for use in autoantibody screening of type 
1 diabetes [15]. In the USA, multiple studies are ongo-
ing for how returning genetically-informed risk informa-
tion using PGS for multiple diseases impacts outcomes 
in individuals of diverse ancestries, such as the Genomic 
Medicine at Veterans Affairs (GenoVA) [16] and elec-
tronic MEdical Records and GEnomics (eMERGE) stud-
ies [17]. Large-scale biobanks and infrastructures are also 
accelerating the speed of development and translation 
for PGS (e.g. UK Biobank), and the next generation of 
genomic cohorts are well-placed to widen both the scale, 
demographic diversity and power of PGS (e.g. All of Us 
Program [18] and Our Future Health [19]).

The translation and clinical implementation of new 
tools is challenging, and this has been particularly the 
case for PGS. The technologies on which PGS depend, 
genotyping arrays and sequencing, are largely yet to make 
their way into routine healthcare. Genotyping arrays have 
seen slow clinical adoption while whole genome sequenc-
ing has had several major applications for the genomic 
surveillance of microbial pathogens [20], cancer genom-
ics [21] and diagnosis of rare developmental disorders 
[22]. The breadth of potential clinical applications for 
PGS combined with other risk factors is extensive, yet 
there are common challenges. Here, we review the poten-
tial benefits and challenges facing the implementation 
of polygenic scores in clinical practice. In doing so, we 
highlight a series of important findings which may guide 
future clinical research in evaluating the utility of PGS.

Potential benefits of polygenic scores
Disease risk prediction alongside other risk factors
PGS have the potential for clinical utility as they meas-
ure aspects of disease risk that are independent of or 
precede traditional risk factors [6] recent studies have 
expanded the evidence in this area. Genetic predisposi-
tion to disease can be partially captured by family his-
tory; however, family history is a composite variable 
that captures both shared environment and genetic 
similarity that is often incomplete and poorly captured 

[23]. As such, PGS has been shown to add informa-
tion beyond family history in phenotype prediction 
for a child based on the average of their parents (mid-
parent) for traits like height [24, 25] and risk of com-
mon diseases [24, 26]. Family history may also correlate 
with the presence of familial forms of disease caused 
by rare pathogenic variants, and most genetic tests 
implemented in current clinical practice assess a vari-
ant’s occurrence in familial and sporadic disease cases. 
However, there is significant heritability outside of rare 
variants which is quantified by the common genetic 
variants comprising PGS, which can predict sporadic 
cases of polygenic disease [27]. As such, PGS has been 
shown to add additional risk stratification in individu-
als with high genetic risk for diseases including type 1 
diabetes [28] and BRCA1/2 carriers [29, 30].

Many diseases have multiple biological, environmen-
tal or lifestyle risk predictors that are combined into 
risk prediction models. These conventional risk predic-
tors frequently include age, sex, body mass index (BMI), 
smoking behaviour, family disease history and estab-
lished clinical assays [31]. However, many models have 
disease-specific predictors. Various studies have found 
that, when treated the same as other risk factors, PGS 
contributes independent information that improves the 
accuracy of these risk prediction models [6], and studies 
continue to show that PGS modestly improve risk predic-
tion when combined into an IRT for diseases of major 
public health burden, including coronary heart disease 
[32, 33], stroke [34, 35], type 2 diabetes [36, 37], and 
breast cancer [38]. Improvements in risk prediction have 
frequently been shown in terms of classification accuracy 
(e.g. ‘high’, ‘intermediate’ or ‘low’ risk groups which cor-
respond to different clinical recommendations), leading 
to the conclusion that PGS only modestly improves risk 
stratification. However, it is important to highlight that 
prima facie small changes in overall classification accu-
racy can translate into meaningful benefits at scale. For 
example, Sun et al. [32] showed that adding PGS of coro-
nary artery disease (CAD) and ischaemic stroke [39, 40] 
to conventional risk factors resulted in increases in classi-
fication accuracy of 1–2% (ΔC-index); however, the addi-
tion of PGS improved continuous net reclassification for 
10% of incident cardiovascular disease cases and 12% of 
non-cases, yielding an additional 72 prevented cases per 
100,000 adults, per 10 years.

The Sun et  al. study carefully evaluated PGS in the 
context of baseline risks which mirrored demographics 
in primary care (i.e., correcting for the healthy partici-
pant bias in UK Biobank); however, despite being inte-
gral to the clinical utility of risk prediction, baseline risk 
is frequently forgotten in PGS studies. Baseline risk can 
be critical for apparently modest predictors like PGS, 
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especially in groups with otherwise high baseline risk 
(Table 1, Fig. 1).

Age is the strongest risk factor for most common dis-
eases and contributes to the baseline risk profile along 
with the accumulation of other risk factors. As such, 
analyses show that PGS is a stronger predictor of dis-
ease incidence earlier in the life course [33, 35, 56, 57], 
which motivates measuring genetics earlier in life for 
targeted prevention and screening before the accu-
mulation of risk factors and environmental exposures. 
While age affects genetic relative risk for many com-
mon diseases as captured by PGS [57], a recent study 
of prostate cancer illustrates the utility of PGS for 

absolute risk-stratification despite age-related attenua-
tion of relative risk [58]. Taken together, there is now 
a strong evidence base across many diseases that PGS 
captures disease risk information that is independ-
ent of other risk factors and improves integrated risk 
calculators. 

Assessing the clinical utility of polygenic scores
The utility of a PGS ultimately depends on its predictive 
ability and the clinical scenario in which it is applied [59]. 
Here we highlight examples of clinical scenarios where a 
PGS has been proposed to have the potential for utility.

Table 1 A focus on difference in PGS classification accuracies between groups can mask potential utility when baseline risks differ

Many critiques of PGS focus on their modest effect size (e.g., odds or hazard ratio) and the risk stratification between the top and bottom quantiles 
of genetic predisposition, which is related to the proportion of variance explained (r2) and classification accuracy (AUROC or C-index) [41, 42]. As noted, 
the risk stratification capacity of PGS decreases proportional to the genetic distance from the training population, leading to attenuated but non-null 
effect sizes in non-European ancestry groups [43] (specific analyses of PGS for coronary artery disease or CAD [44], breast [45] and prostate cancer 
[46]). Given that these effect sizes (and thus classification accuracies) are non-null indicates that they may still be useful for stratification. This may be 
particularly true when the baseline risk is higher in the groups with lower effect sizes, and it is the case that many non-European ancestry groups have 
a significantly higher incidence for some common diseases [47, 48]. In cases where demographic groups have different average/baseline risks, it can be 
difficult to infer clinical utility of a PGS when looking at PGS alone [49] (Fig. 1).

Existing European-biased PGS integrated into clinical risk tools have been shown to improve the reclassification of cases in non-European ancestries 
in multiple studies of cardiometabolic diseases [33, 37, 50–52]. In these circumstances, higher baseline risk can compensate (partially or completely) 
for attenuated PGS performance with respect to metrics of disease prevention in each group (e.g. number of events prevented, number needed 
to treat/screen to prevent one event, etc.).

While analysis of risk stratification and utility is more interpretable using absolute rather than relative risk differences, it of course does not address 
the underlying representational bias in the data. Global efforts to collect genomic data in more diverse cohorts should certainly continue and form 
the foundation for greater equity in the future.

Fig. 1 Baseline risk can substantially change the utility of a polygenic score. A Effect size (odds ratio) of PGS for an example disease 
in the populations of European (EUR) and African (AFR) ancestry. B Prevalence of disease risk across PGS percentiles. The bolded line indicates 
a high-risk threshold that impacts treatment decisions (here 10%, similar to most clinical guidelines [53]). Dashed lines indicate the average disease 
risk in each ancestry group. Data presented are simulated [54] to match observed effect sizes for PGS for CAD [52] and assuming that the African 
population has a two-fold higher disease risk than the European ancestry population (here with a baseline risk of 4%) similar to the observed 
difference in cardiovascular disease incidence between ethnicities [55]
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Risk stratification
For many diseases, PGS may be useful for risk stratifica-
tion as they tend to be more informative earlier in life, 
and those of different genetic predispositions will be pre-
dicted to become high risk at different ages. As is the case 
with other risk factors, disease prevalence may affect the 
performance of a PGS — for example, for a disease with 
a prevalence of 1% (e.g. schizophrenia), the top 10% of a 
current PGS would only identify 3% of patients [60, 61]. 
However, PGS can still be useful for risk stratification 
in high-risk groups of low-prevalence diseases (e.g.T1D 
[28, 62]), or used in combination with other risk factors 
to define a higher-than-average risk population in which 
to screen. Thus, PGS may be useful for changing the age 
and/or frequency at which people are screened for cardi-
ovascular risk factors, common cancers (e.g. breast, pros-
tate, colorectal), and other conditions (e.g. dementias). 
The benefits of using PGS to optimize cancer screening 
have been shown to be cost-effective [63, 64], but more 
evidence is needed and multiple trials assessing outcomes 
and feasibility are ongoing (WISDOM [13], MY-PEBS 
[14], BARCODE [65]). Similar analyses of PGS in car-
diometabolic diseases also indicate clinical benefits and 
cost-effectiveness [66]. While cost-effectiveness studies 
of PGS are still emerging, few assess multiple disease use 
cases and thereby do not account for the fact that a single 
array/sequence could marginally improve risk stratifica-
tion for multiple diseases simultaneously.

Risk stratification based on IRTs that include PGS may 
also be used to guide treatment decisions, including 
pharmacological interventions. Multiple studies have 
shown the potential benefit of adding PGS to cardio-
vascular disease calculators and that combined models 
identify significant numbers of additional future cases 
surpassing risk thresholds to receive statins, the most 
common risk-reducing medication for atherosclerotic 
disease [32, 67]. Indeed, benefit estimation may need to 
take into account the potential for effect modification 
of polygenic risk on treatment effectiveness as multiple 
studies have shown that individuals at high polygenic risk 
of CAD may benefit disproportionately from the use of 
statins or PCSK9 inhibitors in terms of relative and abso-
lute risk reductions (see below) [66, 68–70].

Behaviour change in humans is frequently difficult 
to achieve and the impact of phenotypic or genetic risk 
score information is no exception [71]. While more 
follow-up will ultimately determine whether changes 
in behaviour are persistent and corresponding disease 
events reduced, recent large-scale studies suggest IRTs 
including PGS may motivate positive changes to modifi-
able risk factors. Results from the GeneRISK in Finland 
study showed that after 1.5  years of interacting with an 
online CVD risk communication tool integrating PGS, 

42.6% of 7342 participants at high risk had made positive 
health behavioural changes, including weight loss, quit-
ting smoking or becoming a member of online health 
coaching services [72]. This is to be contrasted with other 
studies such as INFORM which have assessed, in a rand-
omized trial, whether provision of genetic or phenotypic 
risk scores cause positive behaviour changes [73]. Exem-
plifying the difficulty of affecting human behavioural 
change, the INFORM trial found no significant effects 
for either genetic or phenotypic scores. Importantly, the 
studies did not find anxiety and depression in response to 
PGS information to be common.

CanRisk is a web tool for the Breast and Ovarian 
Analysis of Disease Incidence and Carrier Estimation 
Algorithm (BOADICEA), which combines PGS with 
conventional risk factors like age, family history, mam-
mographic density and known pathogenic variants 
[74–76]. CanRisk is CE marked and is an early imple-
mentation of PGS for clinical use. When only using ques-
tionnaire-based risk factors and mammographic density, 
BOADICEA identifies 9.2% of women with moderate to 
high-risk [74]. The 313-SNP PGS [74] for breast cancer 
alone identifies 10% and when the PGS is added to BOA-
DICEA, the integrated model identifies 13% of women 
in moderate to high-risk [74, 76]. The CanRisk model is 
amenable to updates using other PGS [77] and estimates 
from CanRisk can be used to guide screening and choices 
of risk-reducing interventions, including surgical proce-
dures (e.g. UK’s NICE guidelines [78]).

Diagnosis
In some diseases, patients with severe and early onset 
disease undergo genome analysis to identify a putative 
genetic cause. Currently, gene panel testing is the most 
common type of testing, with exome and whole-genome 
sequencing being increasingly applied to challenging 
cases to improve diagnostic yield [79, 80]. For example, 
of 60 patients from a preventative genomics clinic (both 
self-referred and referred by cardiologists) [81], two had 
a monogenic variant for familial hypercholesterolemia 
(i.e. classified as high monogenic risk), but 19 had a PGS 
in the top quintile. Lu et  al. [82] showed that PGS can 
discriminate high familial monogenic risks for breast 
cancer, bowel cancer, heart disease, type 2 diabetes and 
Alzheimer’s disease [82]. Their study demonstrated that 
PGS may be able to prioritize patients for subsequent 
diagnostic sequencing, which may increase cost-effec-
tiveness. While rare pathogenic variants are clearly dis-
ease-causing, the majority of common disease cases will 
not have one of these variants, and a polygenic aetiology 
(e.g. presence of a ‘high’ PGS) will be more likely [83]. Of 
course, scores integrating the full spectrum of allele fre-
quencies will likely be optimal [84] and the development 
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of methodologies to construct PGS that include rare vari-
ants is an active area of research [85–87]. There are also 
clinical scenarios where PGS might be useful for differ-
entiating between possible diagnoses, e.g. discriminating 
type 1 diabetes from type 2 diabetes [88] or MODY [62]. 
For ankylosing spondylitis (AS) and individuals who pre-
sent with back pain, a PGS had the highest classification 
accuracy, compared to MRI scans or HLA-B risk allele 
status, to distinguish AS cases and non-AS ([89]). PGS in 
autoimmune diseases frequently exhibit higher classifi-
cation accuracies than other diseases (e.g. AUROC > 0.9 
[28]), likely due to high heritability and the combination 
of large effect-size HLA variants, illustrating their poten-
tial utility for improving screening pathways.

Use in clinical trials and for understanding treatment benefits
As outlined by Fahed et  al. [90], PGS also have poten-
tial uses for assessing the benefits of pharmacological 
therapies. Clinical trials can be large in scale and expen-
sive to run in order to accumulate the numbers of out-
comes to measure an effect; thus, to achieve this, trials 
often enrol individuals at high risk of the outcome. Fahed 
et al. showed how using a PGS might reduce trial sample 
size by focusing on individuals at high polygenic risk to 
increase the outcome rate. A PGS-guided trial strategy 
might be especially useful for preventative interventions 
in high-risk individuals before disease onset (e.g. before 
cognitive impairment in dementias or Alzheimer’s dis-
ease [91, 92]) or in those individuals who are susceptible 
to T1D [28]. Notably, PGS-based enrichment of trials 
may result in more efficient trials but they would require 
participants to be genotyped prior to enrolment. Emerg-
ing population-scale platforms (such as Our Future 
Health in the UK) may enable such PGS-guided trials.

Retrospective genetic analyses of clinical trials for mul-
tiple cardiovascular disease treatments have also shown 
that treatment benefit may be greatest for those at high 
polygenic risk, including the FOURIER trial [69], Odys-
sey Outcomes trial [70] and statin therapy [68, 93, 94]. 
This is consistent with observational data, where PGS but 
not clinical risk factors were shown to stratified popula-
tions most likely to benefit from treatment (59% vs. 33% 
relative risk reduction for incident myocardial infarction 
in the highest and lowest genetic risk groups respectively) 
[68]. Targeting treatments to those most likely to benefit 
would be advantageous [95], particularly for treatments 
that are costly. While high profile studies have been per-
formed in cardiovascular disease, PGS have been shown 
to have potential to predict treatment responses to other 
conditions, including migraine [96], type 2 diabetes [97] 
and psychiatric disorders [98] like schizophrenia [99], 
and depression [100]. Overall, PGS could prove useful for 

designing more efficient trials as well as for identifying 
those most likely to benefit from specific treatments.

Analytic challenges for translation of polygenic 
scores
PGS are moving toward clinical implementation in 
many scenarios. As such multiple consortia of research-
ers and clinicians have put forward guidance on the use 
and interpretation of PGS, these include a statement 
from the Polygenic Risk Score Task Force of the Inter-
national Common Disease Alliance (ICDA) [9], and the 
American College of Medical Genetics and Genomics 
(ACMG) [101]. In this section, we highlight key analytic 
challenges, possible solutions, and linkages across trans-
lational efforts.

Developing, calculating, and applying PGS is a data-
intensive endeavour, and should strive to be Findable, 
Accessible, Interoperable and Reusable (FAIR, [102]) 
in order to maximize PGS reproducibility and utility 
as research and potentially clinical tools. PGS are typi-
cally constructed using coefficients from GWAS, and as 
such it is critical that the GWAS summary statistics are 
openly shared and reusable by other researchers. Shar-
ing data via a recognized repository, such as the GWAS 
Catalog [2], where data is stably accessioned and made 
available in a standard format facilitates the linking of 
PGS to source data. High-quality study and variant-level 
metadata in GWAS summary statistics (e.g. imputation 
INFO scores, allele frequencies, and per-variant sample 
sizes) are required for accurate PGS development and 
input to many methods [103]. As many fields are under-
reported in shared GWAS summary statistics (e.g. allele 
frequency), submitters are encouraged to format and 
openly share these data according to recently established 
community standards [104]. The information necessary 
to reproduce PGS (e.g. the variants and weights) should 
also be shared, thereby enabling independent evaluations 
in new cohorts and comparison to newly developed PGS. 
To facilitate the open sharing of PGS, Lambert et al. [105] 
developed PGS Catalog (https:// www. pgsca talog. org/). 
Currently, the PGS Catalog has catalogued ~ 4000 scores 
predicting ~ 600 different complex traits and/or diseases 
from ~ 500 publications (Fig. 2). Alongside the PGS Cata-
log, the Polygenic Risk Score Reporting Standards (PRS-
RS) [106] have outlined key performance metrics and 
considerations for PGS analyses as reporting has been 
highly heterogenous. Both GWAS and PGS should be 
shared with clear and unambiguous license terms (ideally 
CC0 or, if necessary, CC-BY-NC) to ensure reusability for 
the widest range of research and clinical applications.

Although biased by the availability of PGS that have 
been added to the PGS Catalog (see inclusion criteria 
https:// www. pgsca talog. org/ about/ inclu sionc riter ia), 

https://www.pgscatalog.org/
https://www.pgscatalog.org/about/inclusioncriteria
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European ancestries still comprise the plurality of PGS 
training and prediction samples, followed training sam-
ples combining data from multiple ancestry groups and 
then a much smaller number of Asian ancestry studies 
(Fig.  2C), highlighting that ancestral diversity is a prob-
lem for PGS, consistent with other systematic reports 
[107]. This lack of ethnic, ancestral and demographic 
diversity is observed in many epidemiological and clinical 
studies, including the vast majority of the GWAS which 
underpin the training of PGS.

Improving the transferability of polygenic scores 
across ancestries
A key challenge for the utility of PGS is to ensure they 
make equitable predictions for all groups; however, many 
PGS have weaker predictive performance between popu-
lations defined by their genetic ancestry [108] and within 
some sub-groups of a single ancestry group [109]. This 
issue, which is common to other biomarkers and risk 
models, is often called the transferability (or portabil-
ity) gap and, in this case, refers to the relative predictive 
ability of a PGS in samples that are external to the PGS 
development populations. It should be noted that some 
attenuation of predictive performance (e.g., effect size, 
accuracy,  R2) is expected and can be based on differ-
ences between the training cohort and that being evalu-
ated (e.g., demographic differences, social determinants 
of health, case ascertainment/phenotyping), which is 
why external validation is a critical step in any risk model 
evaluation [106, 110]. It is also well-documented that the 

attenuation in PGS predictive ability is proportional to 
the genetic distance from the training population [111, 
112]. Over 95% of recent GWAS study participants have 
been of European ancestry [107, 113]. Several recent 
reviews [5, 114–116] have also acknowledged the trans-
ferability issue of PGS.

Multiple studies have shown that more diverse and 
multi-ancestry GWAS can improve the predictive power 
and transferability of PGS, likely because the effect sizes 
of the true causal variants are shared across ances-
try groups [117]. For example, a recent study of blood 
lipid levels showed that PGS constructed using multi-
ancestry GWAS outperforms those constructed using 
single-ancestry matched data [118]. A larger analysis of 
14 disease endpoints results from the Global Biobank 
Meta-analysis Initiative (GBMI) also concluded that 
using multi-ancestry GWAS improved the accuracy of 
PGS for all ancestries, although a significant amount of 
heterogeneity in accuracy exists across ancestries [119], 
and many other PGS based on multi-ancestry GWAS can 
be validated in diverse populations [46, 120, 121]. How-
ever, multiple studies constructing and evaluating PGS in 
African populations have come to the opposite conclu-
sion that ancestry-matched PGS is most optimal for the 
prediction [25, 115, 122, 123]. One reason for this could 
be that not all traits are perfectly genetically correlated 
across ancestry groups [124], with notable examples for 
psychiatric disorders [125, 126].

More transferrable PGS can also be developed by 
using improved statistical methods (see [4] for a recent 

Fig. 2 Summary of publicly available PGS. A Top 25 traits/diseases which have the greatest number of PGS in the PGS Catalog. B Distribution 
of total sample size (sum) used to develop each PGS (either as a GWAS or in score development). C Ancestry composition of sample sets 
used for PGS development and evaluation for each PGS. All evaluation samples were aggregated to define the final label. Data was extracted 
on December 7, 2023, with a total of 3900 PGS with catalogued IDs for 619 traits from 507 publications
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comprehensive review of PGS development method-
ologies). The major advancements used to close the 
transferability gap are primarily based on ensembling 
and leveraging multi-ancestry and multi-trait data and 
incorporating functional information to identify more 
likely causal variants. Ensembling-based methods are 
based on the idea that incorporating multiple sets of 
GWAS data from either multiple ancestries or multiple 
diseases/risk factors can create a better set of variants 
and weights for PGS calculation. One such approach 
is PRS-CSx [127], an extension of the population PRS-
CS continuous shrinkage (CS) models that can be 
shared across ancestries. Another example of ensem-
bling is CT-SLEB [128] which integrates clumping and 
thresholding, empirical Bayes and super learning to 
process multi-ancestry GWAS data into a single PGS. 
More complex methods that calculate and normal-
ize PGS based on variants in local ancestry blocks are 
also being developed [129]; however, the complexity 
of software implementation will be a challenge as they 
also require sharing of reference panels for chromo-
some painting.

As causal variants are similar across ancestries [117, 
130], it is possible that PGS based on these causal 
variants may yield more similar prediction perfor-
mances. Causal variants are expected to have relevant 
biological functions, thus such information can be 
used as biological priors to better select variants and 
then train better weights [131]. Multiple methods 
using biological information/annotation have been 
shown to improve the transferability across ances-
tries, including LDpred-funct [132], PolyPred + [133] 
and BayesRC [134]. Simpler methods exist to use rel-
evant annotations for variant selection and use GWAS 
effect sizes [135]. Since integrating GWAS summaries 
from multi-ancestries and leveraging SNP annotation 
both improve the transferability of PGS, combined 
approaches such as X-Wing [136] and PolyPred + [133] 
may significantly improve PGS accuracy in non-Euro-
pean populations [136].

The differences in PGS accuracy that can be 
observed between genetically defined populations can 
be related to differences in effect sizes, LD patterns 
and allele frequency patterns, but they can also be due 
to correlations with other factors. For example, the 
accuracy of PGS within African populations was found 
to be low but highly variable between different ethnic 
groups of Sub-Saharan Africa [137], which may be due 
to the correlation between ancestry groups and social 
determinants of healthcare, selection and the differen-
tial impacts of genetics in different environments [5, 
109, 138].

Reliable and reproducible PGS: assays and computational 
pipelines required for implementation and interpretation
PGS development results in a set of variants and weights 
that can be used to estimate genetic predisposition; 
however, other steps are necessary to measure PGS in 
individuals and return an interpretable test result [59]. 
Typically PGS have been developed in cohorts of geno-
typed individuals using a limited set of directly measured 
variants on a genotyping array, which has been imputed 
to higher genome coverage using reference panels [139]. 
Recent studies have shown that the choice of imputation 
panel and strategy can affect PGS accuracy [140], and the 
choice of genotyping array can be particularly important 
for underrepresented populations [141]. Ideally, the clini-
cal use of PGS should combine common and rare vari-
ants [139], even if the improvements to risk-stratification 
at the population level may be limited [142]. However, 
as rare variants are difficult to impute accurately [143], 
they are usually excluded from PGS development and/
or calculation [139]. A potential solution is to use whole 
genome sequencing; however, the cost of whole genome 
sequencing still inhibits large-scale implementation. An 
alternative is low-coverage sequencing (< 1 × coverage) 
coupled to genotype imputation, which is more scalable 
and improves the accuracy of PGS calculation as com-
pared to genotyping arrays [144–146].

Another challenge in PGS calculation is that scores are 
often on different scales (different mean and variance), 
and different genetic ancestry groups can have shifted 
PGS distributions that do not reflect differences in the 
disease prevalence [147]. Thus the main way to convert 
a PGS into an interpretable individual measure is to rep-
resent it as a relative risk of where an individual sits in a 
population distribution. In a cohort of genetically simi-
lar individuals, one can simply normalize the PGS for the 
mean and standard deviation of the population of inter-
est or use percentiles; however, this becomes challenging 
for diverse ancestries and/or admixed individuals. One 
way to calculate an individual’s PGS is to use a population 
reference panel (e.g. 1000 Genomes Project) and report 
an individual’s relative PGS with respect to the most sim-
ilar population in the panel. Recent methods have been 
proposed that do not rely on reference population labels 
as they use the associations of PCA loadings to PGS val-
ues to decorrelate PGS distributions from genetic ances-
try. Initially, these methods only corrected for different 
mean distributions in PGS distributions [148], which 
has been implemented for PGS reporting in the GenoVA 
Study [16]. However, differences in the variance of PGS 
distributions between populations can also be corrected 
by regressing the variance of the new PGS distribution 
with the PCs [149] — this was used to report PGS infor-
mation within the eMERGE study’s genome-informed 
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risk assessment (GIRA) report [17]. All three methods of 
normalizing PGS (using empirical distributions, or using 
PCA loadings to centre the mean and equalize variance) 
result in a relative risk to a population average and can 
be reported as is for interpretation (e.g. polygenic risk 
reports) or as a predictor in risk tools. Overall consid-
erations for how to report a PGS depend on choices of 
genotyping assay, imputation, and how a PGS is calcu-
lated/adjusted, and these all have implications for how it 
is regulated and reported [59, 106].

Ensuring the responsible use, communication 
and interpretation of PGS
Polygenic risk ultimately has to be communicated to 
many different stakeholders, including patients (and/or 
consumers of commercial genetic testing) and clinicians 
if they are to be used in the clinic. Understanding of PGS 
among these groups may be low, so effective PGS reports 
and communication [150] are critical [114, 151] — some 
examples of reports being used to communicate PGS 
results already exist [17, 152]. Notably, it is important 
that PGS reports/results do not convey genetic determin-
ism (that genetics predictions are fait accompli) or excep-
tionalism (that genetic predisposition is more important 
than other risk factors). However, information about how 
the estimate was developed is just as important as the 
risk estimate itself, e.g. the population(s) used to develop 
and train the score is critical for interpreting whether 
the risk estimate is applicable to the individual at hand 
[101]. Adherence to reporting standards and key meta-
data requirements describing how the PGS was devel-
oped and evaluated can achieve this goal [106, 153], as 
different studies often report PGS metrics with different 
statistics and covariate adjustments that make compari-
sons difficult. During the reporting of PGS/IRT develop-
ment, it is important to describe participant inclusion, as 
the labels we use to describe populations can be impre-
cise or comprise outdated language that can cause harm 
and misinterpretation (see NASEM review [154]). Con-
sistent with what many have advised, the NASEM report 
recommended that we should not use race as a proxy 
for human genetic variation nor as part of PGS, and one 
should carefully consider any labels applied when group-
ing individuals. This is especially important as most 
PGS studies compare effect sizes and accuracies across 
groups, usually labelled according to their continental 
ancestries which individuals might not identify with. The 
use of continental ancestry descriptors also causes prob-
lems as researchers do not always consider the genetic 
diversity within these populations, and examples of fine-
scale genetic structure impacting PGS calculation exist 
[155–157]). Methods used to calculate PGS as a relative 
risk often also rely on matching individuals to a reference 

population/label; however, promising improvements to 
normalize PGS using continuous measures of genetic 
ancestry derived from reference panels are outlined 
above [148, 149], and can avoid the use of labels that can 
differ from how a person identifies [158].

Consistent with the views of the vast majority of the 
PGS research community, the ACMG’s statement advo-
cates against using PGS as a standalone test, as a nega-
tive result is not conclusive, and a positive result does not 
always mean the carrier is at high immediate risk. As we 
have highlighted above, except in some diseases such as 
autoimmunity (e.g., [159]) or Alzheimer’s disease (e.g., 
[160]), PGS are frequently modest standalone predictors 
of disease risk — their main advantage is that they cap-
ture risk information that is not being measured already 
using genetic testing or traditional risk factor models. 
The ACMG also outline that PGS should be combined 
with genetic testing for rarer pathogenic variants or 
those causing monogenic disease, as well as combining 
PGS with other clinical measurements to understand a 
patient’s current health status and the examples of PGS 
utility we summarized in this review mainly implement 
PGS alongside currently implemented risk estimation 
and rarely in isolation. Both the ICDA and ACMG state-
ments also outline a shared goal of making sure that PGS 
are used equitably and that methodological develop-
ment and data collection should be advanced to ensure 
PGS work optimally in all individuals regardless of their 
genetic ancestry. This also includes making sure that PGS 
is not used in any situations that might cause harm or 
otherwise be unethical. A significant gap in the literature 
exists to define what is best practice when an individual 
engages a healthcare practitioner with PGS results which 
they have obtained from a third-party provider (commer-
cial or otherwise). Anecdotal reports indicate this is no 
longer a rare event. While not the focus of this review, 
parallel statements have been released calling for an end 
to the use of PGS for embryo selection [161–163] or for 
unscientific claims about racial/ethnic group differences.

Conclusions and future directions
The evidence for the clinical utility of PGS is continu-
ously developing, but PGS are already used in some risk 
tools implemented in clinical practice, and select pre-
ventative genomics clinics. In the near-term, it is likely 
that the continued deployment of PGS in clinics will rely 
on extending conventional risk models into integrated 
risk tools enhanced by PGS (e.g. CanRisk [11]). Despite 
their manifold potential benefits, PGS have inherent 
risks and limitations, similar to other risk factors, such 
as variable portability across genetic ancestry groups. 
While improvements to PGS development methods can 
partially overcome these limitations, the only genuine 
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solution is to increase the representation of diverse 
samples in the GWAS [122]. The open sharing of this 
genomic data and the developed PGS should be openly 
shared according to FAIR principles [102] and estab-
lished reporting guidelines [106] to maximize equitable 
translation of these results. There is also additional work 
to be done to develop best practices for calculating indi-
viduals’ PGS, both in genotyping assay and/or imputation 
choices and how to calculate and report a person’s risk. 
As with many tools already utilized for disease risk pre-
diction (e.g. QRISK [10]), there is an absence or paucity 
of randomized trial evidence as to their clinical benefit 
and there are various reasons for this, e.g. the vast num-
ber of PGS, clinical use cases, number of patients needed 
and corresponding scarce resources [164]. Alongside 
efforts to conduct pragmatic trials of PGS, large-scale 
validation together with rigorous clinical and popula-
tion health modelling should continue. Health economic 
modelling and feasibility studies will also inform deci-
sions of whether PGS implementation should proceed 
in any particular use case. Following from these require-
ments is the need to communicate how the full PGS 
development, evaluation and calculation has been per-
formed so that ensures it is understandable to physicians 
and patients. Importantly, significant community efforts 
should be invested to ensure the responsible use of PGS 
to counter genetic determinism and exceptionalism.

While analytic solutions (including methods develop-
ment and modelling of baseline risk) are being devel-
oped, the lack of diverse genomic data continues to be 
an important limitation. While it will take substantial 
time to recruit participants from historically under-
represented groups and to generate genomic data, 
the most effective strategy at the moment is to lever-
age multi-biobank resources, e.g. the Global Biobank 
Meta-analysis Initiative [119, 165]. Many wealthy coun-
tries like the USA and UK are recruiting and deliver-
ing the next phase of larger and more diverse biobanks 
(e.g. the All of US Program [18] and Our Future Health 
[19]). However, continued efforts should ensure that 
the benefits of PGS are not only available to those in 
wealthy countries and capacity building and ethical 
partnerships for data collection and analysis in under-
represented groups, particularly low-middle income 
countries, should be promoted [166–170]. Statistical 
methods, tools and resources also should be improved 
to facilitate analysis of genetic ancestry on a contin-
uum, particularly so that admixed individuals are not 
excluded from studies [154, 171]. The standardization 
of GWAS/PGS results reporting, responsible use and 
communication will require a concerted effort from 
academic, industry and government bodies. Overall, 
through community efforts towards common goals, it is 

clear that continued progress in PGS is being made and 
that it could benefit human health. There is now a sub-
stantive need for further translational studies, includ-
ing pragmatic trials, to provide empirical evidence as to 
PGS utility in specific clinical scenarios.
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