
Background
Cancer cachexia is a syndrome associated with malignant 
tumor disease defined by weight loss, asthenia and 
anorexia. Up to half of all cancer patients are affected, 

leading to increased morbidity and poor prognosis [1] 
with perhaps 20% of cancer deaths being related to 
cachexia rather than direct tumor effects [2]. Cachectic 
patients suffer loss of both muscle mass and adipose 
tissue (with comparative sparing of visceral protein) and 
this tissue loss appears resistant to nutritional support 
[3,4]. A PubMed analysis indicates that almost one-third of 
documents discussing cancer cachexia are review articles, 
highlighting the need for more primary investigations to 
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shed light on the detailed mechanisms that produce the 
syndrome in patients. Furthermore, most molecular hypo
theses have been generated using pre-clinical models or 
reflect biochemical concepts [5] and there has been little 
progress in relating these potential mechanisms to 
changes observed in the patient.

Muscle mass is maintained by physical activity, reflect
ing a balance between protein synthesis and degradation. 
Intracellular protein breakdown involves the ubiquitin 
proteasome pathway (UPP) and the autophagy (lyso
somal), caspase, cathepsin and the calcium-dependent 
calpain pathways. The individual prominence of each of 
these pathways in muscle wasting conditions is still 
debated. Many of the molecular signaling pathways that 
are postulated to contribute to muscle atrophy in pre-
clinical models mediate their effects through activation 
of the UPP [6]. Identification of two muscle-specific E3 
ubiquitin ligases, MuRF-1 and MAFbx/atrogin-1, in a 
large number of animal models of atrophy [7,8] has been 
used to provide an argument for a major contribution of 
the UPP in muscle wasting, such that these genes are now 
measured as surrogate indicators of UPP activation. It 
should be kept in mind that active tissue remodeling, 
even with net protein accretion, may well rely partly on 
the protein degradation pathways and, as such, they may 
not represent logical surrogates for commenting on net 
protein degradation.

In humans, reduced levels of phosphorylated (inactive) 
FOXO3a have been observed in the skeletal muscle of 
cachectic compared with non-cachectic cancer patients, 
but an unexplained twofold reduction in the amount of 
FOXO1 and FOXO3a was also observed [9], making the 
data challenging to interpret. FOXO3 also appears to 
induce expression of autophagy-related genes [10-13], 
suggesting a link between the lysosomal and proteasomal 
systems. However, there is also evidence that the UPP is 
first activated with increasing weight loss then declines 
as the disease severity progresses [14]. This suggests that 
UPP is a marker of protein turn-over rather than wasting 
per se (with turn-over increasing as the muscle weakens, 
but only while the patient continues to be ambulatory) 
or that UPP proteins are not reliable biomarkers. 
Furthermore, recent data indicates a dissociation 
between protein dynamics in vivo and activation or 
expression of the UPP-related signaling molecules in 
human skeletal muscle [15]. Overall, it is not clear what 
regulates muscle mass in vivo nor is it clear to what 
extent protein degradation contributes over inhibition of 
protein synthesis [15,16]. Given the paucity of data 
derived from cancer cachexia patients, including study 
of the UPP and autophagy systems, we sought to carry 
out both targeted and global molecular profiling in the 
skeletal muscle of cancer patients and relate our findings 
to clinical status.

Methods
Men and non-pregnant women over 18 years of age were 
recruited to the study from two separate centers. Written 
informed consent was obtained from all subjects and 
ethical approval received from Lothian Research Ethics 
Committee (UK) and the Regional Ethics Committee in 
Stockholm (Sweden). Participating patients had a 
diagnosis of upper gastrointestinal cancer (esophageal, 
gastric, pancreatic) and were undergoing surgery with 
the intent of resection of the primary tumor. A small 
number of weight stable (WS) patients undergoing 
surgery for benign, non-inflammatory conditions (n = 7) 
were also included in the analysis. In center 1 (Edinburgh, 
UK) a fasting venous blood sample was taken and serum 
C-reactive protein measured as a marker of systemic 
inflammation (SI). Body mass index (BMI) and mid-arm 
muscle circumference were calculated. Clinical details 
and degree of weight loss from self-reported pre-illness 
stable weight were recorded. A weight loss ≥5% identified 
weight-losing (WL) cancer patients as opposed to weight 
stable (WS) individuals. A serum C-reactive protein 
≥5  mg/l was used to define the presence of SI. For 
patients from center 2 (Stockholm, Sweden) weight and 
self-reported change in weight over time were recorded. 
Rate of weight loss was therefore used in these subjects. 
Due to the small number of controls (otherwise considered 
as non-cancer patients but with other co-morbidities) and 
the lack of detailed knowledge of their physical capacity, 
the primary analysis strategy was chosen to generate 
molecular changes that varied with the severity of weight 
loss in patients in center 1 and validate such changes in the 
independent cohort from center 2 using more than one 
muscle type. This strategy was devised to provide a 
stringent test of the molecular changes, as the conclusions 
are based on a relatively large number of patients with 
otherwise similar clinical characteristics.

All biopsies were taken at the start of open abdominal 
surgery. In center 1, the edge of the rectus abdominis was 
exposed and a 1-cm3 specimen removed using sharp 
dissection. The biopsy was snap frozen in liquid nitrogen 
and stored at -80°C until further analysis. In center 2, 
vastus lateralis muscle biopsies were taken with a 
Bergstrom needle and diaphragm biopsies were obtained 
by sharp dissection when possible. Both samples were 
snap frozen and stored at -80°C for further analysis. 
Approximately 20 mg of frozen tissue was homogenized 
in 0.5 ml of lysis buffer (Triton - X100 (1%), NaCl (150 mM), 
Tris-HCl (50 mM), EDTA (1 mM), PMSF (1  mM), 
protease inhibitors (Roche Diagnostics, Burgess Hill, UK); 
1 tablet per 10 ml), water to 10 ml) using a Powergen 125 
(Fisher Scientific, Loughbourgh, UK)) electric homogen
izer. Samples were left on ice for 15 minutes prior to 
centrifuging at 13,000 rpm for 15 minutes. The super
natant was removed, and protein concentration was 
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determined by comparing equal volumes of sample 
solution to known standards using the Lowry method. 
Samples were then stored at -80°C.

Approximately 20 mg of muscle was re-suspended in 
180 μl of low salt lysis buffer (10 mM HEPES, 10 mM 
KCl, 1.5 mM MgCl2, 0.1 mM EDTA, 0.1 mM EGTA, 1 mM 
DTT, 0.5 mM PMSF, protease inhibitors (Roche Diag
nostics; 1 tablet per 10 ml)) and ground using a handheld 
homogenizer. Samples were incubated on ice for 
5 minutes before two cycles of freeze-thaw lysis. After a 
brief vortex, samples were centrifuged at 4,000 rpm for 
3 minutes. The supernatant was removed and the pellet 
(containing the nuclei) re-suspended in 40 μl high salt 
extraction buffer (20 mM HEPES, 420 mM NaCl, 1 mM 
EDTA, 1 mM EGTA, 25% glycerol, 1 mM DTT, protease 
inhibitors (Roche Diagnostics; 1 tablet per 10 ml)). 
Samples were incubated on ice for 30 minutes with gentle 
mixing of the tubes every 5 to 10 minutes. Samples were 
centrifuged at 4,000 rpm for 5 minutes at 4°C. An aliquot 
of supernatant (containing the nuclear proteins) was 
stored at -80°C.

Protein from each sample (20 μg) was added to 3 μl of 
4 × loading buffer solution (0.5 M Tris-HCl pH 6.8, 20% 
glycerol, 4% SDS, 0.05% β-mercaptoethanol, 0.004% 
bromophenol blue) and boiled for 3 minutes. Proteins 
were resolved using SDS-PAGE at 160V for 45 minutes. 
Proteins were transferred to a nitrocellulose membrane 
(80 mA for 1 hour) using semi-dry transfer (Biorad, 
Hemel Hempstead, UK). Membranes were blocked with 
either 3% bovine serum albumen/tris-buffered saline 
(TBS) with Tween 20 (TBST; 0.05% Tween) overnight at 
4°C or with 5% milk/TBST for 1 hour at room tempera
ture. Incubation with primary antibody (1:1,000) was 
carried out in either 3% bovine serum albumen/TBST or 
0.5% milk/TBST solution at room temperature for 
2  hours or overnight at 4oC. Membranes were washed 
with TBST and primary antibody binding detected using 
horseradish-peroxidase conjugated secondary antibodies 
(1:2,000 to 1:5,000; anti-mouse, anti-rabbit (Upstate, 
Dundee, UK)). Specific signal was detected using ECL 
reagent (GE Healthcare, Little Chalfont, UK) and expo
sure on photographic film (Kodak). Films were scanned 
and densitometry values estimated using ImageJ (NIH) 
software. The primary antibodies used in the study were 
against phos-CaMKII(Thr286), FOXO1 and FOXO3a 
(New England Biolabs, Hitchin, UK), Lamin A/C (Insight, 
Wembely, UK), alpha-skeletal actin (Novocaestra, 
Newcastle, UK) and calcium/calmodulin-dependent 
protein kinase (CaMK)II (BD Biosciences, Oxford, UK).

Total RNA was extracted from approximately 20 mg of 
muscle using TRIzol (Invitrogen, Paisley, UK) reagent 
according to the manufacturer’s directions. The RNA 
pellet was re-suspended in diethylpyrocarbonate-treated 
water and RNA concentration was determined using a 

Nanodrop spectrophotometer (LabTech International, 
Ringmer, UK). RNA quality was assessed using 260/280, 
230/260 ratios and the RNA integrity number (RIN) 
score from the BioAnalyzer 2100 instrument (Agilent 
Technologies, Stockport, UK). Total RNA (3.5 μg) was 
reverse transcribed and processed according to the 
protocol provided by Affymetrix Inc. for the GeneChip 
Expression 3’ Amplification One-Cycle Target Labeling 
and Control Reagents kit (Affymetrix, High Wycombe, 
UK). Reverse transcription and second strand cDNA 
synthesis were followed by in vitro transcription and 
biotinylation. Biotinylated cRNA products were cleaned 
up using columns (Affymetrix). The quality of the 
biotinylated cRNA was assessed by Nanodrop (LabTech 
International, UK) and BioAnalyzer (Agilent Technolo
gies) instruments and the cRNA was then fragmented 
according to Affymetrix protocols. Samples were hybrid
ized to the HGU-133plus2 GeneChip array (covering 
approximately 54,000 sequences). The raw data files can 
be accessed at the Gene Expression Omnibus using the 
ID [GEO:GSE18832].

For quantitative real time PCR (qRT-PCR), cDNA was 
prepared using 1 μg RNA, TaqMan reverse transcription 
reagents (Applied Biosystems, Warrington, UK) and 
random hexamer primers (Applied Biosystems). Primers 
were designed to span introns using Primer Express 3.0 
software (Applied Biosystems) and constructed by 
Invitrogen (Paisley, UK); primer sequences are detailed in 
Table S1 in Additional data file 1. Samples were run on an 
ABI 7900HT Fast Real-Time PCR system (Applied 
Biosystems) in triplicates of 20 μl per well using SYBR 
Green PCR Master Mix (Applied Biosystems) as per the 
manufacturer’s instructions. Expression levels were 
normalized to ribosomal 18S RNA and results examined 
using the ΔCt method [17]. SPSS (SPSS Inc, Chicago, IL, 
USA) or GraphPad (GraphPad Software, La Jolla, CA, 
USA) statistical software was utilized. Student’s two 
tailed t-test or one way ANOVA (analysis of variance) 
was used to compare means between groups. Log trans
ormation was used when appropriate. Mann-Whitney 
was used for nonparametric analysis. Contingency tables 
were constructed where relevant and analyzed by Fisher’s 
exact test. Statistical significance was set at P < 0.05.

Microarray data were analyzed using the Microarray 
Suite software (MAS) version 5.0 (Affymetrix). To 
improve the accuracy of the gene to probe relationship, a 
custom chip definition file (CDF) [18] was used defining 
the Affymetrix probes by Ensembl transcript ID. Data 
were normalized using MAS5 and robust multi-array 
average [19]. Genes called absent on every array by the 
MAS5 software were filtered from the data and remain
ing genes analyzed using the quantitative function in 
significance analysis of microarrays (SAM) [20] imple
mented in the Bioconductor suite [21]. Percentage weight 
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loss or SI were the quantitative variables. To test the 
robustness of the approach, the limma package [22] in 
the Bioconductor suite was used to identify genes co-
varying with weight loss or SI. Both SAM and limma 
generate a false discovery rate (FDR) [23]. All genes 
identified by both procedures with an FDR <10% that 
covaried with weight loss were further examined. We also 
carried out a comparative microarray analysis [24,25] to 
examine the link between muscle cachexia and other 
muscle physiological states. The top 20 most regulated 
genes by eccentric muscle damage [26], muscle obtained 
from intensive care unit patients [27] and in response to 
exercise training [24] were obtained from three published 
articles. The mean values for these highly regulated 
marker genes for these physiological states were then 
plotted using the patient values from the present study, 
where patients had either less than or more than 5% 
weight loss. Functional annotation of these genes was 
carried out using Gene Ontology (GO) [28] utilizing the 
topGO tool [29] in the Bioconductor suite along with 
web-based Ingenuity Pathway Analysis [30]. For analysis 
of microarray data the Bioconductor suite [21] and the R 
language for statistics (R Development Core Team; 
version 2.7.1) were used.

The gene-sets (see below) identified by microarray 
analysis were used in further investigation of the 
regulatory mechanisms using promoter analysis. For all 
genes the region up to 1,500 bp upstream of the 
annotated gene start was used as the proximal promoter 
region. Both strands were then scanned with the JASPAR 
[31] matrices representing various mammalian transcrip
tion factor binding sites (89 in total). A matrix specific 
threshold corresponding to 0.8 of the scoring range of the 
matrix was used on the log-ratio matrix. All log-ratio 
transformations were done using a zero order uniform 
background model and a pseudo-count of one to avoid 
zero-entries in the original JASPAR matrix. The number 

of hits per base-pair and the number of sequences with 
one or more hits were registered and used for over-
representation statistical analysis. We used a background 
set of promoter sequences extracted in a similar manner 
from the ‘all genes expressed’ present/absent call in 
skeletal muscle from this array technology [24,27]. A 
sequence-specific over-representation was calculated 
using Fisher’s exact test and a base-pair-specific over/
under-representation was calculated using a Z-score. 
Finally, using the base-pair-specific over- and under-
representation values, a heatmap was generated for 
visualization purposes. For all analyses the ASAP [31] 
framework was used in conjunction with R.

Results
Subject characteristics
Fifty-nine subjects were recruited over time (7 controls 
and 52 patients with upper gastrointestinal cancer) from 
center 1 (Edinburgh). Patient demographics and anthropo
metric characteristics are shown in Table 1. Average 
weight loss for center 1 cancer patients was 8.9% (range 
-0.5 to 43.8%). Compared to the control group, cancer 
patients had significant weight loss (P < 0.001) and had a 
lower BMI (P = 0.001). The controls were substantially 
younger (P = 0.009) and hence could not be used as a case-
control comparison group for the molecular profiling. 
Instead, gene expression was related to body mass status. 
WL cancer patients had a lower BMI (P = 0.010) than WS 
cancer patients. The Affymetrix GeneChip studies used a 
subset of 21 patients from the cohort in center 1, where 
high quality RNA was available at the time of gene-chip 
analysis (Table 2). BMI and mid-arm muscle circumference 
were not significantly different between the ‘Affymetrix 
cohort’ and the larger group of cancer patients. To validate 
the findings in the first group of patients (‘Affymetrix 
cohort’) a second group of 13 patients with esophageal 
cancer was recruited from an independent clinical center 
(center 2, Sweden). Patients of this group were similar to 
the cancer patients from center 1 (Table 1).
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Table 1. Clinical data for patients and control subjects 
from centers 1 and 2

	 Center 1	 Center 1	 Center 2 
	 no-cancer	 patients	 patients 
	 (n = 7)	 (n = 52)	 (n = 13)

Male/female	 5/2	 34/18	 12/1

Age (years)	 51 (5.5)	 66 (1.3)*	 65 (1.5)*

% weight loss	 0	 8.9 (1.1)*	 7.7 (2.0)*

BMI	 30.6 (1.3)	 25.5 (0.5)*	 25.5 (1.2)

CRP	 2.8 (0.7)	 17.4 (4.4)	 -

MAMC	 25.9 (1.3)	 24.4 (0.4)	 -

Mean (standard error of the mean) values are presented. *P < 0.05 compared 
with center 1 control. Center 1: Edinburgh, UK; centre 2: Stockholm, Sweden.  
BMI: body mass index; CRP: C reactive protein; MAMC: mid-arm muscle 
circumference.

Table 2. Demographics of controls and cancer patients 
included in the Affymetrix analysis from centre 1

	 No-cancer	 Cancer patients	  
	 (n = 3)	 (n = 18)	 P

Male/female	 2/1	 12/6	 -

Age (years)	 45(2)	 67(2)	 <0.001

% weight loss	 0	 8.9(1.6)	 <0.001

BMI	 28.5(1.7)	 24.4(0.8)	 0.080

CRP	 2.7(0.9)	 19.7(8.1)	 0.052

MAMC	 23.8(1.7)	 23.7(0.5)	 0.960

Mean (standard error of the mean). BMI: body mass index; CRP: C reactive 
protein; MAMC: mid arm muscle circumference.
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Microarray analysis: novel genes associated with weight 
loss in cancer (centre 1)
The microarray study was undertaken on rectus abdominis 
muscle from a subgroup of center 1 patients (Table 2). 
Hierarchical and k-means clustering were undertaken 
with normalized data, using a gene list where those with 
a low standard deviation were removed. No pattern 
emerged from this analysis. Using the probe-sets that 
detect atrogenes (genes reproducibly detected in pre-
clinical models of cachexia), which we have previously 
demonstrated reliably change in human skeletal muscle 
sepsis [27], we carried out hierarchical and k-means 
clustering. No pattern emerged from this analysis. Thus, 
our first attempted analysis did not yield any data in 
support of pre-clinical studies [32] and also demonstrated 
that muscle cancer cachexia appears distinct from the 
inflammation-driven skeletal muscle remodeling observed 
in the intensive care unit [27].

We then identified genes that varied with percentage 
weight loss using the quantitative SAM methodology 
[20]. In this multiple comparison corrected correlation 
analysis, the WS group contained both cancer patients 
and three non-cancer controls in order to identify bona 
fide cachexia associating genes. SAM identified 74 genes 
with a FDR between 0 and 10% (most <5% FDR) that 
covaried positively with weight loss, and nine genes with 
a FDR between 0 and 10% (most <5% FDR) that covaried 
negatively with weight loss (Additional data file 2). Corre
lation coefficients (R) for these 83 genes were generated 
using Pearson’s product moment correlation. Positive 
coefficients ranged from 0.82 to 0.57 (P < 0.01), and for 
negatively correlating genes, R ranged from -0.74 to -0.65 
(P  <  0.01). Each relationship was visually inspected by 
plotting the data.

Most of the genes correlating with weight loss had not 
been associated previously with cachexia in humans or 
animal models. Notably, FOXO transcription factors and 
the E3 ligases MURF1 and MAFbx were absent from this 
list. Simple cluster analysis revealed visual distinction of 
patients with <5% reported weight loss from those with 
>5% reported weight loss (Figure  1). This Affymetrix-
derived WL gene signature was technically validated by 
qRT-PCR of the 9 genes (APCDD1, CaMKIIβ, EIF3I, 
HGS, NUDC, POLRMT, SGK, TIE1 and TSC2). Eight 
validated the microarray data, with only SGK expression 
being inconsistent with the Affymetrix analysis (Table 3 
and Figure 2; Supplemental figure 1 in Additional data 
file 3).

Candidate gene approach: analysis of FOXO transcription 
factors and components of the ubiquitin proteasome and 
autophagy pathways (centre 1)
While the microarray analysis did not yield any evidence 
for proteolytic pathways being upregulated, as seen in 

intensive care unit patients with the same gene chip 
technology [27], investigation of components of these 
pathways was nevertheless undertaken in parallel to the 
gene-chip study. There was no difference in the nuclear 
level of FOXO1 and FOXO3a protein by western blotting 
when patients were grouped according to weight loss. 
Expression of the E3 ligases MURF1 and MAFbx was 
examined by qRT-PCR and no relationship between 
mRNA expression and weight loss was found (data not 
shown). The autophagy-related genes GABRAPL1 and 
BNIP3 were modestly increased in WL patients com
pared to WS patients or controls (fold change = 1.46 
versus 1.23 versus 1.07, respectively; P = 0.047). However, 
this P-value is unadjusted for the previous array analysis 
and may not be reliable. Both genes demonstrated a 
positive association with systemic inflammation 
(Table  S2 in Additional data file 1 and Figure S2 in 
Additional data file 3).

Confirmation of genes associated with weight loss in 
cancer cachexia (center 2)
To validate the WL gene signature generated in rectus 
abdominis muscle from the center 1 cohort, nine genes 
were profiled using qRT-PCR (APCDD1, CaMKIIβ, EIF3I, 
HGS, NUDC, SKG, POLRMT, TIE1 and TSC2) in two 
additional types of skeletal muscle obtained from cancer 
cachexia patients. The significant association between 
CaMKIIβ and weight loss observed in rectus abdominis 
muscle from center 1 (R  =  0.82, P  =  0.01; Table  1) was 
reproduced (Figure 3a) in both vastus lateralis (R = 0.45, 
P = 0.06) and diaphragm muscle (R = 0.5; P = 0.03) from 
center 2 patients. In addition, TIE1, which significantly 
correlated with weight loss in rectus abdominis (R = 0.67, 
P  =  0.01; Table  1) demonstrated a similar (Figure 3b) 
relationship in vastus lateralis (R = 0.7, P = 0.003) but not 
in diaphragm. Given the changes observed for CaMKIIβ 
mRNA, the protein and phosphorylation level of CaMKII 
in all of the rectus abdominis muscle obtained in center 1 
was evaluated. Material from a total of 59 patients was 
available at the time the analysis was carried out 
(recruitment was ongoing beyond the time the microarray 
was carried out). Western blotting for both CaMKII 
(Figure  3c) and phosphorylated CaMKII (Figure  3d) 
revealed a small but significant (P  =  0.04 and 0.07, 
respectively) increase in WL patients compared with the 
expression determined in WS patients and controls.

Gene interaction and promoter analysis
In order to generate valid pathway or ontological 
enrichment scores, it is essential to relate the modulated 
gene list with the genes detectably expressed in the tissue 
of interest and not with the genome as a whole (or the 
entire gene-chip content). The nature of the 83-gene WL 
gene signature was explored in detail using GO. The 
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highest ranked GO biological process activity from the 
DAVID webtool [33] was proline metabolism (P = 0.03). 
This was confirmed with the topGO [29] and GOStats 
[34] tools in Bioconductor. Proline metabolism has a role 
in collagen formation and increased collagen deposition 
has been noted in the muscle of cachectic cardiac failure 
patients [35]. Network analysis using Ingenuity [30] 
revealed several interactions that involve the 83 WL 

genes, including a calmodulin kinase gene network 
(Figure S3A in Additional data file 3), supporting the wet-
lab data and indicating that CaMKIIβ activation appears 
to be a general marker of muscle wasting in human 
cancer cachexia. A second illustrative pathway (Figure 
S3B in Additional data file 3) features GLUT-4 (glucose 
transporter type 4) and interleukin-6, both of which are 
implicated in skeletal muscle metabolism [36]. This 
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Figure 1. Cluster analysis identifies high and low weight loss groups. Using SAM and limma, 83 genes were identified as correlating with 
weight loss. Expression data from these genes were used to drive cluster analysis. This revealed two clusters of subjects; high weight loss (≥5%) and 
low weight loss (<5%).
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network also forms numerous connections with the 
glucocorticoid and androgen receptors, which may be 
involved in regulating skeletal muscle mass. It should be 
noted that despite using a back-ground gene expression 

file in Ingenuity [30] for genes only detected as being 
expressed in human skeletal muscle (approximately 
21,000 probe sets, based on MAS5 present-marginal 
calls) the Ingenuity network analysis still included genes 
that may not be robustly expressed and should be used in 
a qualitative hypothesis generation manner.

Gene sequence analysis of the WL gene-set was carried 
out to provide insight into the potential coordinators of 
this expression signature. Interestingly, FOXO trans
cription binding sites tended to be, if anything, 
significantly under-represented in the human cachexia 
WL gene set, supporting the wet-lab analysis. Binding 
sites for SP1, ARNT.AHR (the hypoxia signaling partner) 
and TFAP2A (Transcription factor AP2-alpha or AP2) in 
particular, were over-represented in the proximal 
promoters of the WL-associated genes (Figure S4 in 
Additional data file 3). The analysis further supports the 
idea that this list is distinct. Interestingly, the enriched 
TF binding sites may function as clock genes, controlling 
circadian rhythm [37]. Another strategy for generating 
hypotheses for factors that might regulate a set of genes 
is to carry out comparative expression analysis [25], 
where two physiological studies are contrasted using 
global gene chip data. In this case we present data that 
patients with greater weight loss do not appear to have a 
common overlap with muscle damage, muscle degenera
tion in sepsis or muscle remodeling in exercise training 
(Figure 4).

Discussion
Cancer cachexia is thought to arise due to an imbalance 
of the anabolic and catabolic pathways partly driven by 
pro-inflammatory cytokines with consequent loss of 
muscle mass (along with an accompanying loss of adipose 
tissue). In the present study, the expression of 74 genes 
correlated positively with weight loss in cancer cachexia 
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Table 3. Genes correlating with weight loss

	 Center 1 (n = 21)	 Center 2 (n = 13)

	 Gene-chip	 RT-qPCR

	 CC rectus	 CC rectus	 Regression	 CC vastus	 Regression	 CC	 Regression
Gene	 abdominis	 abdominis	 P-value	 lateralis	 P-value	 diaphragm	 P-value

APCDD1	 -0.74	 -0.51	 0.03	 0.26	 NS	 -0.20	 NS
CAMk2B	 0.82	 0.50	 0.01	 0.45	 0.06	 0.50	 0.03
EIF3I	 0.64	 0.50	 0.02	 0.10	 NS	 0.20	 NS
HGS	 0.7	 0.67	 0.00	 0.17	 NS	 0.20	 NS
NUDC	 0.65	 0.72	 0.00	 0.13	 NS	 0.0	 NS
POLRMT	 0.6	 0.51	 0.02	 0.07	 NS	 0.0	 NS
TIE1	 0.67	 0.53	 0.01	 0.70	 0.003	 0.0	 NS
TSC2	 0.69	 0.47	 0.03	 0.40	 0.1	 0.0	 NS

Significance analysis of microarrays (SAM) identified 82 genes correlating with weight loss. qRT-PCR validated eight of nine selected targets from this list (correlation 
coefficient (CC)). These eight genes were also examined in the cohort from center 2 using RNA extracted from anatomically distinct regions. For each gene the 
correlation coefficient from the Affymetrix data set is shown followed by the correlation coefficient for qRT-PCR and a P-value for this latter regression. NS: not 
significant.

Figure 2. qRT-PCR validates array-identified genes covarying 
with weight loss. For each of the genes validated by qRT-PCR 
Pearson correlation coefficients were generated for expression and 
percentage weight loss for both the Affymetrix data and the qRT-PCR 
data. All genes except SGK1 validated the array data. P-values for the 
correlations ranged from 0.03 to below 0.01. Yellow indicates positive 
correlation; blue indicates negative correlation.
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subjects and that of 9 correlated negatively with it. 
Validation of these genes by qRT-PCR provided excellent 
technical confirmation of the microarray results. 
Biological validation of TIE1 and CaMKIIβ expression in 
an independent clinical cohort across distinct muscle 
groups, along with supportive network analysis, provides 
weight to the claim that these are useful markers of 
cancer cachexia in humans. Contrary to evidence from 
animal models [7,8,11], there were no significant differ
ences in expression of the E3 ligases MURF1 and MAFbx, 
while FOXO protein activity was unchanged in WL 
compared to WS patients. These observations, combined 
with the array and promoter analysis, make it seem 
unlikely that FOXO transcription factors regulate the 
molecular signature of cachexia in human skeletal 
muscle, challenging the relevance of the pre-clinical 
literature in this field.

Novel human cancer cachexia markers
The significant correlation of CaMKIIβ mRNA expres
sion with weight loss along with the small but significant 
change in protein levels in rectus abdominis suggests that 
CaMKIIβ could be directly involved in human cancer 
cachexia. CaMKIIβ mRNA also increased with weight 
loss in vastus lateralis and diaphragm. The serine/
threonine kinase CaMKII holoenzyme is activated by 

Ca2+/calmodulin, leading to autophosphorylation and 
maintenance of CaMKII activity even after the Ca2+ signal 
has diminished [38]. CaMKIIβ is expressed in skeletal 
muscle, and levels of the protein as well as its 
phosphorylation status and activity increase after 
exercise training [39]. The relationship between CaMKIIβ 
expression and cachexia observed in the present study 
implies that the cancer cachexia profile is not simply 
'physical inactivity'. In addition, it has recently been 
demonstrated that Ca(2+)-CaM-eEF2K signaling may be 
responsible for acute exercise-induced inhibition of 
muscle protein synthesis [40] and it is thus conceivable 
that chronic inappropriate activation of this ‘endurance 
training'-related signaling molecule [24] subdues normal 
maintenance of skeletal muscle mass. Additional factors 
that could modulate CaMKII activity include alterations 
in lipid metabolism [41].

The significant positive correlation for TIE1 mRNA 
expression with weight loss in both the rectus abdominis 
and vastus lateralis muscle groups supports the idea that 
some chronic training-related genes are up-regulated in 
cachexia. In animal models TIE1 is required for normal 
vascular network development [42] while increased TIE1 
mRNA levels in human skeletal muscle in response to 
physiological adaptation to exercise training has been 
demonstrated [43]. Whilst the ligands and signaling 

Stephens et al. Genome Medicine 2010, 2:1 
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Figure 3. CAMkIIβ and TIE1 correlate with weight loss in cancer cachexia. In order to validate the findings from the rectus abdominis, qRT-PCR 
was used to examine mRNA expression of (a) CAMkIIβ and (b) TIE1 in diaphragm (open circles) and vastus lateralis (closed circles) in a separate 
clinical cohort. Correlation plots for mRNA level against rate of weight loss are shown. Correlation coefficients were significant with P < 0.05. CAMkII 
protein and phospho-protein levels are increased in subjects with weight loss. (c) Protein levels of CAMkII and (d) phosphoCAMkII were assessed 
in the rectus abdominis muscle from center 1 subjects by western blot. Intensity levels were normalized against alpha-skeletal actin and the mean 
ratio of CAMkII/actin or phosphoCAMkII (pCAMkII)/actin are shown for subjects with less than (black) or more than (white) 5% weight loss. *P-value 
<0.05, one-sided Mann Whitney test; n = 59. Error bars represent SEM.
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pathways of TIE1 are poorly understood, this receptor 
can interact with phosphoinositide 3-kinase and lead to 
phosphorylation and activation of Akt, protecting cells 
from apoptosis [44]. In functional terms, the 

up-regulation of TIE1 may therefore represent a 
protective mechanism to oppose apoptosis of some 
components of skeletal muscle tissue, for example, the 
vascular endothelium. TIE1 has also recently been linked 
to an in vitro endothelial inflammatory response [45] 
while an inflammatory gene signature has been shown to 
develop throughout surgical procedures in muscle [46]; 
thus, it could be argued that some component of our 
gene signature may be related to surgery. However, all 
biopsies were taken at the earliest point in surgery after 
the initial incision.

Furthermore, the correlation of TIE1 expression with 
weight loss and the lack of any further appreciable inflam
matory signature would argue against this possibility. In 
addition, there was no evidence that the muscle profile 
was that of damage or that observed with systemic 
inflammation associated with multiple organ failure 
(Figure  4). It is also notable that (other than TIE1, 
CaMKII, CTSA and PRODH) the WL gene signature 
does not share similarities with the approximately 
500-gene endurance exercise training gene signature [24], 
suggesting that the reason for elevated TIE1 and CaMKIIβ 
remains to be determined. It may be inappropriate partial 
muscle activity signaling but clearly is not simply 
increased muscle usage (however unlikely that might 
have seemed in such patients). However, the increased 
CaMKIIβ mRNA levels associated with weight loss 
across a range of muscle tissues imply that these muscle 
groups develop dysregulation of calcium sensing or are 
burdened by greater loading in the face of failing muscle 
function connected with, for example, loss of contractile 
machinery or impaired energy metabolism [47].

Finally, recent work has clarified two potential calcium-
independent activation pathways for CaMKII. Genera
tion of reactive oxygen intermediates can increase or 
prolong CaMKII activity, perhaps through inhibition of 
protein phosphotases that normally limit CaMKII activa
tion [48]. CaMKII has also been implicated in muscle 
adaptation through phosphorylation of HDAC5 leading 
to MyoD/MEF2-driven differentiation of muscle cells 
[49]. It is plausible, therefore, that CaMKII activation is a 
compensatory strategy in the face of failing protein 
synthesis. Alternatively, the CaMKIIβ response may 
indicate failure of calcium homeostasis, a factor that 
would also activate proteolytic activities such as calpains 
and caspases [50,51]. It is thus possible that CaMKIIβ 
activation occurs at an early stage of cachexia in humans, 
providing an early 'read-out' on altered calcium handling.

Human versus animal-model cancer cachexia markers and 
study limitations
Given the robust increase in expression of the E3 ligases 
reported previously in various animal models of cachexia 
[7,8,32], it is surprising that neither microarray nor 

Figure 4. Gene expression signatures demonstrate lack of 
relationship between weight loss and muscle damage, muscle 
sepsis and exercise training status. The top 20 most regulated 
genes by (a) eccentric muscle damage, (b) muscle obtained from 
intensive care unit patients and (c) in response to exercise training 
were obtained from three published articles (see Methods). The 
mean values for these selected genes were then plotted for patients 
in the present study that had either less than or more than 5% 
weight loss. As can be observed, no single gene, for each of these 
‘comparative’ conditions, was differentially expressed; thus, the gene 
expression profile of cancer cachexia does not resemble muscle 
damage, sepsis-induced degeneration or exercise training status. 
Error bars represent SEM.
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qRT‑PCR detected any regulation of MuRF1 and MAFbx. 
Furthermore, the 83-gene WL gene signature bore no 
resemblance to the Atrogene gene expression signature 
[27,32] generated using gene-chips. This is not due to 
gene-chip technology being unable to establish parallels 
between animal models and humans, as it has previously 
been demonstrated that gene expression in skeletal 
muscle of intensive care unit patients resembles, in part, 
that found in these animal models [27,32]. Indeed, results 
of E3 ligase expression analysis from other human models 
of cachexia have been contradictory. Studies including 
patients following bed rest, amputation for vascular 
disease, limb immobilization, chronic obstructive pulmo
nary disease, amyotrophic lateral sclerosis and ageing 
have demonstrated both increased and decreased expres
sion of MuRF1 and MAFBx [52-56]. This would suggest 
that the ubiquitin E3 ligases do not play the same role in 
human cancer cachexia as that previously demonstrated 
in animal and cell studies. In lung cancer patients with 
mean weight loss of 2.9%, there was no evidence of UPP 
activation [57] while other human studies in patients 
with gastric cancer and mean weight losses of 5.2% and 
5.6% have shown increases in components of the UPP 
[58,59]. In the present study we could not find any support 
for this finding, despite similar degrees of cachexia. 
However, cancer cachexia encompasses a spectrum 
progressing from early weight loss through to severe 
muscle wasting. The prominence of the individual 
proteolytic pathways at different time points along this 
spectrum is yet to be determined and one must keep in 
mind that during severe tissue wasting, both breakdown 
(and of course synthesis) may well be reduced with the 
net balance between the two widened.

A role for autophagy in human cancer cachexia has not 
been investigated extensively. Increased cathepsin D and 
acid phosphatase activity has been demonstrated in 
patients with varying tumor types and degrees of weight 
loss, suggesting that increased lysosomal activity may 
contribute to the development of cachexia [60]. More 
recently, lung cancer patients undergoing resection were 
shown to have increased levels of cathepsin B mRNA in 
skeletal muscle compared with controls [57]. The analyses 
examined GABARAPL1 and BNIP3. GABARAPL1 is an 
Atg8 homologue important in the formation of the 
autophagosome [61] and BNIP3 has been found to play a 
predominant role in induction of autophagy in rodent 
skeletal muscle [11]. Autophagy can be induced by 
starvation of amino acids, which may explain the modest 
increase in BNIP3 and GABARAPL1 in patients with SI 
where the acute phase response is activated (mobilizing 
amino acid from muscle to liver for consumption) and 
where food intake may be reduced due to anorexia or 
dysphagia. However, no relationship was found between 
these genes and patient weight loss.

A limitation of the current study is that we focus on 
changes in total body mass and this does not tell us about 
the relative contributions from lean body mass and 
adipose tissue. Our muscle gene expression clustering 
results indicate, however, that there is a skeletal muscle 
molecular signature that reflects changes in whole body 
mass and it is hard to conceive that this is not somehow 
reflecting the changes in the muscle tissue. A further 
consideration is adequate control for confounding 
parameters, such as inflammation, damage and physical 
activity. While these are difficult to directly control, we 
produced an analysis to suggest that such processes were 
unrelated to our new human muscle cancer cachexia 
signature (Figure 4).

Conclusions
Human cancer cachexia is a chronic process and weight 
loss is not as rapid and generally not as severe as the 
acute muscle wasting observed in animal models. Thus, 
the physiological regulators are most likely very distinct 
in each scenario. We found increased expression of two 
‘endurance exercise’-activated genes, CaMKIIβ and TIE1, 
across different muscle groups in human cancer cachexia. 
Whether these could contribute to a reduction in protein 
synthesis remains to be ascertained.
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