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Abstract 

Background Pituitary neuroendocrine tumors (PitNETs) are common gland neoplasms demonstrating distinctive 
transcription factors. Although the role of immune cells in PitNETs has been widely recognized, the precise immuno-
logical environment and its control over tumor cells are poorly understood.

Methods The heterogeneity, spatial distribution, and clinical significance of macrophages in PitNETs were ana-
lyzed using single-cell RNA sequencing (scRNA-seq), bulk RNA-seq, spatial transcriptomics, immunohistochemistry, 
and multiplexed quantitative immunofluorescence (QIF). Cell viability, cell apoptosis assays, and in vivo subcutaneous 
xenograft experiments have confirmed that INHBA-ACVR1B influences the process of tumor cell apoptosis.

Results The present study evaluated scRNA-seq data from 23 PitNET samples categorized into 3 primary lineages. 
The objective was to explore the diversity of tumors and the composition of immune cells across these lineages. 
Analyzed data from scRNA-seq and 365 bulk RNA sequencing samples conducted in-house revealed the presence 
of three unique subtypes of tumor immune microenvironment (TIME) in PitNETs. These subtypes were characterized 
by varying levels of immune infiltration, ranging from low to intermediate to high. In addition, the NR5A1 lineage 
is primarily associated with the subtype characterized by limited infiltration of immune cells. Tumor-associated 
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macrophages (TAMs) expressing CX3CR1+, C1Q+, and GPNMB+ showed enhanced contact with tumor cells expressing 
NR5A1 + , TBX19+, and POU1F1+, respectively. This emphasizes the distinct interaction axes between TAMs and tumor 
cells based on their lineage. Moreover, the connection between CX3CR1+ macrophages and tumor cells via INHBA-
ACVR1B regulates tumor cell apoptosis.

Conclusions In summary, the different subtypes of TIME and the interaction between TAM and tumor cells offer valu-
able insights into the control of TIME that affects the development of PitNET. These findings can be utilized as pro-
spective targets for therapeutic interventions.

Keywords Pituitary neuroendocrine tumors, Single-cell RNA sequencing, Immune microenvironment subtypes, 
Tumor-associated macrophage, CX3CR1+ macrophage, INHBA-ACVR1B axis

Background
Pituitary neuroendocrine tumors (PitNETs) are a fre-
quently occurring form of intracranial brain tumor. The 
estimated prevalence rate of clinically significant PitNETs 
is approximately 1 case per 1000 individuals [1]. About 
2% of cases display aggressive behavior, while up to 15% 
show invasion, with a few cases of craniospinal or dis-
tant metastases occurring in 0.1–0.2% of cases. PitNETs 
can be either functional (i.e., producing hormones and 
causing hormonal imbalances) or non-functional, lead-
ing to neurological symptoms based on size and location. 
Although significant therapeutic progress in strategies, 
such as medication and surgery, has been made, many 
PitNET patients have poor clinical outcomes. The 2022 
World Health Organization classification reported the 
role of key transcription factors in the differentiation 
of distinct types of pituitary cells, indicating the com-
plexity and heterogeneity of PitNETs [2]. Revolutionary 
advances in single-cell RNA sequencing (scRNA-seq) and 
bulk-RNA sequencing technology allow a more compre-
hensive understanding of the origin and differentiation 
status of PitNET cells [3–9]. In addition to deciphering 
the tumor cells, efforts have been made to characterize 
the tumor immune microenvironment (TIME), improv-
ing the clinical benefit of immunotherapy, especially anti-
PD-1/L1 and anti-CTLA4 antibodies [10, 11]; however, 
many patients still have poor outcomes [12, 13]. There-
fore, a deeper insight into PitNET TIME and identifying 
potential targets is crucial.

TIME is a well-recognized factor in the development 
and progression of PitNETs [14–16]. Macrophages 
and T lymphocytes are the most prevalent infiltrating 
immune cells in PitNETs [17, 18]. Also, other immune 
cell subtypes such as B lymphocytes, FOXP3+ cells, 
neutrophils, NK cells, or mast cells may be present less 
frequently [15]. However, the specific function and het-
erogeneity of these immune cell subtypes in PitNETs 
remain poorly understood, which can help identify 
new therapeutic targets. Some studies have endeavored 
to characterize the immune microenvironment of Pit-
NETs using immunohistochemistry (IHC) [16], flow 

cytometry (FC) [19], and RNA-seq (including both bulk 
RNA-seq and single-cell RNA-seq) [3, 5–7, 9]. Mac-
rophages, a highly heterogeneous group of immune 
cells, have many functions, including phagocytosis, 
antigen presentation, cytokine production, and tissue 
remodeling [20]. Growing evidence has suggested that 
immune cells, particularly macrophages, play an essen-
tial role in the development and progression of pitui-
tary adenomas [21, 22]. Macrophages are present in 
both normal pituitary and PitNETs, and their types and 
populations vary depending on the subtype of PitNETs 
[23–25]. M2 macrophages are prevalent in the pitui-
tary gland and may play a role in tumorigenesis [26]. 
The number of macrophages correlates with the size 
and invasiveness of PitNETs; higher macrophage con-
tent is seen in sparsely granulated somatotrophinomas 
and null-cell PitNETs compared to densely granulated 
somatotrophinomas or corticotrophinomas [22]. M2 
macrophages are also more prevalent in non-function-
ing PitNETs (NF-PitNETs) with cavernous sinus inva-
sion than in non-invasive NF-PitNETs. A higher M2/
M1 macrophage ratio was associated with larger and 
more proliferative NF-PitNETs [25–27]. Moreover, the 
M2 macrophage-conditioned medium increased the 
proliferation, invasion, and migration of primary NF-
PitNET cells [19, 27, 28]. However, the heterogeneity of 
macrophages in various PitNETs and their subpopula-
tion classification and communication with tumor cells 
remain unexplored.

Here, we performed integrated analysis on scRNA-
seq and bulk-RNA seq data of 3 tumor lineages from 23 
adult humans to establish the transcriptional landscape 
of immune cells in PitNETs. The pituitary tumors were 
classified into three immune infiltration states based on 
immune infiltration, and five subtypes of related mac-
rophages were identified. IHC by TMA (tissue microar-
ray) staining and FC confirmed that POU1F1 lineages 
had more immune cells, while NR5A1 lineages had 
lower immune cell infiltration. CX3CR1+, LYVE1+, 
C1Q+, and GPNMB+ macrophages in PitNETs were 
identified by multiplex IHC (mIHC). Furthermore, 
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INHBA secreted by CX3CR1+ macrophages par-
tially induced cell apoptosis. In contrast, blocking the 
INHBA receptor ACRV1B reversed this effect. Over-
all, our findings provide a comprehensive atlas of Pit-
NETs TIME subtypes, particularly from the aspect 
of macrophages, and highlight the role of CX3CR1+ 
macrophages in modulating transcriptional status and 
intercellular communication patterns.

Methods
Clinical samples
Patient recruitments three cohorts of patients were 
recruited: 23 scRNA-seq, 365 bulk RNA-seq PitNETs, 
128 Immunohistochemistry (IHC) of TMA, and 45 
flow cytometry for analysis and validation. All patients 
received surgery at the Department of Neurosurgery at 
Ruijin Hospital, an affiliate of Shanghai Jiao Tong Univer-
sity School of Medicine. The scRNA-seq and flow cytom-
etry PitNETs cohort underwent surgery between 2020 
and 2023, while the bulk RNA-seq and IHC PitNETs 
cohorts were collected between 2017 and 2022. Both 
cohorts only included subjects without previous malig-
nancies. The clinical data of all patients were retrospec-
tively obtained from medical records (Additional file  2: 
Table S1-5). The patients are assigned numbers matching 
the GroupsIndex column in Supplementary Table  S1-5. 
Written informed consent was obtained from all patients, 
and the Ruijin Hospital ethical committee approved the 
study.

Tissue dissociation and primary tumor cell extraction
Tissues were transported in DMEM (Gibco, Cat. no. 
11875–093) with 1  mM protease inhibitor (Solarbio, 
Cat. no. P6730) on ice to preserve viability, washed two 
to three times with phosphate-buffered saline (PBS; 
Hyclone, Cat. no. SH30256.01), then minced on ice. We 
used dissociation enzyme cocktail 1  mg/ml Type VIII 
Collagenase (Sigma-Aldrich, Cat. no. C2139), 2  mg/ml 
Dispase II (Sigma-Aldrich, Cat. no.4942078001), 1 mg/ml 
Trypsin Inhibitor (Sigma-Aldrich, Cat. no. T6522), and 
1 unit/ml DNase I (NEB, Cat. no. M0303S) dissolved in 
serum-free DMEM to digest the tissues. Neoplastic tis-
sues were dissociated at 37  °C with a shaking speed of 
50 r.p.m for about 40  min. We repeatedly collected the 
dissociated cells at intervals of 20  min to increase cells 
yield and viability. Cell suspensions were filtered using a 
40-μm nylon cell strainer (Falcon, Cat. no. 352340) and 
red blood cells (RBC) were removed by RBC lysis buffer 
(Invitrogen, Cat. no. 1966634) with 1 unit/ml DNase I. 
Dissociated cells were washed with PBS containing 0.04% 
bovine serum albumin (BSA; Sigma-Aldrich, Cat. no. 
B2064) with step-by-step descending centrifuging speed 
and increasing time. Cells were stained with 0.4% Trypan 

blue (Invitrogen, Cat. no. T10282) to check the viability 
and then cultured in DMEM containing 10% FBS and 1% 
antibiotic mixture.

RNA sequencing alignment
To quantify gene expression in the transcriptome, the 
RNA sequencing raw FASTQ files were aligned to the 
human reference genome GRCh38 (release 40). The 
human reference genome and its annotation file were 
acquired from the GENCODE database, accessible at 
https:// www. genco degen es. org/. Salmon (v1.8.1) [29] 
was used to generate the count and transcripts per kilo-
base of exon model per million mapped reads (TPM) 
matrix. The transcript counts were combined using 
DESeq2 [30] and then transformed into fragments per 
kilobase million (FPKM) to normalize the gene length, 
using the TPM matrix to evaluate the gene expression 
level. To identify differentially expressed genes, we used 
the limma [31] package with a significance level set 
at an adjusted P-value < 0.05 and a log2-transformed 
fold change (log2FC) > 0.58 (FC > 1.5). To identify dif-
ferentially expressed genes between more than two 
conditions, we used analysis of variance (ANOVA) to 
calculate the P-values.

Functional enrichment analysis
Gene Set Enrichment Analysis (GSEA) [32] was 
employed with the pre-ranked algorithm and the R pack-
age clusterProfiler [33] to perform functional enrich-
ment analysis. Genes were ranked based on their log2FC. 
The gene sets from the Molecular Signatures Database 
(MSigDB, v7.5.1) [34] of the Broad Institute were used. 
Specifically, we used the HALLMARK gene sets (H) [34], 
which represent 50 well-defined biological processes, 
and the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) [35, 36] database to identify differences induced 
by various drugs. A significance cutoff of P-value < 0.05 
was considered. To visualize the enrichment results, we 
utilized the enrichplot R package (https:// bioco nduct or. 
org/ packa ges/ enric hplot/). Another functional enrich-
ment analysis algorithm, Enrichr (https:// maaya nlab. 
cloud/ Enric hr/) [37] web service, was conducted to eval-
uate gene signatures. P-value < 0.05 was set to the signifi-
cance level.

Single‑cell RNA sequencing alignment and generation 
of gene expression matrix
Raw sequencing reads of the cDNA library was pro-
cessed through the BD Rhapsody Whole Transcriptome 
Assay Analysis Pipeline (v1.8), which included filtering 
by reads quality, annotating reads, annotating molecules, 

https://www.gencodegenes.org/
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https://maayanlab.cloud/Enrichr/
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determining putative cells, and generating a single-cell 
expression matrix. The pipeline also selected the sam-
ple origin of every single cell via the sample determina-
tion algorithm according to the sequencing reads of the 
SampleTag library. Among all the output files, a matrix 
of UMI counts for each gene per cell was used for down-
stream analysis. Genome Reference Consortium Human 
Build 38 (GRCh38) was used as a reference for the BD 
pipeline.

Analysis of single‑cell expression data and cell type 
annotation
Gene expression matrices were imported for downstream 
analysis using the R Seurat package [38].

Single‑cell quality control (Additional file 2: Table S6)
In the initial step, we conducted a filtration process to 
eliminate cells exhibiting low gene expression. The gene 
expression matrices of individual cells were imported for 
subsequent analysis using the R Seurat package. Cells 
with expressed genes < 200, or unique counts > 50,000 
or < 500, or expressed mitochondrial RNA > 30% were 
removed for quality control, resulting in 98,523 cells being 
retained. Upon analyzing the cell distributions across the 
23 samples, the median number of captured cells was 
2837. Among the 23 samples, 6 had a cell count exceed-
ing 5000, with 2 samples notably containing a high num-
ber of captured cells (> 10,000 cells). To ensure effective 
integration, we employed random downsampling to limit 
the maximum number of enrolled cells for each sample 
to 5000 using the R sample function. Ultimately, a total of 
69,539 cells from PitNETs were included for downstream 
data analysis (Additional File 2: Table S2). We performed 
the doublets analysis by using the R package DropletUtils 
(https:// bioco nduct or. org/ packa ges/ Dropl etUti ls/); we 
identified 108 cells (0.15%) as potential doublets among 
the total 69,539 cells. 

Batch effect adjustment
Following the generation of the Seurat object containing 
69,539 cells, we identified the top 3000 highly variable 
genes and utilized them to conduct principal component 
analysis (PCA). Batch effect correction across samples 
was executed using the R package Harmony [39], with 
the parameter “max.iter.harmony” set to 5. Subsequently, 
the top 20 harmony coordinates were chosen for cluster-
ing analysis and dimensionality reduction.

Clustering and dimensionality reduction
The top 20 harmony coordinates were selected for graph-
based unsupervised cell clusters with the resolution was 
set to 0.8. Dimensionality reduction methods t-Dis-
tributed Stochastic Neighbor Embedding (t-SNE) [40] 

and Uniform Manifold Approximation and Projection 
(UMAP) [41] was performed for visualization. The t-SNE 
was selected for final interpretation.

Annotation of major cell populations
After clustering, 30 clusters were calculated. Marker 
genes for each cluster were calculated using the “Find-
AllMarkers” function under the following criteria:  log2 
fold changes  (log2FC) > 0.25, min.pct > 0.1, and adjusted 
P < 0.05. Cells were annotated using both machine-
learning-based software SingleR [42] and high expres-
sion of canonical markers (i.e., EPCAM for epithelial 
cells, NCAM1 for neuron cells, VWF for endothelial cells, 
DCN for fibroblast. PTPRC for immune cells, C1Q for 
macrophage/Dendritic-cells (MDC), and CD3 for T cells, 
CD79A for B cells) in each cluster. For the second step of 
cell annotation, the immune populations were extracted 
separately and performed the entire workflow of normal-
ization, batch effect correction, unsupervised cell clus-
tering, and cell annotation and identification. The small 
cell population inner the immune cell populations were 
finally identified.

Identification of tumor cells in PitNETs
The tumor cells’ identification was described as (i) 
expression of neuron markers (NCAM1) and canoni-
cal markers of PitNETs, such as POU1F1, TBX19, and 
NR5A1 and (ii) higher copy number variation level. The 
copy number karyotyping analysis was performed by 
inferCNV (https:// github. com/ broad insti tute/ infer cnv) 
and CopyKAT (https:// github. com/ navin labco de/ copyk 
at) [43] package with default parameter.

Differentially expressed genes calculation 
and transcription factors activities estimation
We employed Seurat’s “FindMarkers” feature to detect 
genes expressed at varying levels between separate cell 
types. The log fold change (logFC) threshold was set 
at 0.01, and the minimum percentage of cells express-
ing the gene (min.pct) was set at 0.01. The significance 
of DEGs was determined by log2FC > 0.5 and adjusted 
P-value < 0.05. Protein activities of transcription factors 
(TFs) were estimated using DoRothEA [44]. A signifi-
cance criterion of P < 0.05 was employed to identify varia-
tions in TF activity across various cell types.

Generation of cell signatures based on scRNA‑seq
The top 200 expressed genes  (log2FC > 0.58 and adjusted 
P-value < 0.05) in each cell type were selected as an 
in-house cell marker database of PitNETs, which was 
enrolled for analysis on bulk RNA-seq data. The enrich-
ment score to infer cell abundance from bulk RNA-seq 
was calculated using a single sample gene set enrichment 

https://bioconductor.org/packages/DropletUtils/
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analysis (ssGSEA) algorithm via the R GSVA [45] 
package.

Trajectory analysis of macrophages
In order to assess the possible dynamic changes in cell 
state across several subclusters of tumor-associated mac-
rophages (TAM), we employed trajectory analysis using 
the R package Monocle2 (version 2.24.0) [46]. The DDR-
Tree method was used to reduce dimensionality based 
on the top 50 DEGs in each TAM subcluster and mono-
cyte. Based on the trajectory results, monocytes were 
defined as the initiating point of the trajectory. Genes 
with branch-dependent (CX3CR1+ macro and C1Q+ 
macro) expressions were identified using the BEAM sub-
program, filtered with a q-value < 0.05, and visualized by 
plot_genes_branched_heatmap function. ScTour and 
DifussionMap were utilized with the default parameters.

Cell–cell communication analysis
We applied the R package Cellchat to evaluate the inter-
action weights between tumor cells and TAMs [47]. First, 
we created a cell chat object with default parameters. 
The ligand–receptor interaction database we used for 
analysis was “CellChatDB.human” without additional 
supplement.

NicheNet was applied to infer the interaction mecha-
nisms between TAMs and malignant cells [48]. We 
defined the niches of interest for every subcluster. Clus-
tered cells with gene expression over 10% were consid-
ered for ligand and receptor interactions. The top 100 
ligands and top 1000 targets of differentially expressed 
genes of “senders” and “receivers” were extracted for 
paired ligand–receptor activity analysis. When evalu-
ating the regulatory network of TAMs on tumor cells, 
NR5A1 + tumor cells were considered “receivers”.

In contrast, POU1F1+ tumor cells and TBX19+ tumor 
cells were used as reference cells to check the regulatory 
potential of TAMs on tumor cells. The ligand_activity_
target_heatmap in Nichenet_output was used to show 
the regulatory activity of ligands. Activity scores ranged 
from 0 to 1.

Spatial transcriptomics analysis
The stereo-seq data is preprocessed using the STOmics 
Analysis Workflow (SAW). The read mapping pipeline 
uses STAR to align the sequenced reads to the human 
reference genome (GRCh38). Reads for which mass value 
(Q = − 10log(err rate)) is less than 15 account for more 
than 40% of the total number of bases, or N reads with 
more than 5 bases or containing linker sequences were 
filtered. Valid CID sequence must completely match chip 
barcode sequence. The gene quantification pipeline uses 
Bam2Gem to count the number of reads mapped to each 

gene. Bin200 was set as the basic unit for further data 
statistics.

The SpatialFeaturePlot function in Seurat gener-
ated spatial feature expression plots (Additional file  2: 
Table  S7). Signature scores were integrated into the 
“metadata” of the spatial transcriptomics (ST) dataset by 
calculating the mean expression levels of each gene from 
the scRNA-seq dataset. The estimation of cellular com-
position for the spatial transcriptomics spots was per-
formed using the SpatialDecon function, and pie plots 
visualizing the deconvolution results were generated 
using the DeconPieplot function in the Cottrazm pack-
age (version 0.1.1) [49].

Immunohistochemistry staining of tissue microarray
The tissue microarray (TMA) dataset (n = 128, Additional 
file  2: Table  S3) was used to evaluate the immune cell 
infiltration. Following deparaffinization and rehydration, 
heat-induced epitope retrieval (HIER) was performed 
by submerging the slides in antigen unmasking solution 
(Solarbio).

After blocking endogenous peroxidase and nonspe-
cific binding sites (0.3% H2O2 and 5% normal goat 
serum, sequentially), primary antibodies were applied at 
4  °C overnight. Slides were incubated with Dako REAL 
EnVision HRP rabbit/mouse (belong to K5007, DAKO, 
Glostrup, Denmark) at RT for 20 min, followed by treat-
ment with Dako REAL DAB + CHROMOGEN and 
Dako REAL substrate buffer (belong to K5007, DAKO, 
Glostrup, Denmark) to visualize staining signals under 
light microscopy, finally counterstained using hema-
toxylin solution. Stained slides were scanned using 
Ocus (Grundium, Tampere, Finland) and analyzed with 
Qupath software (see below).

IHC image analysis
Stained slides were scanned using Ocus (Grundium, 
Tampere, Finland) and analyzed with Qupath software 
v0.3.0. The built-in stain vector estimator preprocessed 
images. Cells with shape and stain parameters in each 
area were identified by build-in cell detection via nucleus 
stain (hematoxylin). The threshold for positive mean 
DAB optical density (OD) was determined based on the 
staining pattern and intensities observed in all photos 
for each antibody. The percentage of CD45, CD68, CD8, 
Ki67, and Cleaved Caspase 3 positive cells were quanti-
fied using a customized cellular multiplex algorithm. 
Scripts were produced for the analysis methodology of 
all the above slide pictures. These scripts were then exe-
cuted in batches for each set of images and subsequently 
reviewed by two pathologists who are experts in the field. 
All quantifications were evaluated blinded to patient clin-
ical information and outcomes.
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Multiplex immunohistochemistry and analysis
Formalin-fixed and paraffin-embedded tissue Sects. (3 mm) 
were de-paraffinized and rehydrated. Next, heat-induced 
epitope retrieval (HIER) was performed, followed by 
blocking with 3% hydrogen peroxide in TBST for 10  min 
and staining with the multiplex mIHC kit (PerkinElmer, 
NEL861001KT, Shanghai Kelin Institute). Briefly, after the 
first primary antibody staining, slides were incubated using 
the HRP-polymer detection system for 10 min, then visuali-
zation using Opal TSA working solution (1:100) for another 
10  min. Afterward, antigen retrieval was conducted again 
to prepare the slides for the next antibody. Using this Opal 
staining method, primary antibodies were applied sequen-
tially. Lastly, slides were counterstained with DAPI (Sigma, 
1:1000) for nuclei visualization and subsequently cover-
slipped using the Hardset mounting media (VectaShield, 
H-1400).

All tissue sections that underwent multiplex fluores-
cent staining for each fluorophore were imaged using the 
Vectra Polaris imaging system (PerkinElmer, Shanghai 
Kelin Institute) under the appropriate fluorescent filters 
to produce the spectral library required for multispectral 
analysis. A whole slide scan of the multiplex tissue sec-
tions produced multispectral fluorescent images visual-
ized in Phenochart (PerkinElmer).

Cell culture and reagents
The GH3, AtT20, MMQ, and RC-4BC cell lines were 
purchased from the American Type Culture Collec-
tion (ATCC, Manassas, VA, USA). GH3, AtT20, and 
MMQ cell line Twere cultured in Ham’s F-12 K medium 
(L450KJ, BasalMedia) supplemented with 2.5% FBS 
(S615JY, BasalMedia), 15% horse serum (26,050,088, 
ThermoFisher), and 1% penicillin/streptomycin (C100C5, 
NCM biotech. RC-4BC cells were cultured in DMEM 
(L130KJ, BasalMedia) with 10% FBS, 5  ng/ml recom-
binant rat EGF (ab290070, Abcam), and 1% penicillin/
streptomycin. The following inhibitor and recombinant 
protein were used: recombinant INHBA (C687, Novo-
protein), SB-505124 (HY-13521, MedChemExpress), A 
83–01 (HY-10432, MedChemExpress), and recombinant 
human Follistatin (10685-H08H, Sino Biological).

Flow cytometry and cell sorting
For surface staining, cells were resuspended in 50  μl of 
PBS containing antibody cocktails and stained at room 
temperature in the dark for 30 min. Antibodies used for 
flow cytometry are listed (Additional file 2: Table S8). For 
intracellular staining, cells were fixed and permeabilized 
by Foxp3 Fixation/Permeabilization kit (Thermo Fisher 
Scientific) at 4  °C for 45  min and stained with 50  μl of 
1 × permeabilization buffer containing antibody cocktails 
at 4 °C in the dark for 45 min.

For cell sorting, among the immune cells from 
human pituitary tumor cell suspensions, CD45-posi-
tive were divided into T cells (CD45 + CD3 +), B cells 
(CD45 + CD3-CD19 +), NK cells (CD45 + CD3-CD19-
CD56 +), and macrophages (CD45 + CD3-CD19-CD56-
CD11b +); among the CD45-negative, non-immune cells 
were divided into epithelial cells (CD45-EPCAM + CD31-
), endothelial cells (CD45-CD31 + EPCAM-), and stromal 
cells (CD45-CD31-EPCAM-CD90 +). Among CD14-
macrophages, CX3CR1 + , C1Q + , and Lyve + were used 
to classify macrophages, respectively. The gating strategy 
is shown in Additional file 1: Fig S11.

All flow data were acquired by BD FACSDiva software 
v8.0.2 and analyzed by FlowJo VX.

TAM and tumor cell co‑culture system
We isolated CX3CR1+ TAMs from three independent 
patients (334, 345, and 356) belonging to the SF1 lineage. 
The clinical details for these patients are provided in Sup-
plementary table s3. We co-cultured the sorted CX3CR1+ 
TAMs with matched CD45- tumor cells. Briefly, 1 ×  104 
TAMs were sorted and seeded onto Transwell polycar-
bonate filters (0.4 µm pore, 6.5 mm membrane diameter; 
Corning Incorporated, Corning, NY, USA). Simultane-
ously, 5 ×  105 primary tumor cells were seeded into the 
lower compartments of Transwell chambers, allowing co-
culture with TAMs in the upper compartment for 72 h. 
The initially identified tumor cells from the lower com-
partment were then collected for further investigation.

CellTiter‑Glo luminescence assay
CellTiter-Glo luminescence assay (Promega, Madison, 
WI) was used to determine the suppressive effect of the 
corresponding drug on the control or gene-edited cell 
line. The cells were distributed at 2000 cells per well on 
a 96-well plate. The cells were exposed to the appropri-
ate drugs in a 10% FBS-F12K medium at the prescribed 
doses. Cells were cultured for the indicated time before 
adding 100 μL of the CellTiter-Glo® luminescence assay 
reagent in each well. Cells were incubated for an addi-
tional 10  min at room temperature to stabilize lumi-
nescent signals and transferred to 96-well black plates. 
Measurements were performed using a luminescence 
reader (TECAN, Männedorf, Switzerland). Data was ana-
lyzed by GraphPad Prism 5 and normalized to the con-
trol group. The p-value was calculated using the Student’s 
t-test. Data was generated from at least three independ-
ent experiments.

Cell apoptosis
Flow cytometric analysis was conducted using the 
Annexin V, FITC Apoptosis Detection Kit (AD10, 
Dojindo) to evaluate cellular apoptosis. Primary tumor 
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cells were harvested and rinsed twice with PBS. Subse-
quently, the cells were incubated with Annexin V-FITC/
PI per the manufacturer’s instructions. The cells were 
acquired and analyzed using BD FACS Calibur with 
FlowJo (version 7.6.1) software.

Immunofluorescence and analysis
The cells were derived from samples 375, 381, and 382. 
Sorted 1 ×  104 CX3CR1+ and CX3CR1− macros were 
centrifuged on a slide by Thermo Scientific Shandon 
Cytospin. After that, cells were washed once with PBS 
and then fixed with 4% paraformaldehyde for 5  min at 
room temperature. Cells were washed thrice with PBS 
and permeabilized with 0.3% Triton-X for 5 min at room 
temperature. After three times PBS washing, cells were 
blocked at room temperature with 5% FBS blocking solu-
tion for 30 min. The cells were incubated overnight at 4℃ 
with anti-INHBA and anti-CD68 primary antibodies in a 
blocking solution. The cells were then washed for 5 min 
at room temperature three times with PBS. The cells were 
then incubated with secondary antibodies for 1 h at room 
temperature.

Anti-goat FITC for INHBA and anti-rabbit Corelite 
594 for CD68 were used. All secondary antibodies were 
diluted in PBS. After that, the cells were washed at room 
temperature three times with PBS and stained with Hoe-
chst at 1/1000 (40731ES10, yeasen) for 5  min at room 
temperature. Finally, the slides were washed three times 
with PBS and mounted on glass slides with AntiFade 
Mounting Medium ( G1401-5ML, Servicebio). Image 
acquisition was performed with an Axio Imager M2 (Carl 
Zeiss Ltd) and an Apotome. The Zen software piloted 2 
(363 oil immersion objective) (Carl Zeiss Ltd). Additional 
file 2: Table S8 summarizes the antibodies used and how 
they were diluted.

To quantify the fluorescence intensity, we used ImageJ 
software with default parameters. The grayscale value 
assigned to each pixel in the single-channel fluorescence 
image reflects the corresponding fluorescence inten-
sity. The INHBA mean fluorescence intensity (MFI) was 
determined using the formula: Mean Fluorescence Inten-
sity (MFI) = Total Fluorescence Intensity in the Region 
/ Area of the Region. The grayscale value and the corre-
sponding area were determined for each region, and the 
MFI for each photo was calculated. Statistical analysis 
was performed using a Student’s t-test.

Real‑time RT‑PCR
Total RNA was extracted from tissue samples and cells 
using TRIzol reagent (AG21102, Accurate Biology) after 
washing with PBS. According to the manufacturer’s 
instructions, cDNA was synthesized from purified RNA 
using an Evo M-MLV RT Mix Kit with gDNA Clean for 

qPCR (AG11728, Accurate Biology). SYBR Green PCR 
Master Mix (AG11718, Accurate Biology) was used for 
PCR amplification and a real-time PCR machine (ABI-
7500, ThermoFisher) was used to quantify the expression 
of mRNAs. β-actin was used as an endogenous control, 
and the expression levels were quantified using the  2−ΔΔCt 
method. All primer sequences are listed in Additional 
file 2: Table S9, and each primer was detected in triplicate.

Western blotting
Cells and tissues were lysed by RIPA buffer (P0013C, 
Beyotime Biotechnology) with protease and phos-
phatase inhibitor cocktail (P002, NCM Biotech), and 
total protein concentration was measured using a bicin-
choninic acid protein assay kit (YSD-500  T, Yoche). 
Samples were denatured by boiling in 1 × loading buffer 
and run on a 10% SDS–PAGE gel. Membranes were 
incubated with primary antibodies overnight at 4  °C, 
washed three times with TBST, incubated with second-
ary antibodies for 1 h at room temperature, and devel-
oped using Ultra High Sensitive ECL Kit (G2020-25ML, 
Servicebio). The primary and secondary antibodies 
used and their dilution are listed in Additional file  2: 
Table S8. Western blots shown in the accompanying fig-
ures are derived from three independent experiments.

Mouse studies
Mouse Studies Athymic nude mice (BALB/cA nu/
nu) aged 4 to 5  weeks (Shanghai Jiao Tong University 
School of Medicine, Shanghai, China) were housed in 
sterile cages under laminar airflow hoods in a specific 
pathogen-free room at 22–25° with a 12-h light and 
12-h dark schedule and fed with autoclaved chow and 
water ad libitum.

In vivo subcutaneous xenograft
Female BALB/c nu/nu mice were purchased at 4 weeks 
of age and AtT20 cells were harvested and washed in 
PBS, resuspended with Hank’s balanced salt solution 
(HBSS) about 1 ×  106 (per side/100 μL) concentrations 
were injected subcutaneously on the suitable sites per 
mouse. Treatment was started when the tumor sizes 
reached approximately 100  mm3; mice were rand-
omized into different groups. An intraperitoneal injec-
tion of Activin A (5  mg/kg in 100  μl PBS) or PBS was 
administered every other day. Tumor volumes (per 
group) were measured with a digital caliper and cal-
culated as length ×  width2 × 0.52. Relative tumor vol-
ume (RTV) was calculated by (RTV =  TVt /  TV0, where 
 TV0 is the tumor volume measured when starting drug 
treatment). The anti-tumor effect of drug treatment 
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was calculated by drug-treated/control (T/C) ratio 
(T/C =  RTVtreated /  RTVcontrol × 100%). The mouse vis-
cera were analyzed by HE staining to evaluate the 
safety of the inhibitor. The growth (Ki-67) and hormone 
(Pomc) of each tumor were measured by immunofluo-
rescence (IF). The HE staining and IF analyses were 
performed, and the individuals performing the experi-
ments were unaware of the samples being analyzed.

Statistical analysis
All statistical analyses were performed using R 4.2.1. All 
heatmaps were generated by the R package pheatmap 
(https:// CRAN.R- proje ct. org/ packa ge= pheat map). The 
P-values were two-sided. P-values of less than 0.05 were 
considered statistically significant. For adjustment of 
P-values, P-values were adjusted using the Benjamini and 
Hochberg method (alias false discovery rate, FDR).

Results
Single‑cell transcriptional landscape of PitNETs
In order to analyze the distribution of tumor cells and 
the cells in the tumor microenvironment (TME), we 
performed single-cell RNA sequencing (scRNA-seq) 
on the tumor tissues of 23 patients with PitNET. These 
tumors were classified into 11 PIT1 tumors, 2 silent TPIT 
tumors, and 10 SF1 tumors based on the expression lev-
els of three transcription factors (Fig.  1A). After strin-
gent quality control, we obtained 69,539 cells for further 
analysis. The batch effect of the scRNA-seq data across 
23 samples was corrected with the Harmony algorithm 
[39, 50]. Subsequently, a total of 11 prominent cell types 
were discerned. Canonical markers were used to iden-
tify each cell type, and their visualization was performed 
using t-distributed stochastic neighbor embedding 
(t-SNE) (Fig. 1B–D) [39]. Despite the tumor cells which 
were annotated based on lineage-specific transcription 
factors, namely POU1F1+, TBX19+, and NR5A1+ tumor 
cells, every cell type appeared across the three lineages 
(Fig. 1D, Additional File 1: Fig. S1A-C). Besides lineage-
specific transcription factors, tumor cell clusters shared 
expression of epithelial marker gene EPCAM and neu-
ron marker gene NCAM1 (Fig. 1E). The transmembrane 
protein tyrosine phosphatase gene PTPRC (CD45) is 

expressed in immune cells. We identified five subtypes of 
immune cells, including macrophages and DCs express-
ing C1QA and MS4A7, neutrophils expressing S100A8 
and FCGR3B, B cells expressing MS4A1 and CD79A, 
T/NK cells expressing CD3E and NKG7, and mast cells 
expressing KIT and MS4A2. Two subtypes of stromal 
cells were identified: endothelial cells expressing VWF 
and PLVAP and fibroblasts expressing COL1A2 and FN1 
(Fig.  1F). To further validate our findings, flow cytom-
etry analysis was conducted on 45 PitNET samples. The 
results illustrated that macrophages exhibited the high-
est expression among  CD45+ cells, while epithelial cells 
dominated the expression among  CD45− cells (Addi-
tional file 1: Fig. S1D).

Tumor heterogeneity can be characterized based on 
genetic and copy number variations (CNVs). Most Pit-
NET are benign tumors whose subtypes depend on 
lineage-specific transcription factors [2]. The presence 
of CNVs in benign tumors and their impact on tumor 
control remains undisclosed. In order to examine the dif-
ferences in CNVs among various lineages of PitNET, we 
measured the CNVs using the inferCNV method [50]. 
We found that the three lineages of PitNET had more 
frequent CNV events in tumor cells, suggesting that 
PitNETs also have many CNV events. PIT1 lineage har-
bored the highest number of CNVs (Fig. 1G).

We screened differentially expressed genes (DEGs) 
in three lineages of tumor cells using the FindMarkers 
function and performed functional enrichment analysis. 
The results reveal the most significantly up-regulated 
enriched signal pathways (Additional file  1: Fig.  2A-C). 
Notably, the POU1F1+ tumor cells exhibited the upregu-
lation of genes involved in intracellular protein traffick-
ing and extracellular protein secretion. The up-regulated 
DEGs in TBX19+ tumor cells were related to apoptotic 
signaling pathways and vesicle-mediated transport. 
NR5A1+ tumor cells showed the upregulation of genes 
associated with response to extracellular stimuli and reg-
ulation of neuronal death.

Distinct function modules of PitNETs subtypes
Our analysis of gene expression patterns at single-cell 
levels showed that the tumor cells derived from the PIT1, 

(See figure on next page.)
Fig. 1 Single-cell analysis reveals the transcriptomic landscape in PitNETs. A Graphic overview of the study design and workflow. B Uniform 
Manifold Approximation and Projection (UMAP) map visualizes 69,539 cells, with color-coding representing individual samples. C UMAP overview 
color-coded by the three lineages observed. D UMAP overview color-coded by the identified cell types. E Violin plots depict marker gene 
expression levels across three types of tumor cells and immune cells. F Dot plot illustrating the specific marker genes associated with the 11 major 
cell types. G Heatmap displaying the chromosomal map of single-cell large-scale copy number variations (CNVs) inferred through scRNA-seq. 
Immune cells were used as a reference, and amplifications (red) or deletions (blue) were inferred by averaging expression over 100-gene stretches 
on each chromosome

https://CRAN.R-project.org/package=pheatmap
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Fig. 1 (See legend on previous page.)
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TPIT, and SF1 lineages of PitNETs have distinct tumor 
heterogeneity (Fig. 1C–D, and G). In addition, we previ-
ously classified six groups (G1 to G6) for PitNET patients 
based on bulk RNA-seq (n = 180), demonstrating the het-
erogeneity of PitNETs [51]. To further explore the heter-
ogeneity of PitNET from the tissue and single-cell level, 
we integrated scRNA-seq with our in-house extended 
bulk RNA-seq (n = 365) to distinguish the PIT1, TPIT, 
and SF1 lineages of PitNETs, corresponding to G1–G3, 
G4–5, and G6, respectively (Fig.  2A). The classification 
shed light on a more specific clinical treatment. In the 

PIT1 lineage, the characterized genes were PRL, PRLR, 
DLK1, ARHGAP36, PLCXD3, GH1, GHRHR, and the 
transcription-factor-coding POU1F1 (Additional file  1: 
Fig. S3A). The TPIT lineage had TBX19, POMC, GZMK, 
SST, SOX3, AVPR1B, CARTPT, and CALB1 genes as fea-
ture genes (Additional file 1: Fig. S3B) [6, 51, 52]. Many of 
the characteristic genes in both PIT1 and TPIT lineages 
regulate the synthesis and secretion of hormones. On the 
other hand, the highly expressed genes in the SF1 lineage 
were NR5A1, GATA2, IDH1, EGR2-4, and NSG2 (Addi-
tional file 1: Fig. S3C). These genes primarily participate 

Fig. 2 Tumor cells in PitNETs can be divided into three lineages based on their gene expression profile. A Gene expression patterns and clinical 
features of three distinct lineages in PitNETs. The columns represent PitNET patients, and the rows indicate gene expression levels or clinical features. 
B Bubble diagram illustrating the Gene Ontology (GO) biological processes (BP) associated with the three distinct tumor lineages. C Heatmap 
displaying the activation level of TF and their expression in the three PitNET lineages, as determined by scRNA-seq and bulk RNA-seq methods
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in tumor development, differentiation, proliferation, and 
growth. More importantly, the characteristic transcrip-
tion factor expression levels were coherent between 
scRNA-seq and bulk RNA-seq data (Fig.  2B). Further-
more, Gene Ontology (GO) enrichment analysis of DEGs 
for the enriched signal pathway identified key differences 
among the three lineages of PitNETs cells (Fig. 2C). The 
PIT1 lineage tumor cells were more involved in glyco-
protein metabolic and biosynthetic processes; the TPIT 
lineage was involved in the transport and exocytosis of 
ions; and SF1 lineage was involved in gland development 
and synapse-related process (Fig. 2C). Collectively, both 
scRNA-seq and our expanded bulk RNA-seq data vali-
dated three distinct function modules of PitNETs.

Three distinct subtypes of TIME associated with PitNETs 
lineages
In addition to specific tumor cell composition across 
PitNETs lineages, we also found significant differences 
among the microenvironment. The highest abundance 
of stromal cells was found in SF1, and the most immune 
cell infiltration was seen in PIT1 compared to the other 
two subtypes (Additional file 1: Fig. S3D). However, the 
specific biological composition and functions of immune 
cells in the microenvironment of PitNET remain uncer-
tain [2, 53]. Here, we drafted an immune landscape of 
PitNETs to explore the functional roles of TIME in dif-
ferent lineages. Based on distinct characteristic marker 
genes, we divided the 12,079 cells into 10 groups from cell 
clusters that were annotated to be immune cells, includ-
ing macrophages, monocytes, dendritic cells (pDC and 
cDC), neutrophils, mast cells, B cells, T cells (CD4+T and 
CD8+T), and NK cells (Fig.  3A-B, Additional file  1: Fig. 
S4A-B). Notably, macrophages had C1QA, C1QB, and 
CD163 as feature genes, while highly expressed S100A10, 
LYZ, and VCAN were observed in the monocyte cluster. 
Although each immune cell subset was present in most 
samples, we observed significant differences in their 
proportions in different lineages (Additional file  1: Fig. 
S4C-D).  CD4+ T cells,  CD8+ T cells, and NK cells were 
enriched in PIT1; mast cells were increased in SF1; neu-
trophils were enriched in both PIT1 and SF1, while mac-
rophages showed the highest infiltration in TPIT.

To further investigate the TIME differences among Pit-
NET lineages, we performed unsupervised clustering of 
PitNETs RNA-seq cohorts based on immune cell infil-
tration, identifying three distinct TIME subtypes (Addi-
tional file 2: Table S10), namely the “Immune Low” (IL), 
“Immune Intermediate” (II), and “Immune High” (IH) 
groups (Fig.  3C). The degree of immune cells infiltra-
tion increases progressively from group IL to IH (Addi-
tional file 1: Fig. S5A). Immune checkpoints are essential 
in immune responses and are critical as immunotherapy 

targets [54]. Either inhibitory (e.g., LAG3, HAVCR2) or 
stimulatory checkpoints (e.g., TNFSF9, TNFNR5A18) 
rose steadily from group IL group to IH, suggesting a co-
regulation of stimulatory and inhibitory immune sign-
aling pathways to maintain TIME equilibrium among 
different PitNET lineages. Furthermore, single-sample 
Gene Set Enrichment Analysis (ssGSEA) highlighted dis-
tinct signaling pathways enriched in the IH group (e.g., 
NFKB, PI3K-AKT-mTOR, NOTCH, WNT, P53), as well 
as cellular processes (e.g., EMT, hypoxia, and apopto-
sis). Moreover, the IH group exhibited immune-related 
enrichment of IFN-γ response, IFN-α response, and 
macrophage infiltration, indicating higher immune activ-
ity and immune cell infiltration in these tumors. These 
enriched pathways regulate cellular functions, including 
growth, metabolism, survival, differentiation, epithelial-
mesenchymal transition, and apoptosis.

Furthermore, we found that the IH group accounted 
for 82.76% of G1 samples, while 55.42% of G6 samples 
belonged to the IL group (Fig.  3G). However, the three 
PitNET lineages showed different proportions of immune 
infiltration (Additional file 1: Fig. S5B). Further, we con-
ducted TMA-IHC analysis, validating that the G1 sub-
type has significantly higher infiltration of immune cells, 
including  CD45+ cells,  CD68+ cells, and  CD8+ T cells, 
compared to the G6 subtype (Fig. 3H). Intriguingly, com-
pared to the G1 subtype, the SF1 lineage (G6), primarily 
characterized as “IL” tumors, displayed increased infiltra-
tion of TAMs (Fig. 3I–J). These findings indicate that Pit-
NETs can be categorized into three TIME subtypes. The 
IH group was predominantly observed in the G1 subtype, 
while the IL group was primarily observed in the G6 sub-
type with a higher infiltration of macrophages.

Distinct subtypes of tumor‑associated macrophage 
in different PitNETs lineages
Our scRNA-seq data showed macrophages were the 
major immune cell population in PitNET tissue (Fig. 1D), 
and distinctive infiltration was seen in different PitNET 
lineages (Fig.  3I–J). To explore the functions of mac-
rophages, we clustered the 5708 macrophages from 23 
patients and identified 5 subclusters, including C1Q+, 
ISG15+, LYVE1+, GPNMB+, and CX3CR1+macropahges 
(Fig.  4A and Additional file  1: Fig. S6A-B). These mac-
rophage subtypes had diverse distributions across the 
three PitNET lineages (Fig.  4C–D and Additional file  1: 
Fig. S6C-D); C1Q+ macrophages were mainly enriched 
in TPIT lineage tumors; GPNMB+ macrophages were 
enriched in PIT1 lineage tumors, and CX3CR1+ mac-
rophages were enriched in SF1 lineage tumors. The dis-
tribution of macrophage subtypes in different PitNET 
lineages was validated using in-house bulk RNA-seq 
data based on a signature score of the top macrophage 
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Fig. 3 Profiling immune cell populations in PitNET. A Uniform Manifold Approximation and Projection (UMAP) map displaying 12,079 immune cells, 
with color-coding indicating individual cell types. B Dot plot illustrating the specific marker genes associated with the 10 major immune cell types. 
C–F The unsupervised clustering of PitNET RNA-seq cohorts based on the abundance of immune cells revealed three distinct TIME subtypes. The 
plot shows the abundance of immune cells in each subtype (C). Expression levels of immune checkpoint genes in the PitNET TIME subtypes (D). 
The pathways are enriched based on the DEGs (E, F). P-values were calculated using ANOVA and adjusted using FDR. G The composition of immune 
classification in samples from groups G1 to G6. H Bar plot indicating the proportion of positive cells stained for CD45, CD68, and CD8 in PitNET 
Tissue Microarray (TMA) using IHC with G1 (n = 6) and G6 (n = 52). P-values were calculated using the Wilcoxon rank-sum test. Results are presented 
as mean ± standard error of the mean in bar plots. I–J. Bar plot displaying the proportion of CD68/CD45 positive cells stained in PitNETs TMA using 
IHC with PIT1 (n = 21) and SF1 (n = 45) (I) and flow cytometry with PIT1 (n = 12) and SF1 (n = 19) (J). P-values were calculated using the Wilcoxon 
rank-sum test. Results are presented as mean ± standard error of the mean in bar plots
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subtype-specifically expressed genes (Fig. 4E, Additional 
file  2: Table  S11). We further examined the localization 
of C1Q+, GPNMB+, and CX3CR1+ macrophages in TPIT, 
PIT1, and SF1 lineages, respectively. Our multiple immu-
nofluorescence labeling analysis provided strong evi-
dence of the co-localization of CX3CR1+ macrophages 
and CD68 in SF1 lineage (Fig.  4F). Similarly, GPNMB+ 
macrophages were mainly co-localized with CD68 in 
PIT1 lineage (Fig.  4G). In contrast, C1Q+ macrophages 
were mostly co-localized with CD68 in the TPIT lineage 
(Fig. 4H).

Furthermore, trajectory analysis using three different 
methods witnessed a developmental path from monocytes to 
LYVE+ and GPNMB+ macrophages and finally to CX3CR1+ 
and C1Q+ macrophages (Fig. 4J, and Additional file 1: Fig. 
S7). Gene Ontology (GO) enrichment analysis on the genes 
enriched in each state revealed the different functions of 
macrophage subtypes. Furthermore, we performed KEGG 
pathway enrichment analysis to uncover distinct functions 
of five macrophage subtypes (Additional file 1: Fig. S8). The 
ribosomal signaling pathway supporting protein synthe-
sis was enriched in TPIT-lineage-associated C1Q+ mac-
rophages and thus might help to maintain elevated hormone 
secretion. The oxidative phosphorylation pathway provid-
ing energy and materials was enriched in POU1F1-lineage-
associated GPNMB+ macrophages. The pathway of negative 
regulation for transforming growth factor beta (TGF-β) was 
enriched in SF1-lineage-associated CX3CR1+ macrophages 
and helped control the tumor growth. C1Q+ macrophages 
(characterized by the C1QA/B/C gene) showed a transitional 
phenotype from the initiate state to the immune-stimulated 
state, involving the upregulation of HLA genes and stimu-
lation of the interferon signal pathway (Fig.  4K). The two 
clusters of genes exhibiting high expressions in CX3CR1+ 
macrophages play a critical role in immune response and 
cytokine–cytokine receptor interaction.

Different regulation of macrophage‑tumor cell interaction 
axis in PitNETs
To understand the biology of macrophage–tumor cell 
interactions, we performed the CellChat analysis along 

the macrophage–tumor cell axis in different PitNET line-
ages. The results demonstrated that CX3CR1+, C1Q+, and 
GPNMB+ macrophages exhibited the highest interaction 
with NR5A1+, TBX19+, and POU1F1+ tumor cells, respec-
tively (Fig.  5A). This highlighted distinct ligand–recep-
tor pairs at each macrophage–tumor cell axis (Fig.  5B). 
To explore the mediators and downstream targets of the 
macrophage–tumor cell axis, we performed NichenetR 
analysis. We found that CX3CR1+ macrophages regulated 
NR5A1+ tumor cells through regulation of signaling recep-
tor pathway and TGF-β stimulus (Fig. 5D). The target genes 
and cluster-enriched pathways of C1Q+ and GPNMB+ 
macrophages were associated with protein maturation, 
response to corticosteroid and JAK-STAT, T cell prolif-
eration and activation, and response to cAMP functions 
(Additional file 1: Fig. S9A-D). Additionally, we investigated 
the functional profiles of the three macrophage clusters. 
CX3CR1+ macrophages exhibited higher activity in pro-
inflammatory responses and angiogenesis. In contrast, 
C1Q+ macrophages demonstrated a high level of phago-
cytosis (Fig. 5E). Conversely, GPNMB+ macrophages were 
involved in angiogenesis and phagocytosis (Fig.  5E). Fur-
thermore, CX3CR1+ macrophages displayed a pro-inflam-
matory profile, while GPNMB+ macrophages represented 
to be anti-inflammatory. C1Q+ macrophages exhibited 
minimal regulation of inflammation. Gene expression 
analysis within each macrophage cluster demonstrated 
that CX3CR1+ macrophages showed the upregulation of 
pro-inflammatory genes, including IL1B, TNF, CXCL9, 
and CXCL10 (Fig. 5F). This suggested that CX3CR1+ mac-
rophages contributed to the pro-inflammatory TIME of 
PitNETs. Furthermore, we observed a downregulation of 
CX3CR1+ macrophages in cases of MIB1-high and cav-
ernous invasion PitNETs (Fig.  5G). Together, these find-
ings suggested a potential association of reduced numbers 
of CX3CR1+ macrophages with the increased proliferation 
and aggressive characteristics of SF1 lineage PitNETs.

The INHBA‑ACVR1B axis promotes tumor cell apoptosis
To investigate the regulatory role of CX3CR1+ mac-
rophages on NR5A1+ tumor cells, we co-cultured 

Fig. 4 Three distinct subtypes of tumor-associated macrophage in three different PitNETs lineages. A UMAP map depicting macrophage cells 
color-coded by subtypes. B Dot plot displaying the specific marker genes for the five subtypes of macrophages. C The percentage of the five 
subtypes of macrophages observed in the three lineages. P-values are calculated using ANOVA. D–E. Violin plots show marker genes (D) expression 
levels and cell abundance (E) for the five subtype macrophages of three lineages. P-values were calculated using the Wilcoxon rank-sum test. F–H. 
Immunofluorescence (IF) image demonstrating the cell distribution of CX3CR1+ (F), GPNMB+ (G), and  C1Q+ (H) macrophages in the three lineage 
tumor cells. I. Flow cytometry data presents the proportion of CX3CR1+ macrophages in the population across the three lineages. P-values were 
calculated using the Wilcoxon rank-sum test. Results are presented as mean ± standard error of the mean in bar plots. J Trajectory plot of monocytes 
and the five subtypes of macrophages in a two-dimensional state-space inferred by Monocle 2 analysis (up) and the transition trajectories 
along pseudotime (down). K Three-phase distribution of C1Q+ macrophages and CX3CR1+ macrophages along pseudotime. Heatmap depicting 
the dynamic expression changes of genes and related pathways of C1Q+ macrophages and CX3CR1+ macrophages along pseudotime

(See figure on next page.)
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Fig. 4 (See legend on previous page.)
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PitNETs isolated CX3CR1+ or CX3CR1− macrophages 
with autologous CD45− tumor cells. We found that 
CX3CR1+ macrophages enhanced the expression of 
the corresponding target tumor inhibitory genes, such 
as BTG2, EGR2, ERG3, NR0B1, and SDC4, on NR5A1+ 
tumor cells (Fig. 6A). INHBA-ACVR1B was found to be 
the top-ranked ligand-receptor pair among CX3CR1+ 
macrophages and NR5A1+ tumor cells interaction. 
Notably, CX3CR1+ macrophages enriched NR5A1+ 
tumor cells and INHBA-ACVR1B were locationalized 
closely in the spatial transcriptome of SF1 lineage tissue 

(Fig.  6B–D and Additional file  1: Fig. S10A). Further-
more, we found that INHBA protein treatment up-
regulated three tumor inhibitory genes, namely EGR2, 
ERG3, and NR0B1 (Fig. 6E). Also, immunofluorescence 
analysis on flow-sorted CX3CR1+ macrophages vali-
dated the expression of INHBA in the CX3CR1+ mac-
rophages population (Fig. 6F–G).

To confirm the role of INHBA on the  CX3CR1+ mac-
rophages   NR5A1+ tumor cells interaction axis, we 
treated primary cells and PitNET cell lines with INHBA. 
We found that INHBA inhibited cell viability in SF1 

Fig. 5 CX3CR1+ macrophages interact with NR5A1+ tumor cells. A Interaction weights between TAM subpopulations and the three lineages 
of tumor cells. B Ligands and receptor pairs are involved in the interaction between TAM subpopulations and the three lineages of tumor 
cells. C Heatmap displaying the expression levels of ligands highly expressed in CX3CR1+ macrophages (left) and the expression levels 
of corresponding target genes on NR5A1+ tumor cells (right). D Signal pathways enriched from the ligand–receptor interaction between CX3CR1+ 
macrophages and NR5A1+ tumor cells. E Evaluation of the anti/pro-inflammatory and angiogenesis/phagocytosis functions of the three subtypes 
of macrophages. F Heatmap representing the mean expression levels of anti-tumor genes in the three subtypes of macrophages. G Violin plots 
illustrating the cell abundance of CX3CR1+ macrophages in samples categorized as low (< 3) or high (≥ 3) MIB1 percentage (on the left), as well 
as in samples with or without invasion. P-values were calculated using the Wilcoxon rank-sum test
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lineage primary cells (Fig.  6H) and induced apoptosis 
(Fig.  6I). We further used SB-505124, which reversed 
the inhibitory effect of INHBA (Fig.  6H and I). Simi-
lar outcomes were shown in the AtT20 cell line, where 
INHBA caused apoptosis and decreased cell prolif-
eration. Both effects may be reversed by follistatin and 
reversible ATP competitors that are selective for ALK4 
and ALK5 (SB-505124 and A 83–01) (Fig.  6J, L, and 
M). To further confirm the dependency of the inhibi-
tory effect on the INHBA receptor Acvr1b, we con-
ducted experiments demonstrating a significant reversal 
of the inhibitory effect upon downregulating Acvr1b 
using shRNA (Fig.  6K). However, no inhibitory effect 
of INHBA was observed in the MMQ and GH3 Pit-
NET cell lines (Additional file 1: Fig. S10B). This can be 
attributed to the low expression of ACVR1B (Additional 
file  1: Fig. S10C). Moreover, in  vivo drug treatment 
experiments were subsequently performed to con-
firm the validity of the above results. Tumor growth of 
AtT20 xenografts in a mouse subcutaneous model was 
reduced by continuous therapy with INHBA (activin 
A) (Fig.  6N). The hematoxylin and eosin (H&E) stain-
ing results confirmed that activin A treatment induced 
similar tumor necrosis in the AtT20 xenografts. How-
ever, the Ki-67 and Cleaved-caspase 3 staining results 
showed decreased proliferation and increased apopto-
sis in treatment with activin A (Fig. 6O and P). To con-
firm the expression of CX3CR1+ macrophages in AtT20 
xenografts, immunofluorescence (IF) staining results 
confirmed the co-localization of CD68 and CX3CR1 in 
the tissue (Fig. 6Q). Consequently, these results propose 
that CX3CR1+ macrophages may trigger apoptosis in 
tumor cells through the INHBA-ACVR1B axis.

Discussion
Different phenotypes of TIME, such as immune-inflamed 
microenvironment, immune-excluded microenviron-
ment, and immune-desert microenvironment, have 
been associated with multiple cancer types and immu-
notherapy efficacy [21, 55]. In particular, many recent 
studies have revealed that different macrophage sub-
types execute specific functions in tumors, and therefore, 
macrophage-targeted therapy is an attractive immuno-
therapy strategy. Despite the emerging studies [21, 56] 
on the components of tumor immune microenvironment 
(TIME), the TIME of PitNETs is not fully deciphered at 
the transcriptomic level, limiting the progress of clinical 
research on PitNETs immunotherapy. This study pro-
vides a comprehensive analysis of the immune landscape 
and macrophage heterogeneity in PitNETs, highlighting 
the potential roles of specific macrophage populations 
in tumor progression. We performed single-cell, bulk, 
and spatial RNA-seq analyses of different PitNET lineage 
samples to identify tumor heterogeneity and distinguish 
function modules of PitNET subtypes. Finally, three dis-
tinct TIME subtypes associated with PitNETs lineages 
were identified. TAM subtypes interact with different 
PitNET lineages; CX3CR1+ TAMs interact with NR5A1+ 
tumor cells through the INHBA-ACVR1B axis, promot-
ing tumor cell apoptosis.

Our previous study used bulk RNA-seq to classify 
180 PitNET patient samples from three lineages into 6 
subtypes (G1 to G6), revealing the heterogeneity of the 
PitNET lineage [51]. Using proteomics, Zhang et  al. 
also identified distinct clusters of PitNET heterogeneity 
showing different functional associations [7]. Here, we 
further highlighted the tumor heterogeneity and TIME 

Fig. 6 CX3CR1+ macrophages inhibit the growth of NR5A1 + tumor cells through INHBA/activin A—ACVR1B axis. A Histogram plot revealed 
the gene expression alteration of the tumor cells co-cultured with CX3CR1+ macrophages (n = 3). B–D HE images with pie charts in each spot 
colored by annotation showing the cellular composition in the ST sample (B). The spatial feature plot shows the location and proportions 
of macrophages in ST spots using deconvolution results (C). Spatial feature plots show the expression of INHBA and its receptor ACVR1B 
in the macrophage-containing spots (D). E Histogram plot revealed the gene expression alteration of the tumor cells co-cultured with activin 
A. F–G The representative image of immunofluorescence revealing the specific expression of INHBA in CX3CR1+ and CX3CR1− macrophages (F) 
and the statistics of INHBA mean fluorescence intensity (MFI) in CX3CR1+ and CX3CR1− macrophages in three patients (G). H–I The cell viability 
(H) and apoptosis (I) in the four  NR5A1+ primary cell treated activin A (10 ng/ml) with or without SB-505124 (1 μM) or follistatin (100 ng/ml). 
The histogram shows the cells’ apoptosis in different conditions for the primary cell (I). J Cell viability assessment in the AtT20 cell line treated 
with Activin A (10 ng/ml) in the presence or absence of SB-505124 (1 μM), A 83–01 (1 μM), or follistatin (100 ng/ml). K Cell viability analysis in AtT20 
cell line with shEV-GFP or shAcvr1b treated with Activin A (10 ng/ml). L–M. Apoptosis assessment in the AtT20 cell line treated with Activin 
A (10 ng/ml) in the presence or absence of SB-505124 (1 μM), A 83–01 (1 μM), or follistatin (100 ng/ml). The histogram illustrates the apoptosis 
levels of cells under various conditions in the AtT20 cell line (M). N–P Tumor growth curve (N). The xenografts harboring mice were injected 
intraperitoneally with activin A release preparations, 5 mg/kg weight, every other day with PBS. Representative images of H&E and IF staining (Ki-67 
and Cleaved-caspase 3) of resected AtT20 tumors from an experimental study between different groups (O). Scale bar as indicated. Statistical 
analysis of Ki67 and Cleaved-caspase 3 percentages in control and treated Att20 tumors (P). Q The staining revealed the co-localization of CD68 
and CX3CR1 in xenografts harboring mice. Arrow indicated the CD68 and CX3CR1 positive staining. Scale bar as indicated. *P < 0.05, **P < 0.01, 
***P < 0.001, ****P < 0.0001. P-values were calculated using the Wilcoxon rank-sum test. Results are presented as mean ± standard error of the mean 
in bar plots

(See figure on next page.)
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Fig. 6 (See legend on previous page.)
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of three transcription factor(TF)-based lineages in Pit-
NETs from a single-cell perspective. Our results com-
plement previous studies concerning the heterogeneity 
of different lineages in PitNETs [3, 5, 6]. We identified 
that different lineages of PitNET not only have distinct 
characteristics in TF-related transcriptomic profiles and 
functional modules but also exhibit genetic variation 
and CNVs. We screened differentially expressed genes 
(DEGs) in three types of tumor cells. Among these, the 
POU1F1+ tumor cells demonstrated intracellular pro-
tein trafficking and extracellular protein release. This 
aligned with the clinical manifestation of abnormally 
high secretion of certain hormones in the PIT1 lineage 
[5]. A recent study also supported these findings and 
demonstrated an inverse correlation between differen-
tiation status and recurrence within the PIT1/TPIT lin-
eage compared to the SF1 lineage [57]. In particular, we 
combined 23 single-cell and 365 in-house bulk RNA-
seq to reveal that all 3 PitNET subtypes have distinct 
immune-infiltrated patterns. The G1 subtype (PIT1 
lineage) exhibited the highest immune infiltration, 
while the G6 subtype (SF1 lineage) showed the lowest 
immune infiltration. Concisely, the molecular pheno-
types of PitNETs can be characterized by the immune 
infiltration phenotypes, providing a novel insight into 
the clinical diagnosis of PitNETs. This also suggests that 
the functional differentiation between G1-3 (PIT1 lin-
eage) and G4-5 (TPIT lineage) subgroups may be con-
trolled by TIME.

The heterogeneity of macrophages endows them with 
diverse functions, such as phagocytosis, antigen pres-
entation, cytokine production, and tissue remodeling 
[20]. Using scRNA-seq, previous studies identified mul-
tiple TAM subtypes with distinct gene signatures and 
functions [58, 59]. Earlier studies often determined the 
proportion of macrophages by employing pan mark-
ers such as CD68, CD163, or CD204. These indicators 
investigated possible relationships between treatment 
response and tumor progression [60]. M2 macrophage 
infiltration is the primary immunological landscape that 
the PitNETs subtypes exhibit [61]. The cell-to-cell inter-
actions of pitNETs and macrophages indicate poten-
tial therapeutic adjuvant for PitNET treatment [27, 
62]. However, current research does not always point 
to successful treatment outcomes when using classical 
immune checkpoints like PD-L1 CTLA4 as a target [55, 
63]. Here, we identified five distinct macrophage clusters 
that were differentially distributed and interacted with 
tumors of three PitNET lineages. Our research indi-
cates that the traditional method of classifying TAMs 
into distinct M1 and M2 subtypes may not be fully rel-
evant when studying PitNETs. TAMs in PitNETs exhibit 

features consistent with M1 and M2 phenotypes, dis-
regarding the simplistic dichotomy commonly used in 
macrophage classification [64]. However, according to a 
previous study, most TAMs expressed M2-related genes 
[61]. CX3CR1+ macrophages displayed the upregulation 
of pro-inflammatory properties and intense interaction 
with NR5A1+ tumor cells; C1Q+ macrophages showed 
increased phagocytosis activity and strong interaction 
with TBX19+ tumor cells; GPNMB+ macrophage with 
an intermediate level of angiogenesis and phagocytosis 
showed preferential interactions with POU1F1+ tumor 
cells. Concisely, different macrophage subtypes in Pit-
NET have different functions and drive differentiated 
macrophage–tumor interaction axis. Gaining insight 
into the unique functions of various macrophage sub-
sets and discerning the disparities between different 
types of PitNETs enhance the development of thera-
peutic approaches for PitNETs. CX3CR1+ macrophages 
were reported to have both anti- or pro-tumor effects 
in malignant tumors, and therefore, their functions 
are controversial [65–68]. Here, we demonstrated that 
CX3CR1+ macrophages exhibit anti-tumor effects, dis-
playing a pro-inflammatory phenotype.

Furthermore, the expression of anti-tumorigenic genes 
(ERG2, ERG3, and BTG2) was promoted by the inter-
action between CX3CR1+ macrophages and NR5A1+ 
tumor cells through the ligand-receptor INHBA-
ACVR1B pair [69, 70]. This was in agreement with earlier 
research [71] that ACVR1B can restore activin antipro-
liferative effects in human pituitary tumor cells. Inter-
leukin-1 (IL-1), interferon-γ (IFN-γ), and tumor necrosis 
factor-α (TNF-α) were among the pro-inflammatory 
cytokines that were reduced by blocking FKN-CX3CR1 
interaction, suggesting that this pathway could be a tar-
get for the therapy of rheumatoid arthritis [69]. Treat-
ments for our condition may be viewed in the opposite 
direction. Our findings suggest a potential inhibitory 
role of CX3CR1+ macrophages in tumor growth within 
the SF1 lineage of PitNETs. Clinically, INHBA agonists 
can promote the INHBA-ACVR1B pathway to eliminate 
SF1 lineage pituitary tumors or increase the infiltration 
of CX3CR1+ macrophages in other lineages, helping Pit-
NET treatment.

Our current analysis is limited by the scarcity of 
secreting TPIT lineage tumors in the scRNAseq data-
set, as only two silent TPIT available samples exist. 
The primary reason for this limitation is the low fre-
quency of secreting TPIT-related cases, which makes 
it challenging to gather a large enough sample size for 
thorough research. Due to the infrequency of secreting 
TPIT lineage tumors, it is crucial to use caution when 
interpreting results related to this specific subtype. 
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Furthermore, limitations in T cells analysis have been 
identified, characterized by inadequate data quantity 
and inconclusive grouping. To overcome these prob-
lems, we suggest enhancing the presence of T cells in 
sequencing data by enriching CD45 in future investi-
gations. This strategic improvement will enable more 
accurate categorization of immune cells and thorough 
analysis of the functions of T cells, therefore enhanc-
ing our understanding of the immune response in the 
tumors under investigation.

In summary, integrated analysis of bulk, single-cell, 
and spatial transcriptomic profiles on PitNET offered 
a comprehensive perspective on the diverse cellular 
compositions of PitNETs (Fig.  7). The identification of 
immune-infiltrating phenotypes, TAM subtypes, and 
distinct interaction axes of TAM-tumor cells provided 
valuable resources for future in-depth studies. Mainly, 
CX3CR1+ macrophages may hold significant promise 
in regulating tumor angiogenesis and inflammation. 
Here, our findings enable the categorization of molecu-
lar phenotypes of PitNETs according to the infiltration 

of immune cells and imply the possibility of treating 
PitNETs with macrophage subtype-based therapies. 
Additional investigation is required to elucidate the 
functions of different immune cells during the TIME of 
PitNETs.

Conclusions
We conducted an in-depth exploration of the immune 
microenvironment within PitNETs, with a specific 
focus on the interactions between macrophages and 
tumor cells. Utilizing single-cell RNA sequencing 
analysis, our study unveiled three distinct subtypes of 
the TIME, each characterized by varying degrees of 
immune cell infiltration and macrophage activity. These 
findings underscore the significance of considering the 
tumor microenvironment in the therapeutic approach 
to PitNETs, particularly highlighting potential strate-
gies targeting TAMs. Moreover, our research identi-
fied specific axes of interaction between macrophages 
and tumor cells, which may serve as novel targets for 
therapeutic intervention. The identification of these 

Fig. 7 Working model of immune-infiltrating phenotypes and macrophage–tumor interaction axes in diverse lineages of pituitary neuroendocrine 
tumors
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interaction axes not only enhances our understanding 
of the complexity of the immune microenvironment in 
PitNETs but also provides valuable insights for future 
clinical interventions. These discoveries hold promise 
for stimulating further research aimed at uncovering 
the potential of immunotherapy in treating PitNETs.
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