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Abstract 

Histopathology and genomic profiling are cornerstones of precision oncology and are routinely obtained for patients 
with cancer. Traditionally, histopathology slides are manually reviewed by highly trained pathologists. Genomic data, 
on the other hand, is evaluated by engineered computational pipelines. In both applications, the advent of modern 
artificial intelligence methods, specifically machine learning (ML) and deep learning (DL), have opened up a funda-
mentally new way of extracting actionable insights from raw data, which could augment and potentially replace 
some aspects of traditional evaluation workflows. In this review, we summarize current and emerging applications 
of DL in histopathology and genomics, including basic diagnostic as well as advanced prognostic tasks. Based 
on a growing body of evidence, we suggest that DL could be the groundwork for a new kind of workflow in oncology 
and cancer research. However, we also point out that DL models can have biases and other flaws that users in health-
care and research need to know about, and we propose ways to address them.
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Background
Precision oncology is based on diagnostic histopatho-
logical and genomic methods, which enable the applica-
tion of a suitable therapy to patients [1]. Histopathology 
investigates the morphology, or phenotype, of a tumor 
and is indispensable to diagnose and subtype cancer. 
One of the most general and widely used methods in 
histopathology is staining of tissue slides with hematoxy-
lin and eosin (H&E) [2]. To complement the phenotypic 
information, genomic biomarkers are routinely used for 
patients with advanced or metastatic cancer since they 

exhibit a predictive power for the patient’s survival or for 
the effectiveness of a cancer drug. Thus, in many cases, 
genomics allows a more personalized form of therapy [3]. 
Given these advancements, it is not surprising that pre-
cision oncology could improve clinical outcomes in the 
last decades [4, 5]. However, precision oncology is inher-
ently data-intensive: to support treatment decisions, a 
wide range of data is required, including general patient 
information such as age, biological sex, medical history, 
patient preferences, radiological imaging, histopathol-
ogy, and molecular and genetic assays. At the same time, 
the amount of available information beyond patient data 
is extensive as well. For example, in 2021, the US Food 
and Drug Administration (FDA) had approved a total of 
243 cancer drugs for patient therapy [6]. Combined, the 
quantity of patient-specific data and the number of treat-
ment options create a vast decision tree which is becom-
ing more complex to navigate for patients and physicians. 
Therefore, there is a need for tools to support cancer 
care by efficiently utilizing and analyzing all available 
information.
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One solution for this growing demand could be the 
application of computer-aided methods. Improvements 
in computer hardware and algorithms have multiplied 
our abilities to process large-scale data since the late 
20th century. Today, artificial intelligence (AI) methods 
have become ubiquitous tools in our everyday life. AI can 
solve complex tasks at the level of human experts, such as 
in language translation and object detection [7, 8]. This 
is also true for biomedical research, where AI is able to 
solve complex problems like predicting protein folding 
from amino acid sequences [9] or analyzing and inter-
preting radiology imaging data [10]. As a potential advan-
tage over human skills, AI methods are scalable and can 
process vast amounts of data in a relatively short time.

One most fundamental component of AI is machine 
learning (ML). There are three main approaches to 
ML: reinforcement, unsupervised, supervised learn-
ing. In reinforcement learning, the model is rewarded 
for making correct decisions. In unsupervised learning, 
the model is tasked to learn from data, but is given no 
additional information about it. For example, cluster-
ing methods can identify similar instances in a given 
dataset, without being provided with explicit labels on 
each instance. Supervised learning, in contrast, can use 
human-labeled data and tasks the model with automating 
the labeling process. A portion of this data is given to the 
model to predict labels, and the model is penalized when 
it gives the wrong output. Model architectures used for 
supervised learning include support vector machines 
(SVMs), decision trees and artificial neural networks. 
These models can vary greatly in size, with the number 
of parameters ranging from hundreds of parameters to 
billions of parameters in neural networks [11]. Whenever 
ML is applied to image or text data, deep artificial neu-
ral networks, also known as deep learning (DL) [12], are 
the favored models due to their robustness and effective-
ness in handling complex data structures. In precision 
oncology, AI with DL can process large amounts of histo-
pathologic and genomic data (Fig. 1) [1, 13, 14]. Notably, 
some studies even adopted multimodal models that apply 
ML and DL to several data types simultaneously, such as 
combining histopathological images with  genetic data 
[15–17]. This approach of multimodal data integration 
could potentially improve model performance by incor-
porating additional patient information and leveraging 
synergistic effects between complementary data types.

Here, we provide a high-level overview of DL’s role in 
pathology, genomics, and multimodal data analysis. To 
bring structure to the diversity in the academic litera-
ture, we establish a guiding framework. In our analysis, 
we divide our investigation into six fields of clinically 
focused application, as established by previous studies 
[18]. Three “basic” applications are as follows: predicting 

the diagnosis (cancer detection), subtype, and grad-
ing of a tumor; and three “advanced” applications are 
as follows: predicting prognosis (survival probability of 
the patient), patterns of genetic alterations (such as the 
detection of driver mutations), or treatment response to 
a specific treatment scheme or a single medicine [18–20]. 
Furthermore, we discuss the potential limitations of DL 
approaches in clinical routines and provide insights into 
future trajectories of these fields. Altogether, this review 
should not only inform about the most recent develop-
ments in the area but also inspire researchers to further 
contribute to this topic and close its existing gaps.

DL in histopathology
Histopathology is a fundamental part of precision oncol-
ogy. Virtually all solid tumor entities must be diagnosed 
by histopathology or cytology. In essence, all clinical 
decisions based on treatment and follow-up depend on 
histopathological information. In digital pathology, tissue 
slides are digitally captured as whole slide images (WSI) 
in high resolution, yielding images with billions of pixels, 
or “gigapixel images.” AI can process such digital infor-
mation and has emerged as the default tool to automate 
diagnostic processes and identify new biomarkers in 
WSIs (Fig. 1).

Most AI studies in histopathology employ super-
vised DL. Of particular relevance are “weakly” super-
vised approaches, in which the objective of the system 
is to predict a “label” for the WSI in its entirety [13, 21, 
22]. A “label” can refer to any of the basic and advanced 
categories, including properties of slides (presence of 
tumor), properties of tumors (subtype or genetic altera-
tions), and of patients (survival or response) [13]. Dur-
ing training, a weakly supervised tumor detection system 
only has access to a label on a slide level. For example, the 
label could denote: “does this slide contain a tumor, yes 
or no?”. An alternative approach is “strongly” supervised 
learning. Here, the objective is to delineate tumor tissue 
or detect cell types based on accurate, manual annota-
tions. Weakly supervised approaches obviate the need 
for manual annotation and, hence, are more scalable to 
large image archives. In addition, weakly supervised 
approaches allow us to predict more abstract properties 
of tumors, such as the presence of mutations or the sur-
vival of patients [13, 22–25].

DL for basic histopathological tasks
One of the earliest studies on weakly supervised DL in 
histopathology was conducted by Ertosun and Rubin in 
2015 (Fig. 2a) [26], in which the authors automated histo-
logical grading in primary brain tumors using a convolu-
tional neural network (CNN). CNNs are a type of neural 
network commonly used in image analysis, containing 
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so-called convolutional layers. Vividly speaking, layers of 
convolution find basic structures like corners and edges 
in the original image which are then concatenated by 
the neural network to higher hierarchies, and with this, 
determine global patterns shared between images. Erto-
sun and Rubin were among the earliest to move from 

handcrafted features with simple ML classifiers to DL. 
This enabled them to address a clinically relevant classifi-
cation task in computational pathology.

Prior to tumor grading or any other step, the diag-
nosis must take place. Hence, diagnosis is one of the 
most obvious and most common applications of DL in 

Fig. 1 Workflow of AI in histopathology and clinical genomics. In this simplified workflow, a tissue of a solid tumor is harvested via surgery 
or biopsy. One part is sequenced in the genomics facility to obtain molecular data about, for instance, RNA, epigenetics, or mutations, while another 
part is sent to the pathology department. There, tumor slices are captured on glass slides and stained with hematoxylin and eosin (H&E). Images 
of these glass slides can then be taken. Tabular and image data are used to train models, e.g., neural networks to provide a prediction. In this review, 
we describe six distinct medical application tasks (Diagnosis, Grading, Subtyping, Mutation, Response, and Survival) for these models
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histopathology. In this task, models need to differentiate 
tumor tissue and healthy tissue on WSIs in a strongly or 
weakly supervised manner. One of the first studies which 
employed DL for tumor detection was carried out by 
Cruz-Roa et al. [27] (Fig. 2a) in 2017. The authors diag-
nosed breast cancer by using a CNN which was trained 
on almost 400 WSIs. Their model reached a high perfor-
mance for tumor detection. At this time, essential pre-
processing steps were already established, e.g. making 
large WSIs usable by tesselating them (Fig.  1). In 2019, 
the field of cancer detection with weakly supervised DL 
was markedly changed as a result of a large-scale seminal 
work by Campanella et al. [28] (Fig. 2a), whose multiple-
instance learning model outperformed strongly super-
vised models with an area under the receiver operating 

characteristic (AUROC) curve as high as 0.986. DL mod-
els could therefore probably assist pathologists in the 
future by pre-labeling samples, potentially reducing the 
load of confirmatory molecular assays.

One year later, Ström et al. [29] and Bulten et al. [30] 
(Fig. 2a) demonstrated that DL was able to solve a sub-
typing task in solid tumors, another important applica-
tion of DL. Their approaches did not only include tumor 
segmentation, but also prediction of Gleason grade in 
prostate cancer with weakly supervised learning. Com-
plementary to these diagnostic tasks, the most influen-
tial recent study in digital pathology was published by 
Coudray et al. [23] (Fig. 2a) in 2018. Coudray et al. estab-
lished weakly-supervised methods for the slide-level 
prediction of histological subtype of non-small-cell lung 

Fig. 2 Timeline and outlook. a The timeline of milestone papers mentioned in this review. Articles are colored by research area (blue — genomics, 
rose — multimodal, red — histopathology). b Future perspectives AI will face in the next years to be applied in clinical routines
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cancer and, importantly, showed that genetic alterations 
in targetable genes are predictable from histopathology 
slides [23]. Although straightforward in hindsight, these 
studies were the first large-scale evidence that weakly 
supervised DL could differentiate between morphologies 
of cancer subtypes and link the cancer genotype from 
morphology alone. In the subsequent years, many stud-
ies extended this methodology to other subtypes of solid 
tumors. A notable example is the Consensus Molecular 
Subtypes (CMS) of colorectal cancer, which were shown 
to be predictable from routine pathology slides by Siri-
nukunwattana et  al. [31] (Fig.  2a) in 2021. Similarly, in 
breast cancer, Jaber et al. [32] (Fig. 2a) presented a model 
that classified the five molecular subtypes of breast can-
cer (luminal A, luminal B, HER2-enriched, basal-like, 
normal-like) from histopathology slides with high accu-
racy. All these studies indicate that DL could potentially 
streamline diagnostic workflows by automating basic 
diagnostic processes, like subtyping and grading. Addi-
tionally, in a broader sense, these studies show that the 
ground truth for DL-based predictions can be obtained 
from any source as long as there is a phenotypic change 
the model can detect.

DL for advanced histopathological tasks
Of similar importance to the DL method that is used, is 
the data a model is trained on. One of the largest studies 
in recent years was conducted by Fu et al. [33] (Fig. 2a) 
incorporating more than 17,000 WSIs from the TCGA. 
Important to note is that the performance of DL models 
is dependent on the size and quality of the input. There-
fore, it was not surprising that such an immense dataset 
led to an AUROC of 0.98 when distinguishing cancer 
types. However, not only did they classify cancer tis-
sues, but they also predicted genome duplications, driver 
mutations like TP53 or BRAF, and tumor-infiltrating 
lymphocyte (TIL) scores, setting the stage for a broad 
application of AI in creating pathology biomarkers. 
Genetic alterations in cancer, as predicted by Fu et al., can 
be drug targets, biomarkers, or both. For example, the 
presence of certain BRAF mutations in many tumor types 
is a direct target for treatment with BRAF inhibitors. A 
concrete biomarker is microsatellite instability (MSI), 
which acts as a biomarker for immune checkpoint inhibi-
tors [34]. Some of these targets and biomarkers can be 
predicted with DL from pathology slides. In 2019 Kather 
et al. [35] (Fig. 2a) were able to predict MSI in colorectal, 
gastric, and endometrial cancers. As a following publica-
tion, Echle et al. [36] (Fig. 2a) trained models to predict 
MSI in colorectal cancer, along with the driver mutations 
BRAF and KRAS, in larger patient cohorts. Today, some 
of these approaches have been implemented by com-
mercial entities and are being marketed as algorithms for 

routine clinical use in Europe [37]. In addition to predict-
ing single gene mutations or molecular subtypes, sev-
eral studies have shown that it is also possible to extract 
expression levels of individual genes, or panel expression 
profiles directly from WSIs [38–40]. Consequently, AI 
could in principle be used to pre-screen for a wide range 
of molecular alterations and suggest which targets should 
be further analyzed.

Another alternative for receiving information about 
the patient status is investigating the tumor microenvi-
ronment. The interactions between the patient’s immune 
system and the cancer can be relevant for overall survival 
[41, 42] or therapy response [43]. For example, patient 
outcomes can be predicted by the number of TILs [44]. 
Moreover, the importance of spatial biology was already 
known as early as 2006; however, it has not been trans-
lated to clinical routines yet [45]. On this account, DL 
models emerged that detect TILs and catalog cell types 
[46, 47] in a specimen annotation-free and in an end-to-
end approach. Therefore, DL could offer an easier path to 
clinical application of still unused knowledge.

As mentioned before, the prediction of genomic or 
morphologic biomarkers from routine histology slides is 
clinically relevant for the patient. However, biomarkers 
are just proxies for clinical outcomes—survival or treat-
ment response. Direct prediction of treatment response 
to specific drugs from histopathology images could 
theoretically even outperform the predictive power of 
genomic biomarkers. Thus, drug response prediction is 
one of the latest advanced applications in digital pathol-
ogy. In 2020, a study on predicting the response to chem-
otherapy in nasopharyngeal cancer was published by Liu 
et al. [48] (Fig. 2a). Similarly, Li et al. [49] (Fig. 2a) trained 
a DL model to predict a pathological complete response 
after neoadjuvant chemotherapy. Furthermore, immuno-
therapy, as another form of cancer treatment, was under 
investigation by Johannet et al. [50] (Fig. 2a) in 2021. The 
fact that DL captures underlying connections between 
tissue morphology and treatment response shows that 
the predictive capabilities of such models reach far 
beyond human expertise. However, these studies need 
many comparable cases and treatment data with a con-
secutive target score which is why drug response is one of 
the most difficult applications to establish a large dataset 
with good quality ground truth. Therefore, the current 
state of DL in treatment response suggests that direct 
predictions require more extensive studies in the future.

The second clinical endpoint being directly predicted 
by DL in histopathology is the prognosis of cancer 
patients, i.e., forecasting patient survival. To elucidate 
the prognosis of a patient is from fundamental inter-
est since therapy decisions and patient care are directly 
dependent on it. In DL research, early publications used, 
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for example, shape and boundary [51] or tissue propor-
tions [52] of tumors as features that can be linked to 
patient outcomes. Today, DL models construct predic-
tive risk scores in a straightforward manner. Information 
about absolute survival times is collected and combined 
with the censoring data of each patient. Afterwards, the 
model can learn which pattern to connect with a longer 
or shorter lifespan of a patient [53, 54]. The success of 
this application type could also lay in its potential to 
reveal yet unknown relationships between survival and 
phenotype.

Similarly to clinical targets getting more refined over 
years of research, model architectures changed as well. 
For most early studies, CNNs were applied as the model 
of choice. Later, feature extraction, a process in which 
pretrained DL models reduce the dimensionality of input 
images to smaller matrices or vectors, became the state-
of-the-art method [25, 55–59] (Fig 1). Another change in 
model design was introduced after 2017, in which trans-
former neural networks [60, 61] were developed. These 
models can weigh parts of their input differently based 
on an attention mechanism and parallelize the processing 
of multiple parts of the input data in a computationally 
efficient way. In 2022, Chen et al. [62] (Fig. 2a) predicted 
survival through the use of vision transformers, which 
were able to outperform convolution-based models in 
many cancer types.

In summary, during the last years, AI in pathology 
underwent many changes and trends. Starting with sim-
ple diagnostic tools the field was soon able to outperform 
trained pathologists in tumor detection. Subsequently, 
research demonstrated that patterns in WSIs can be used 
for prognostic tasks as well, facilitating therapy decisions 
based on mutational status, drug response, or overall 
survival. Nevertheless, rapid changes in the model land-
scape of DL make it challenging for companies to develop 
these technologies into static products. To put this into 
perspective, in 2023, only four AI-based tools were FDA-
approved and applied in pathology [63]. Therefore, it 
would be clearly desirable to increase this number and 
move more DL tools into diagnostic routine in precision 
oncology.

DL in clinical genomics
Unique molecular characteristics of a tumor are encoded 
in its genome [64]. Thus, research in clinical genomics 
is a key to delivering precision oncology since it studies 
the human genome with a focus on a disease genotype. 
Thereby, genotypic properties such as genomic instabil-
ity or mutation status of the tumor complement the phe-
notypic and spatial changes addressed in histopathology. 
Clinical genomics not only employs classical genomic 
data from whole genome or exome sequencing, but also 

RNA-sequencing, methylation assays, copy number vari-
ation analyses, and more as information sources (Fig. 1). 
With this, it supports the identification of the patient’s 
exact type of cancer, its potential primary site, respon-
siveness to certain drugs, or the patient’s prognosis.

Previously, analyzing genomic data was only conducted 
by classical bioinformatics, which employed algorithms 
to perform tasks such as sequence alignment, variant 
calling, or differential expression analysis. However, these 
algorithms are highly hand-engineered and focus on 
finding patterns which are predefined by human experts. 
The potential utility of AI for clinical genomics is to 
expand this toolkit by offering the possibility of deeper 
data analysis than previously attainable. Patterns that are 
unknown or undetectable to humans, such as the way a 
protein folds into its final shape or the signature left by a 
mutagenic process in our DNA, were discovered through 
the use of ML [9, 65]. Revealing novel paradigms with AI 
could contribute to innovations in clinical genomics that 
are otherwise not possible for standard bioinformatics 
approaches.

DL for basic genomic tasks
DL applications in genomics have developed differ-
ently than those in histopathology. Usually, genomic 
information is extracted after a cancer has been diag-
nosed and followed up histologically. As a result, DL 
in clinical genomics is more involved in the advanced 
tasks, e.g., finding biomarkers for certain therapies or 
drug-response, rather than streamlining workflows by 
diagnosing cancer. Nevertheless, DL can be utilized in 
patient cases where the diagnosis is not straightforward. 
For example, in 2020, Zaoh et al. [66] (Fig. 2a) used a DL 
model to predict the original tumor tissue for patients 
with cancer of unknown primary from RNA-sequencing 
data. Similarly, in the same year, Jiao et al. [67] (Fig. 2a) 
found that DL can be used on passenger mutation pat-
terns to distinguish primary from metastatic tumors. 
Even though these studies are not focused on cancer 
detection, they can provide valuable insights for the 
downstream decision-making process.

One basic DL application that is more prominent for 
clinical genomics is subtyping. Articles such as Sienkie-
wicz et  al. [68] (Fig.  2a) utilized classical unsupervised 
ML in the form of non-negative matrix factorization to 
cluster omics data of cancer patients to discover molec-
ular subtypes. In order to refine these classes, more 
sophisticated models such as random forests or DL can 
also be employed [69–71]. DeepGene, a model developed 
by Yuan et al. [70] (Fig. 2a) in 2016, used somatic muta-
tions as their information source, whereas two years later, 
they published another study performing the same task, 
this time with copy number alterations and chromatin 
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structure data [72]. Despite these advancements, the 
state-of-the-art to detect major cancer subtypes remains 
the morphological evaluation in most cases, with some 
exceptions being the recently introduced classifications 
of brain tumors. High costs and standardization issues 
associated with sequencing are limitations that prevent 
molecular subtypes from clinical adoption [73]. Further-
more, while some molecular subtypes such as the CMS 
in colorectal cancer can partially be correlated to relevant 
clinical outcomes, a more extensive data exploration and 
validation is needed to provide clinical evidence and 
hence foster a broader acceptance in the community.

DL for advanced genomic tasks
The task of mutation prediction from genomic data might 
seem contradictory, since detecting driver mutations 
from it forms the ground truth for DL predictions. Clas-
sical variant calling algorithms spot nucleotide changes 
in the cancer genome compared to a reference, with 
additional tools subsequently determining if the respec-
tive mutation affects a cancer-driving gene [74–77]. In 
these tasks, employing DL is not a necessity. Therefore, 
the approaches towards mutation prediction with DL dif-
fer between those for histopathology and genomics. One 
example for this paradigm shift is the DL-supported dis-
covery of gene mutations previously unrelated to cancer. 
In 2018, Kim et al. [78] (Fig. 2a) used what are known as 
skip-gram networks to visualize mutations and discover 
novel cancer drivers. Mutations in genes such as CRLF2, 
TFE3, or DUSP22 were positive hits of their method but 
were previously not described as driver mutations in 
literature. Nevertheless, to make this knowledge clini-
cally actionable, wet lab validation studies are needed 
to elucidate their mechanism of action. Besides conven-
tional driver mutations, the whole mutational spectrum 
of a cancer genome, including general somatic muta-
tions, can additionally provide important insights [79, 
80]. Furthermore, variant calling must be performed as a 
baseline to detect driver mutations. Today, there are dif-
ferent bioinformatic tools that process whole genome or 
exome sequencing data to first align reads to a reference 
genome and then find changes in the donor sample com-
pared to the reference [81, 82]. Due to the complexity of 
this problem, research also developed DL-based meth-
ods to improve variant calling. For example, in 2022 Sah-
raeian et al. [83] (Fig. 2a) used CNNs to process matched 
tumor and normal reads to catalog somatic mutations. A 
similar approach was used by Krishnamachari et al. [84] 
(Fig. 2a) three years later. Both methods displayed supe-
rior accuracy compared to conventional bioinformatic 
tools. Nevertheless, the large amount of training data and 
high computing power needed for DL could hinder its 
broad adoption. Despite these challenges, our examples 

demonstrate that DL has the potential to detect genomic 
variations at diverse scales with promising results.

Drug response predictions in clinical genomics often 
rely on data generated via cancer cell line cultures rather 
than solid tumors. In pharmacogenomics, genome-wide 
association studies enable the simultaneous screening 
of a broad number of cancer-drug pairs and therefore 
build the foundation for many DL applications. In 2018, 
Chang et  al. [85] (Fig.  2a) predicted drug efficacy from 
genomic information of cancer cell lines and drug struc-
tural information, whereas Chiu et al. [86] (Fig. 2a) relied 
on mutation and expression data, without incorporating 
information about the drug’s chemical properties. This 
contrasts computational pathology since cell line-based 
approaches are massive simplifications of human tumors. 
Cancer cell lines are often genetically altered to achieve 
immortality introducing genotypic and phenotypic biases 
which eventually make them less biologically compa-
rable to primary cancer cells. Moreover, drug screens 
conducted in cell lines contain no other representative 
elements of their original tumor microenvironment. As 
a result, DL approaches to evaluate drug-cancer interac-
tions come into question and call for more practical data 
sources.

In contrast to current genomic drug response mod-
els, DL approaches for prognosis predictions could 
offer a more direct integration into clinical workflows. 
One of the first publications regarding DL in clinical 
genomics predicted cancer outcomes of ovarian can-
cer from DNA methylation, miRNA and bulk-RNA 
expression, and copy number alterations (CNAs). The 
software package ATHENA, developed by Kim et  al. 
[87] (Fig.  2a), incorporated this data into grammatical 
evolution neural networks. Here, over several itera-
tions, sets of neural networks with varying parameters 
are constructed, and the best-performing networks are 
combined in the following iteration until the best solu-
tion is reached. Another impactful study in this area 
of research was carried out by Chaudhary et al. [88] in 
2017, who used “-omics” data from different platforms 
to predict survival classes in hepatocellular carcinoma. 
Their model stratified patients into distinct risk groups 
and demonstrated comparable performance to models 
that additionally used clinical data, such as gender, can-
cer grade, and other risk factors. Furthermore, relations 
between survival and mutations in TP53, high expres-
sion of BIRC5, and other types of genomic alterations 
were shown as well. Elmarakeby et al. [89] in 2021 dis-
covered that alterations of formerly unrelated genes 
such as MDM4, FGFR1, or MALM3 are associated with 
prostate cancer outcomes. For this they used a neu-
ral network with specific constraints: nodes represent 
a biological entity and edges their relations. By doing 
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so, they limited the degree of connectivity in the net-
work to incorporate prior biological knowledge and to 
restrict the computational complexity. The advantage 
of genomics in prognosis predictions lies in the abil-
ity to obtain data at multiple levels, which can range 
from genomic properties to its specific sequences. As a 
result, subtle changes in the cellular machinery can be 
identified as potential biomarkers. Nevertheless, com-
pared to histopathology, many genomic biomarkers 
first need to be validated clinically to be translated into 
medical workflows.

An aspect that distinguishes AI in clinical genom-
ics from histopathology is the diversity of model types 
used. Whereas in DL for histopathology basic model 
architectures were adapted from computer vision, DL in 
genomics did not find a direct analog in computer sci-
ence, leading to a broader experimentation with various 
model types. For example, Chaudhary et  al. [88] uti-
lized an autoencoder, a form of DL, to integrate diverse 
omics data and then stratified liver cancer patients into 
risk groups. Yousefi et al. [90] deployed multi-layer per-
ceptrons combined with a Cox survival model for prog-
nosis predictions. Furthermore, random forests, gradient 
boosting, convolutional or graph-based networks, and 
more simple regression methods are applied in the field 
as well [91–94]. Today, similar to histopathology, trans-
former neural networks are becoming more and more 
prevalent in the field [95]. Taking into account the het-
erogeneity of genomic data, there is no single method 
that can be universally applied, underlining the need for 
continuous exploration in the future.

Cancer genomics remains a promising area for the 
application of DL. Many of the designated studies have 
shown to effectively complement bioinformatics tools 
and explore applications beyond them. Nevertheless, 
to our knowledge, DL tools for genomics have not yet 
received regulatory approval for clinical use. However, 
the cost for sequencing has dramatically decreased since 
the first human genome project, which indicates that 
genomic testing will probably become available to a broad 
range of cancer patients in the future [96, 97]. Therefore, 
we anticipate that DL in precision oncology will also 
benefit from more widely available genomic data. Apart 
from the application classes we mention in this review, 
DL could play numerous roles in clinical genomics in 
oncology. For example, DL could leverage tasks ranging 
from fundamental steps such as quality control or align-
ment to the high-level understanding of tumor evolution 
and timewise changes occurring in our genome. Finally, 
in routine clinical practice, DL could also be instrumen-
tal for screening purposes, such as in liquid biopsies for 
early cancer detection and disease monitoring.

Multimodality
Gathering extensive information prior to making deci-
sions is not an exclusive trait of AI. This is also com-
mon within clinical workflows, where physicians rely 
on a range of data, such as basic patient information, 
medical records, and test results, to inform their deci-
sions. For these reasons, the field of multimodal AI has 
emerged in recent years, where the inputs of the models 
originate from various data sources and output a single 
prediction. A few studies have investigated data fusion 
from histopathology and genomics data, capitalizing 
on potential synergies between these data modalities, 
ultimately aimed at clinical use. Histopathology images 
are widely available and inexpensive, but only show tis-
sue phenotype, not necessarily underlying molecu-
lar changes. Therefore, it was shown that already the 
addition of clinical parameters from the patient could 
improve the generalizability of DL models improving the 
predictions [21]. Genomic methods, on the other hand, 
can offer a glimpse into the underlying machinery within 
the cells, but there is still the disadvantage that a certain 
amount of material is required to obtain such informa-
tion, which is not always feasible. Furthermore, technical 
aspects also need to be considered, as in the case of DL, 
where the model’s performance is critically dependent 
on the size of the input. Hence, the integration of data 
from different modalities could potentially allow for an 
increase in the information given to a model. With this, 
previously missing information can be completed or 
extended, refining the model’s predictions and subse-
quently improving biomarkers [15, 98].

One of the first to publish a multimodal DL model 
combining histopathology and genomics was Mobad-
ersany et  al. [99] in 2018. They combined WSIs, IDH 
mutation, and 1p/19q codeletion status data as input of 
a ML model to predict survival for patients with glio-
mas (Fig. 2a). Furthermore, their method surpassed sev-
eral clinical biomarkers for prognosis. One year later, 
Cheerla and Gevaert [100] utilized RNA expression data 
in combination with WSIs for 20 cancer types in order to 
improve survival predictions. The most recent evidence 
indicating that utilizing multiple modalities can be supe-
rior to single modalities was provided by Chen et al., who 
published two separate models: PathomicFusion (2019), 
which integrated WSIs, driver mutation, copy number 
variation, as well as RNA-sequencing data, and POR-
POISE (2022), which added genomic profiles to WSIs [17, 
101]. In terms of performance, PathomicFusion was able 
to reach a c-index of 0.826 in glioma and 0.72 in clear cell 
renal cell carcinoma survival prediction. In PORPOISE, 
the best performance was achieved in kidney renal clear 
cell carcinomas with a c-index of 0.827. However, exter-
nal validation of these results might be needed before 
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clinically translating these models [102]. In addition to 
prognostication, other application types such as grading 
and subtyping were studied with multimodal models as 
well. Especially in brain cancer, many studies were car-
ried out. For example, Pei et al. [103] predicted grading in 
gliomas based on the same features of Mobadersany et al. 
previously mentioned. This focus on brain cancer is likely 
due to the change in classification standards of gliomas 
in 2016, in which the World Health Organization added 
molecular features as decision standards to histopatho-
logical ones [104]. Thus, studies that would have solely 
relied on histopathology in the past, would now also 
require genomic evidence. In this way, clinical guidelines 
could facilitate multimodal research as well.

Adding another layer of multimodality, Boehm et  al. 
[105] and Vanguri et  al. [106] not only utilized histo-
logic and genomic data but also expanded this repertoire 
by radiology images. With this, a next step towards a 
holistic integration of all clinically available information 
was taken, even though the complexity of these models 
would make their training and clinical deployment more 
difficult than single-modality models. Nevertheless, in 
a medical setting, having separate models for each data 
type will probably  not be practical. Furthermore, in the 
future, it is possible that AI models not only incorpo-
rate patient data but also general medical information 
to make knowledge-based predictions. This could make 
them a universally applicable tool which combines pre-
dictions with practical reasoning that humans could 
interact with [107].

Outlook
As a result of technical advancements over the past years, 
DL models are continually becoming more powerful and 
generalizable. Given enough data and a clearly defined 
task, DL models can in principle outperform human 
observers in patient diagnosis and potentially in down-
stream decision-making processes [108, 109]. Neverthe-
less, some key limitations need to be overcome when 
applying DL to precision medicine [110].

In ML, models require sufficiently large amounts of 
data to become good at their task. Part of this require-
ment is for technical reasons, as many repetitions of pat-
terns are required to force the internal model parameters 
into their desired state. Another reason for data require-
ments, however, is the variability that is present in any 
biological system. In particular, tumors are diverse as 
their genotype, phenotype, and clinical behavior differ 
between patients. The minimum size of any training data 
set is such that it can represent the biological variabil-
ity. Therefore, studies which only contain a dozen par-
ticipants, will usually not have sufficiently diverse data to 
generalize well to external datasets, particularly in clinical 

routine [111]. In consequence, to make DL models avail-
able for a wide range of clinical settings, ever larger 
datasets need to be acquired and shared (Fig.  2b). Data 
collection, not model flexibility, is the main bottleneck in 
training DL solutions in cancer research and oncology. 
Histopathology, as the base of diagnosis, is more readily 
obtainable than genomic data, which is typically costly 
and not routinely acquired for all patients. Consequently, 
genomic cohorts are harder to establish, particularly for 
multi-omic approaches. Extensive clinical setups and 
infrastructure are required, often limiting them to  well-
funded research centers or large healthcare institutions. 
One way to address these challenges is through distrib-
uted learning such as federated or swarm learning, where 
peers that are prohibited from public data sharing can 
still jointly train models [112–114] (Fig.  2b). Further-
more, technical concepts could supplement data acqui-
sition. Methods such as class balancing or augmenting 
datasets with simulated samples could aid studies with 
small patient numbers [115–117]. On the other hand, 
improved ML models could be more data-efficient and 
be able to sufficiently learn from even smaller datasets, 
potentially improving the data availability problem with a 
different strategy [118, 119].

In addition to limitations in dataset size, another fun-
damental problem of the development and deployment 
of DL systems in healthcare is that many datasets contain 
an internal bias based on the ethnicity, sex, or socio-eco-
nomic circumstances of participants, or the institution 
in which the studies were conducted [120–122]. Conse-
quently, this calls for fairer and more diverse data acqui-
sition strategies for upcoming studies which, in reverse, 
would have a positive impact on the generalizability of DL 
models again (Fig. 2b). In addition, even in homogenous 
data, standards for data curation need to be established 
nationally and internationally to make data comparable 
between institutions in the first place (Fig. 2b). Further-
more, since changes can occur within populations AI is 
used upon, we will encounter the necessity for model 
updates and reconfigurations, a property mostly not con-
sidered in model design today (Fig.  2b) [123]. This will 
eventually allow obtaining DL models that dynamically 
learn during deployment, rather than being “frozen” after 
a single static training step.

Ultimately, the aim of the research presented in this 
review is to implement DL in actual clinical routines. 
Unfortunately, this is notoriously challenging, as most 
countries mandate a necessary but highly complex regu-
latory approval. Obtaining such regulatory approval is 
not attainable for academic teams, only for commercial 
enterprises with quality-controlled development work-
flows and the financial means to bring an algorithm 
to the market as a product [124]. Even after gaining 



Page 10 of 14Unger and Kather  Genome Medicine           (2024) 16:44 

approval, there are other additional challenges to over-
come. For instance, few healthcare institutions even in 
the most economically prosperous countries are fully 
digitalized. Particularly, histopathology is based on the 
manual handling of glass slides in the overwhelming 
majority of healthcare institutions in the US and the EU 
today [110] (Fig. 2b). Moreover, a new skillset in health-
care providers and technical assistants is also needed to 
ensure processes are running efficiently. In the future, 
substantial investments are required to make healthcare 
infrastructure ready for a routine deployment of DL-
based biomarkers (Fig. 2b).

Finally, for DL to be adopted by practitioners, the mod-
els should ideally not be considered as a "black box", but 
also inherit the explainability for their decisions (Fig. 2b) 
[125]. This challenge is difficult to address since DL mod-
els exhibit a high degree of complexity and are often sus-
ceptible to minor changes in the input data, making it 
difficult to ensure reliable and consistent outputs [126]. 
A number of established techniques exist which are often 
used to make models explainable. For histopathology, 
these include mostly two types: “saliency maps,” which 
highlight parts of the input data that were relevant for 
decision-making, and “extreme examples,” i.e., extracting 
the instances in the dataset that are assigned the high-
est and lowest prediction scores by the model [127]. In 
clinical genomics, particularly for tabular data, explain-
ability methods such as Local Interpretable Model-
agnostic Explanations (LIME) [128] or SHapley Additive 
exPlanations (SHAP) [129] values can indicate to which 
extent features influence predictions. However, the ben-
efit of these methods depends on the human interpret-
ability of the features themselves [130]. Furthermore, 
these approaches do not necessarily infer causality which 
shows that we are only at the beginning of this develop-
ment. In addition to the explainability of specific models, 
generative AI could change the way we perceive what DL 
actually learns by reversing the DL workflow, creating 
data from an input query (Fig.  2b) [131]. More impor-
tantly, generative DL models could allow us to integrate 
counterfactuality. Essentially, as a first step, large DL 
models gather large and diverse knowledge about biolog-
ical processes. Then, in counterfactual methods, the gen-
erative DL part can be used by a human experimentalist 
to answer questions such as “what would this particular 
tumor look like if it had a BRAF mutation?”, or “what 
would this precise tumor look like if the lymphocytes 
were removed?” [132, 133]. These approaches are not 
widely investigated in the analysis of pathology images 
or genomic data of cancer, but could be a useful tool 
for educational purposes and search for yet unknown 
properties.

In conclusion, the incorporation of AI into patient care 
is a multifaceted endeavor that requires extensive col-
laboration of researchers, healthcare institutions, and 
administrative bodies. The strategies explored in this 
review have the potential to enhance personalized treat-
ments and advance precision oncology, possibly yielding 
cost savings and improved outcomes for patients. The 
rapid evolution of DL is remarkable, especially consider-
ing that just a decade ago it had virtually no role in the 
analysis of clinical data at all. Therefore, we anticipate 
that DL will become a widely used component of clinical 
workflows in precision oncology.
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