
Background

Complex genetic diseases are defi ned as those infl uenced 

by multiple genes and by environmental eff ects. In the 

past, individual genetic variants contributing to the risk 

of disease were usually not known, so the contribution of 

genes to disease was recognised through increased risk of 

disease in relatives of aff ected probands. Modeling 

allowed the genetic component of disease to be expressed 

as variance components and heritabilities. However, with 

the advent of genome-wide association studies (GWAS), 

individual genetic risk factors, or at least markers linked 

to them, are identifi able. Th is provides a description of 

the genetics in quite diff erent terms to the traditional use 

of variance components. Th e new description is based on 

the frequency of individual risk alleles and their eff ect 

sizes expressed either as the relative risk or the odds 

ratio.

A clear picture is emerging as more and more results 

from GWAS are published about the eff ect sizes of 

individual loci that contribute to disease. For instance, 

allelic odds ratios at markers are typically estimated to be 

<1.5 and risk alleles can be the minor or major frequency 

allele. At present, there is little evidence of departure 

from a multiplicative model (on the observed disease risk 

scale) of disease [1], within and across loci, but this is 

based on combining only a limited number of markers 

and explaining only a small proportion of the genetic 

variance.

To reconcile the traditional description in terms of risk 

to relatives with the description based on individual risk 

loci, we need a model of how the risk loci combine to 

determine the total genetic risk for an individual person. 

Simple models are unlikely to be a true representation of 

complex diseases, but they allow us to explore the 

boundaries of possible genetic architectures that remain 

consistent with observed data. Several models are com-

monly used. Unfortunately the terms used to describe 

these models are confusing. For example, the terms 

‘additive’ and ‘multiplicative’ can both be used to describe 
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the same fundamental model because a multiplicative 

model on the observed disease risk scale (the ‘risk scale’) 

is equivalent to an additive model on the logarithm of the 

risk scale. Moreover, the multiplicative model can imply 

multiplicativity of allelic relative risks [2,3], or of odds 

ratios [4], or that risk alleles are needed at all loci in order 

to develop disease [5].

In this paper we show how the parameters for the 

individual risk loci (eff ect, allele frequency and number 

of loci) plus a model for combining the eff ects of 

individual loci determine the traditional parameters such 

as risk to relatives. Th e purpose of the paper is to 

compare the predictions made by diff erent models and to 

determine which model(s) best fi t the observed data. 

Before explaining the diff erent models of genetic risk we 

fi rst describe the genetic population parameters of 

recurrence risk to relatives.

Recurrence risk to relatives

Th e genetic epidemiology of complex genetic diseases can 

be described in terms of the observable parameters of 

disease prevalence and relative risk to relatives of diseased 

probands (Table 1). Risks of disease in relatives provide an 

upper limit to the genetic component because common 

environmental factors may also increase risk to relatives. 

However, for the purposes of this paper we will assume 

risk to relatives is due to their genetic similarity. Th e 

recurrence risk for relatives of type R (λ
R
) is calculated as 

the ratio of the prevalence in the population of relatives of 

type R (K
R
) to the overall population prevalence (K), λ

R
 = 

K
R
/K. As the maximum value for K

R
 is 1 and the prevalence 

in monozygotic (MZ) twins of probands, K
MZ

,
 
will be the 

highest of all relative types, there is a constraint that λ
MZ

 

≤  1/K, so that higher values of λ
MZ

 (and all λ
R
) are often 

observed for diseases of lower prevalence (Table 1). 

Despite being observable, the parameters K and λ
R
 are 

subject to considerable sampling variance. For Table 1, we 

have tried, where possible, to take estimates from reviews 

or large studies, but large study samples simply do not 

exist for low prevalence disorders - for example, the λ
MZ

 for 

ankylosis spondylitis [6] is based on only 27 MZ twin 

probands. Nonetheless, we can use these examples as a 

guide to assessing realistic scenarios for disease.

Th e risk to diff erent classes of relatives (that is, λ
R
) 

depends on the magnitude of genetic variance compo-

nents. Th e total genetic variance is traditionally decom-

posed into additive variance, dominance variance and 

various types of epistatic variance. Th e relationship 

between relative risks and variance components on risk 

scale was derived by James [7], who showed that the 

probability of disease in relatives of type R can be 

expressed as:

K
R
 = K + cov(X,R)/K

with cov(X,R) the genetic covariance between the 

proband, X , and a relative, R. For individuals X and R we 

Table 1. Recurrence risk (λ
R
 ) to relatives (of type R) for several common complex genetic diseases ordered by prevalence (K)

Disease Reference K λMZ
a λSib

b λOP

H2

01 

c =

(λMZ – 1)

(1 – K)

(λSib – 1)d

(λOP – 1)

(λMZ – 1)e

(λSib – 1)

λMZ
f

λ2

Sib h2

L    
g

Major depression (population 

cohort)

[27] 0.24 2 1.3 0.32 3.3 1.2 0.34

Age related macular 

degeneration 

[28,29] 0.12 4.7 2.1 0.50 3.4 1.1 0.64

Myocardial infarction [30] 0.056 4.6 3.2 0.21 1.6 0.4 0.72

Breast cancer [31] 0.036 4.1 2.2 1.9 0.12 1.3 2.6 0.8 0.37

Type II diabetes [32] 0.028 10.4 3.5 0.27 3.8 0.8 0.58

Asthma [33] 0.019 6.6 3.4 0.11 2.3 0.6 0.49

Rheumatoid arthritis [34] 0.01 12.2 3.6 0.11 4.3 0.9 0.42

Bipolar disorder [5] 0.01 60 7 7 0.60 1.0 10 1.2 0.70

Schizophrenia [3] 0.0085 52.1 8.6 10 0.44 0.8 6.7 0.7 0.76

Type I diabetes [35] 0.005 79 14 0.39 6.0 0.4 0.85

Multiple sclerosis [36] 0.001 190 20 0.19 ~1 9.9 0.5 0.68

Crohn’s disease [37] 0.001 600 64 0.60 10 0.1 1.00

Ankylosis spondylitis [6] 0.001 630 82 79 0.63 1.0 7.8 0.1 1.00

Systemic lupus erythematosus [38] 0.001 29 27 1.1 0.80

[39,40] 0.0003 774 65 0.24 12 0.2 0.84

aThe maximum prevalence for KMZ is 1, so λMZ = KMZ/K is constrained to be ≤1/K. λMZ was calculated from probandwise concordance rates KMZ and prevalence rates if λMZ 
was not directly reported. bEstimated from either sibling, dizygotic twin or fi rst degree relative risks. cBroad sense heritability on the risk scale (Equation 1). dThis ratio is 
expected to be 1 in the absence of dominance eff ects on the risk scale. eThis ratio is expected to be 2 under an additive model on the risk scale. fThis ratio is expected 
to be 1 under the unconstrained Risch model. gCalculated from the estimates of K and λSib [41,42], constrained to a maximum of 1.
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defi ne r to be the relationship between them, r = 2 × 

Probability of identity by descent (IBD) of random alleles 

(that is, twice the ancestry or kinship coeffi  cient) and u is 

the probability of both alleles being IBD at a locus, so that

cov(X, R) = Σ
k=0

∞ 

 Σ
l=0

∞

  rkulV
A(k)D(l)

where V
A(k)D(l)

 denotes the genetic variance component 

with k A and l D terms [3,5,8,9]. So for R = MZ twin, r = 

1, u =1, then:

Cov(X, MZ) = 

V
A01

+V
D01

+V
AA01

+V
AD01

+V
DD01

+V
AAD01

+V
AAA01

+…=V
G01

We use
 
the ‘01’ subscript to emphasize the observed zero-

one (not diseased-diseased) risk scale of measurement.
 

Th erefore, an estimate of the broad sense heritability on 

the risk scale (H 2
01

) is:

              V
G01

      (λ
MZ

 – 1)K2       (λ
MZ

 – 1)K
H 2

01
 = _______ = ____________________ = ____________________       (Equation 1)

              V
P01

         K(1 – K)            (1 – K)

since the phenotypic variance on the risk scale is V
P01

 = 

K(1 – K)
.
 For the diseases listed in Table 1, H 2

01
 ranges 

from 0.11 to 0.63, but the heritability on this scale is not a 

normally reported statistic because of its dependence on 

disease prevalence. When the relatives are sibs, R = Sib, 

r = ½, u = ¼, then:

                        V
A01

    V
D01

   V
AA01

    V
AD01

   V
DD01

  V
AAA01

  V
AAD01

Cov(X, Sib) = _____ + _____ + ______ + ______ + ______ + ______ + ______ + …
                          2        4        4         8       16        8       16

When the relatives are parents or off spring, R = OP, r 

=1/2, u = 0, then:

                                            V
A01

    V
AA01

   V
AAA01

Cov(X, OP) = _____ + ______ + ________ + …
                                              2         4         8 

Th erefore, λ
Sib

 ≥ λ
OP

 since the former includes dominance 

terms; the magnitude of the ratio:

(λ
Sib

 – 1)     Cov(X,Sib)
                               ______________ = __________________

(λ
OP

 – 1)     Cov(X,OP)

refl ects the relative importance of dominance eff ects.
           

(λ
Sib

 – 1)
Often ______________ ≈ 1 (Table 1) and so dominance eff ects are
           (λ

OP
 – 1)

considered to be negligible. Th is approximate equality 

also implies that common environmental eff ects 

between sibs is not diff erent to that between parent and 

off spring, and, for many diseases, assuming common 

environmental eff ects are negligible seems plausible. 

Similarly, the ratio:

(λ
MZ

 – 1)     Cov(X,MZ)
                               ______________ = __________________

(λ
Sib

 – 1)     Cov(X,Sib)

is expected to be 2 under a model that contains only 

additive genetic variance; if individual risk loci combined 

additively on the risk scale, then only additive variance 

would be observed. Th is ratio is often greater than 2 

(Table 1), implying that epistatic genetic variance on the 

risk scale is not negligible.

Methods

Genetic model

We defi ne K, as before, as the disease prevalence and g
x
 as 

the genetic risk (or probability) of disease of an individual 

given their multilocus genotype of x risk alleles out of a 

possible 2n, where n is the number of loci that contribute 

to the genetic variance of the disease; by defi nition E(g) = K. 

For simplicity, we will assume that all risk alleles have 

equal frequency, p, and equal relative risks, τ, compared 

to the non-risk (wild type allele). We discuss the 

implications of these assumptions later. We assume that 

all loci are independent and that each locus is biallelic 

and is in Hardy-Weinberg equilibrium so that the 

frequency of wild type, carrier and homozygous risk 

genotypes in the population are (1 – p)2, 2p(1 – p) and p2 

and x is distributed Binomial (2n,p), which approximates 

a normal distribution for n > ~5. We also assume random 

mating, no inbreeding and equal fertility of diseased and 

non-diseased individuals.

We consider three widely used genetic models of risk 

that are additive on some underlying scale. We assume 

that risk alleles act additively on the underlying scale 

both within a locus and between loci so that the critical 

contributor to genetic risk of disease is the number of 

risk alleles in an individual’s multilocus genotype. We do 

not consider models that are additive on the risk scale as 

these were rejected by Risch [3] and confi rmed in 

preliminary simulations as being unable to generate the 

patterns of recurrence risks to relatives observed for 

complex genetic diseases. After describing the disease 

risk models, we use numerical analysis and simulation to 

compare them. We compare the models to determine if 

they make the same predictions about observable 

recurrence risks and to investigate which model best fi ts 

the observed estimates.

Risch risk model
Additive on the log (risk) = log(g) scale: log(g

x
) = 

log(f
n
) + x log(τ)

Multiplicative on the risk (g) scale: g
x
 = f

n
 τx

Under this model the relative risk of the risk allele 

compared to the other (wild-type) allele is τ, the homo-

zygous risk genotype at each risk locus is τ 2 and the risks 

of the individual loci are multiplicative on the risk scale 
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g
x
 = f

n
τ x , where f

n 
is the probability of disease in a person 

with only wild-type alleles at all n contributing loci and f
n
 

can be expressed explicitly as f
n
 = K/(1 + p(τ – 1))2n [10]. 

Th is model of disease risk was introduced by Risch [3,11] 

and is the model that we [10] and others [2,12,13] have 

used in the prediction of genetic risk to disease from 

multiple loci. Th e multiplicative Risch model is attractive 

because of its mathematical properties, but an undesir-

able feature (often not apparent in the mathe matical 

expressions) is that there is no constraint placed on g
x
, so 

that under some combinations of model parameters the 

probability of disease can have impossible values greater 

than 1 (that is, g
x
 >1 for some x). Th is occurs when 

x  ≥  –ln(f
n
)/ln(τ) (after solving f

n
τ x = 1). We defi ne the 

constrained Risch (CRisch) model to be the same as the 

Risch model except that g
x
 is truncated to 1 [13]. In this 

case, if K is considered known, f
n
 must be derived by 

numerically solving K = E(g) for f
n
 assuming that n, p and 

τ are known.

Odds of risk model
Additive on the logit of risk scale: logit(risk) = 

log(g
x
/(1 – g

x
)) = log(c

n
K/(1 – K)) + xlog(γ)

Multiplicative on the odds of risk scale: Odds = 

g
x
/(1 – g

x
) = γx c

n
K/(1 – K) = γx C

n

and so g
x 
= γx C

n
/(1 – γx C

n
)

Under this model, g
x
/(1 – g

x
) is the odds of disease given 

the multilocus genotype and C
n
 = c

n
K/(1 – K) is the odds 

of disease for an individual with all wild-type alleles at 

the n contributing loci, following Janssens et al. [4] and 

Lu and Elston [2]. Th e odds of disease without any 

information on multilocus genotype is K/(1 – K). Under 

this model the relative odds of risk of carriers and the 

homozygous risk genotypes are γ and γ2, where γ is the 

odds of the risk and where the γ are multiplicative on the 

odds of disease risk scale across loci. Th ere is no explicit 

solution for K = E(g
x
) so that an explicit expression for c

n
 

cannot be derived. For given input parameters c
n
 is 

derived by solving K= E(g
x
) numerically. Janssens et al. [4] 

used the approximation of c
n
 = c

1, 
but in preliminary 

studies we recognized that this approximation meant that 

the equality of E(g
x
) with the input (and key benchmark) 

parameter K was lost.

Probit of risk model or liability threshold model
Additive on an underlying liability scale: u

x 
= (x – 2np)a

                                                                         u
x
 – t

Probit on the risk scale: g
x
 = Φ ( ______________ )                                                                      √(1 – h 2

L
)

Under this model we defi ne a to be the eff ect of a risk 

allele on the underlying liability scale and u
x
 is the genetic 

value on the underlying scale of an individual with x risk 

alleles, distributed about a mean of zero (since the mean 

number of risk alleles is 2np). Φ is the cumulative normal 

distribution function and t is a constant. Th e liability

threshold model [14-16] assumes that liability to disease 

is normally distributed and that the presence of the 

disease arises if the liability exceeds a threshold, with the 

threshold positioned so that the proportion of the 

population that exceeds the threshold is equal to the 

population prevalence, K. Th e threshold, t, is derived 

from the inverse probability of the normal distribution, 

t = Φ-1(1 – K), Φ(t) = 1 – K; for example, if K = 0.05, t = 

1.645. Th e model is parameterized in terms of variance 

components and heritability (h 2
L
) on the underlying 

liability scale and can be scaled so that the phenotypic 

variance is 1. An individual’s liability to disease is the sum 

of a genetic component (purely additive on this scale) 

distributed N(0,h 2
L
) and an environmental component 

distributed N(0,1-h 2
L
). Th e number (that is, n) and 

frequency (that is, p) of risk alleles determine the value of a:

                                                     h 2
L
 

a = √ __________________

                                               2np(1 – p)

Although this model is often referred to as the liability 

threshold model, we will use the name ‘Probit model’ so 

that all three models are named on the risk scale.

Relationship between relative risk (τ) and odds ratio (γ)

Under the Risch model, considering a single locus, the 

risk of the heterozygote is τ and the homozygote relative 

to the wild-type homozygote is τ2. Under this model the 

heterozygous odds ratio is:

OR
het 

= τ(1 – f
1
)/(1 – τ f

1
)

Similarly, the homozygous odds ratio:

OR
hom

= τ 2(1 – f
1
)/(1 – τ 2f

1
)

Th erefore, OR
hom

 > OR2
het

. In contrast, under the Odds 

model OR
het 

= γ, OR
hom

= γ2 and OR
hom

/OR2
het

 = 1. For 

example, K = 0.1, p = 0.1, τ = 2 under the Risch model, we 

can see that OR
het 

= 2.49 and OR
hom

/OR2
het

 = 1.13, which 

shows the Risch and Odds models to be quite diff erent. 

However, under parameters more relevant to human 

disease, for example, K = 0.01, p = 0.1, λ = 1.05, then 

OR
het 

= 1.0506 and OR
hom

/OR2
het

 = 1.00003. Hence, odds 

risks and relative risks are often used interchangeably 

because, at the single locus level, they are equivalent for 

practical purposes. However, under a multi-locus model, 

the diff erences between the models compound. Estab-

lish ing a mathematical relationship between the multi-

locus models is not tractable. So we have investigated this 

relationship by simulation.

Comparison of models

One of the problems with comparing the models is to 

fi nd a fair benchmark. We chose two parameters that are 
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directly measurable in real populations for benchmarking 

models: disease prevalence and the eff ect size of a single 

risk allele. To achieve this benchmarking, four input 

parameters were needed for the Probit model from which 

all other variables are derived: disease prevalence, 

number of risk loci, frequency of risk allele and 

heritability on the liability scale (that is, K, n, p and h 2
L
). 

To benchmark our comparisons, we set τ, the eff ect size 

of a single risk allele, to be equal to g
2np+1

/g
2np

with g
2np+1

 

and g
2np 

calculated from the Probit model. We use τ 

together with K, n and p as the input parameters for the 

Risch, CRisch and Odds models. Models are compared 

for the shape of the risk function, g
x
 and on the broad 

sense heritability on the risk scale:

                       1
H 2

01
 = __________________ [E(g2) – E(g))2]             (Equation 2)

                 K(1 – K)

where E(g2) = ∑2n
x=0

   g2
x
q

x
, and q

x
 is the probability of an 

individual carrying x risk alleles.

To compare models we have used results from GWAS 

to inform us of realistic values of τ. We use K = 0.1, 0.01, 

0.001, to be representative of common, complex genetic 

diseases and we use K = 0.5 to benchmark comparison at 

the most extreme prevalence rate and maximum 

phenotypic variance (K/(1 – K)) on the risk scale. Since 

the number of loci underlying complex diseases is an 

unknown, we use n =100, 1,000, 10,000 since it is now 

considered unlikely that less than 100 loci will infl uence 

risk to common complex genetic diseases. We examined 

a range of n, p and h 2
L
, but have limited the results 

reported to situations that generate τ < 2. Although a few 

loci with τ > 2 have been identifi ed (for example, for the 

late age of onset disorder, age related macular degenera-

tion [17]), GWAS results suggest that the average τ will 

be less than this [18]. From simulation of 106 families 

over three generations, we calculate λ
MZ

, λ
Sib

, λ
OP

 and the 

recurrence risk of disease in grandchildren of aff ected 

grandparents, λ
OG

. From these we calculate H 2
01

 (using 

equation 1) and H 2
01

 ≈ 4(λ
OG

 – 1)K/(1 – K), which is an 

estimate of narrow sense heritability that is less 

contaminated by non-additive variance than the estimate 

2(λ
OP

 – 1)K/(1 – K). More detailed descriptions of the 

simulations are provided in Additional fi le 1.

Results

Risch versus constrained Risch model

In the unconstrained Risch model we found that the 

occurrence of the impossible probabilities of disease (g
x
 > 1) 

had a signifi cant impact on the results for some realistic 

combinations of parameters. For example, when n = 

1,000, K = 0.1, p = 0.1, τ = 1.1, the mean number of risk 

alleles per person is 200 and g
x
 > 1 when x > 232, which 

occurs with frequency 0.009. Despite the low frequency 

of occurrence, these extreme risks contribute dispro por-

tionately to the genetic variance and heritability. In this 

example, the heritability (calculated using equation 2) is 

0.51, but falls to only 0.17 when these impossible risks are 

truncated to 1.

Combined eff ect of n, p and τ
Results for a representative combination of parameters 

(n = 100, 1,000, 10,000, K = 0.1, 0.01, 0.001, p = 0.1, 0.3 

and h 2
L
 = 0.5, 0.7; Additional fi le 2) show that although the 

broad sense heritability on the observed (that is, H 2
01

; 

Equation 2) scale diff ers markedly between the Probit, 

CRisch and Odds models, there is little dependence on n, 

p and τ provided h 2
L
 is held constant. Th is is because, for a 

given h 2
L
, the parameters n and p control the variance 

contributed by each locus, so that when n is small, the 

eff ect size of each locus τ is necessarily high. Th ese 

results imply that the key parameter in determining 

heritability on the risk scale is the total genetic variance 

rather than the variance at each locus. Consequently, the 

results are presented in terms of h 2
L
 (see ‘Comparison of 

models’ section above) because this allows translation to 

multiple combinations of n, p and τ.

Shape of risk function and heritabilities on the risk scale

In Figure 1 we illustrate risk functions for combinations 

of parameters relevant to human complex genetic 

diseases. Th e x-axis is the number of risk alleles harbored 

by individuals in a population; theoretically, this can be 

between 0 and 2n, but in practice the number of risk 

alleles takes on the range 2np ± 4√2np(1 - p), that is, 4 

standard deviations about the mean. Th e number of risk 

alleles has an approximate normal distribution since the 

binomial distribution with large n tends to normality. In 

Figure 1, the black dotted line represents the proportion 

of individuals with x or more risk alleles. Th e ‘S’-shaped 

curves are the risks or probability of disease given the 

number of risk loci, rising from g
x
 = 0 to g

x
 = 1. Th e 

positioning of this rise along the x-axis refl ects the 

disease prevalence (that is, K) showing that, for low 

prevalence diseases, a greater number of risk alleles 

relative to the population mean is required for disease. 

Th e steepness refl ects the broad sense heritabilities on 

the risk scale (that is, H 2
01

) so that a steeper rise refl ects a 

higher correlation between genotype and phenotype. Of 

these examples, only when h 2
L
 = 0.2 and K = 0.001 (Figure 

1b) was there no need to constrain the Risch risk model 

as g
x
 never reaches 1 even for the maximum values of x 

found in the population.

Th e relationship between H 2
01

 and τ or h 2
L
 is illustrated 

in Figure 2 and depends on both disease prevalence and 

model. Apparently small diff erences in the risk functions 

can have a big impact on the H 2
01

. For the Probit model 
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H 2
01

 is a function of K, whereas for the CRisch and Odds 

models the dependence on K is of much less importance. 

Th is refl ects the choice of benchmarking between the 

models. In the Probit model, the ratio g
x+1

/g
X
 decreases as x 

(number of risk alleles) increases, whereas in the CRisch 

model this ratio is constant until the limit on probability of 

disease is reached. Th erefore, the probability of disease 

rises more steeply with number of risk alleles for the 

CRisch model than the Probit model and this is more 

pronounced for rarer diseases when the diff erence 

between g
x+1

/g
X
 at the average x and a high x is greater for 

the Probit model; the Odds model is intermediate.

Figure 3 presents the estimates of λ
MZ

/λ2
Sib

 across the 

full range of h 2
L
 and for diff erent prevalences. Risch [3] 

predicted this relationship to be 1 under a multiplicative 

model. However, this relationship only holds when K = 

0.5, or as h 2
L
  0 but becomes <<1 as K decreases and 

h 2
L
   1, a consequence of the need to constrain the 

probability of disease for an individual (g
x
)

 
to a maximum 

value of 1. Values of λ
MZ

 and λ
Sib

 and the ratio λ
MZ

/λ2
Sib

 are 

presented for a range of scenarios (Table 2) to allow 

comparison with diseases listed in Table 1.

Th e relationship between h 2
01

 and H 2
01

 is almost the 

same for all models (Figure 4), confi rming the similarity 

Figure 1. Risk functions for the CRisch, Odds and Probit models using parameters relevant to human complex genetic diseases. (a-f) Risk 

or probability (g
x
) of disease for an individual with x out of 2n risk alleles where the number of risk loci, n = 1,000 and the frequency of each risk 

allele, p = 0.3. The black dotted lines represent the proportion of individuals in the population who have x or more risk alleles. The parameters n, p, 

heritability on the underlying liability scale, h2

L
, and disease prevalence, K, determine the relative risk of a single locus, τ. The legend lists the resulting 

broad sense heritability on the risk scale, H2

01
 (H2 in the legend). The shape of the risk functions is achieved with other combinations of n and p for 

the same K and h2
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of the models on the risk scale. Th e maximum value of 

h 2
01

 is 0.64, which occurs as H 2
01

  1 when K = 0.5 as 

derived by Robertson (Appendix of Dempster and Lerner 

[14]). As K decreases or h 2
L
 increases the proportion of 

H 2
01

 that is additive declines so that, for diseases of 

prevalence ≤ 0.01 almost all of the heritability on the risk 

scale is explained by epistatic variance (as shown by the 

steep increase in the risk function [14]).

Distinguishing between models based on risk to relatives

Although we assume that each risk locus has the same 

individual eff ect size, the models diff er in the way that the 

eff ect sizes combine. In the CRisch model each additional 

risk allele multiplies probability of disease by the same 

amount until the number of risk alleles harbored reaches 

the limit of disease being certain, g
x
 = 1. In contrast, the 

Odds and Probit models have ‘built-in’ constraints so that 

g
x
 ≤ 1, which means that each additional risk allele contri-

butes proportionally less to the probability of disease. 

Th is eff ect can be seen in Figure 1 where the risk function 

is steepest for the CRisch model and least steep for the 

Probit model with the Odds model usually in between 

the other two. Th e steeper the risk function the higher 

the broad sense heritability H 2
01

, so this is usually highest 

for the CRisch model and least for the Probit model. Th is 

eff ect of the risk function on heritability on the risk scale 

also applies to the narrow sense heritability, h 2
01

, so the 

relationship between the two remains constant (Figure 4). 

Th e similarity of the models on the risk scale is not 

perfect as shown by diff erences in λ
MZ

/λ2
Sib

 in Figure  3. 

However, if this ratio is graphed against a function of 

observable parameters, such as H 2
01

 instead of h 2
L
, the 

diff erences between models are small (Additional fi le 3) 

and could not be demonstrated in practice given the 

sampling
 
errors of the parameters. Th us, the three models 

could not be distinguished using only traditional data, 

that is, recurrence risk of relatives.

Distinguishing between models based on relative risks of 

individual loci, τ
If we identify one or more loci aff ecting a disease, we can 

directly observe the risk in people carrying diff erent 

numbers of risk alleles and compare this with the model 

Figure 2. Relationship between H2

01
 for the CRisch, Odds and Probit models and h2

L, heritability on the underlying liability scale. (a-c) For 

each h2

L
, τ is estimated from the Probit model simulation and used as an input for the other models, so that all three models are benchmarked by K 

and τ.  The shape of the relationship is not dependent on the choice of n and p; the τ when h2

L
 = 0.1, 0.3, 0.5, 0.7 and 0.9 are listed above each graph 

when n = 1,000 and p = 0.3. From simulations of a single population of 106 individuals.
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predictions. Th e numerical example in the ‘Relationship 

between τ and γ’ section shows that, for a single locus, 

the models do make diff erent predictions when τ values 

are large but not when they are small, as is expected to be 

the usual case. However, even for small τ values the 

models diff er when all risk loci are included. To obtain 

the same heritability on the risk scale, the models 

required diff erent eff ect sizes (τ) of associated variants 

(Figure 2). Similarly, by comparing Tables 1 and 2, we can 

see that combinations of observed λ
MZ

 and λ
Sib

 corres-

pond to a much lower τ, which translates to a lower 

heritability on the liability scale under the CRisch or 

Odds model compared to the Probit model. For example, 

for a disease with prevalence K = 0.01, λ
MZ

 = 52, λ
Sib

 = 10 

(parameters representative of schizophrenia), the τ for 

n = 1,000 loci each with risk allele frequency p = 0.3 were 

1.19, 1.26 and 1.41 for the CRisch, Odds and Probit 

models, respectively. However, only if it is possible to 

identify the majority of the risk variants will it be possible 

to diff erentiate between the models in practice.

Another way to look at this diff erence between the 

models is that, for a given value of λ
MZ

 (or λ
Sib

) and τ and 

p, a higher value of n is required for the Probit model 

than for the CRisch model. Th is means that a given risk 

locus with observed τ and p explains a smaller proportion 

of the risk to relatives under a Probit model than under a 

CRisch model. Or equally, it means that the CRisch 

models generate higher risks to relatives in our bench-

marked comparisons - for example, when K = 0.01, n = 1,000, 

p = 0.3, τ = 1.2 and h 2
L
 = 0.5, λ

MZ
 for the CRisch, Odds and 

Probit models were 52, 35 and 13, respectively; the λ
Sib

 for 

the same models were 10, 8 and 4, respectively. If risk loci 

are identifi ed that account for a signifi cant proportion of 

the sibling risk, then it may be possible to test which 

model better fi ts observed data, but this will require a 

large number of families to be genotyped for the risk loci.

Discussion

With the advent of GWAS we are gaining a clearer under-

standing of the genetic architecture of common complex 

diseases. Empirical evidence suggests an architecture of 

many genetic loci with many variants of small eff ect. 

Interest in genomic profi ling, the use of a genome-wide 

markers to predict genetic disease risk, is growing (for 

example, [19,20]), as is the establishment of companies 

off ering profi ling services. Th e prediction of disease risk 

from many risk loci or markers requires a model that 

combines the eff ects of these loci and the choice of this 

model is the topic of this paper.

Total variance of risk loci is the driving force

We chose two parameters that are directly measurable in 

real populations for benchmarking models: disease 

prevalence (that is, K) and the eff ect size of a single risk 

allele (that is, τ). We recognized that many combinations 

of the number of loci (that is, n) allele frequency (that is, 

p) and τ were consistent with the same heritability on the 

underlying scale in the Probit model (that is, h 2
L
) and that 

the predictions of all the models were insensitive to the 

exact combination of n, p and τ provided h 2
L
 was held 

constant. Th erefore, we have compared the models while 

holding constant K and h 2
L
. In Figures 1 and 2 we present 

results for n = 1,000 and p = 0.3, to provide some com-

parison to empirical estimates of τ. Since the distribution of 

genetic risk of disease in a population is driven by total 

genetic variance rather than the variance contributed by 

each locus, it is unlikely that relaxing the restriction of equal 

allele frequencies and eff ect sizes will impact the results; this 

is consistent with the results of other studies [4,10,21].

Although we show that the unconstrained Risch model 

is not a practical model, its mathematical tractability can 

still provide valuable insight into our understanding of 

the factors infl uencing genetic risk. We show (Additional 

fi le 4) that the scaled contribution to the genetic variance 

on the risk scale by each risk allele (v) is a function of p 

and τ, v = p(1 – p)(τ – 1)2/[1 + p(τ – 1)]2 and the total 

genetic variance on this scale is proportional to nv. For 

small values of τ (that is, τ  1), nv ≈ np(1 – p)(τ – 1)2, 

which can be used to derive the proportion of genetic 

variance explained by one locus.

Rejection of simple additive and simple multiplicative 

models on the risk scale

Risch [3], using schizophrenia as an example, was the 

fi rst to show that recurrence risk to relatives in complex 

Figure 4. Relationship between narrow sense (additive) h2

01
 and 

broad sense heritability H2

01
 on the risk scale for diff erent disease 

prevalences (K). From simulations of a single population of 106 

individuals, with h2

01
 calculated as 4(λ

OG
 – 1)K/(1 – K)

 
 where λ

OG
 is the 

recurrence risk of disease in grandchildren of aff ected grandparents 

and H2

01
 calculated from Equation 2.
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diseases is better explained by a multiplicative than an 

additive model of gene action on the risk scale because 

(λ
MZ

 – 1)/(λ
sib

 – 1) >2 as shown in Table 1. In preliminary 

simulations (not reported) we confi rmed that additivity 

on the risk scale of all risk loci simply could not produce 

the steep rise in probability of disease (Figure 1) neces-

sary to achieve the disease prevalences and recurrence 

risks to relatives typical of complex diseases. In contrast, 

Slatkin [13], under his thesis of exchangeable models, 

demonstrated that an additive model on the risk scale 

could explain complex disease. However, to achieve the 

steep rise in disease risk, he imposed stringent con-

straints, so that the additive eff ect of risk alleles only 

occurred in the (very narrow) range of the number of risk 

alleles associated with the steep rise in probability of 

disease. Outside this range probability of disease was either 

zero or 1. In this way, the shape of the risk function is similar 

to the models that are multiplicative on the risk scale.

Other theoretical studies have used the Risch model 

[2,13], the CRisch model [13], the Odds model [4] and 

the Probit model [22]. Although there is a generally 

accepted dogma that these models are similar, in trying 

to compare studies it is important to know if any diff er-

ences are a function of the choice of risk model. In a 

previous study [10] we made derivations under the 

Risch model and for the parameter combinations 

considered the probability of disease being greater than 

1 was rare. However, in this study, where we have 

considered the full range of parameters, we have 

recognized that under the unconstrained Risch model, 

individuals for whom probability of disease is greater 

than 1 (g
x
 >1) make a huge contribution to the genetic 

variances.

Risch [3] investigating schizophrenia and Brown et al. 

[6] studying ankylosing spondilitis recognized that the 

observed ratio λ
MZ

/λ2
Sib

 was less than one, whereas this 

ratio is expected to be 1 under the Risch model [3]. Th e 

sampling variance on estimates of recurrence rates is high 

and so the greater consistency with multiplicative rather 

than additive models (risk scale) was their main 

conclusion. However, by looking at a range of complex 

diseases (Table 1) there is consistent evidence that λ
MZ

/λ2
Sib

 

is less than 1, particularly for low prevalence diseases. 

Th ese observed ratios are consistent with our simulation 

results, which show that under the CRisch, Odds and 

Probit models, the ratio λ
MZ

/λ2
Sib

  1 only as K  0.5 and 

h 2
L
  0, but under parameters typical of common 

complex genetic diseases λ
MZ

/λ2
Sib

 << 1, particularly as 

K  0 and h 2
L
  1. Th e mathematical tractability of the 

Risch model has often made it the method of choice in 

theoretical studies and the equality λ
MZ

/λ2
Sib

 = 1 has been 

used to underpin predictions (for example, see the 

Supple ment of Clayton [23]); in the mathematical 

expressions the impact of not constraining the probability 

of disease to be less than 1 is not obvious, but it is 

because of this important constraint that equality λ
MZ

/λ2
Sib

 

is often much less than 1.

Th erefore, we conclude that the unconstrained Risch 

model is simply not realistic, particularly for parameters 

typical of human complex disease (K < 0.1 and h 2
L
 > 0.5), 

Table 2. Relative risks to relatives of aff ected individuals calculated within the stochastic simulation for Probit, CRisch 

and Odds models

Probit CRisch Odds

K h2

L λMZ λSib

λMZ

λ2

Sib

λMZ λSib

λMZ

λ2

Sib

λMZ λSib

λMZ

λ2

Sib

0.1 0.1 1.3 1.2 0.99 1.4 1.2 1.00 1.3 1.1 1.00

0.1 0.5 3.2 1.9 0.87 5.6 2.6 0.84 3.9 2.1 0.85

0.1 0.7 4.7 2.4 0.81 7.6 3.0 0.83 6.0 2.8 0.80

0.1 0.95 7.8 3.1 0.82 9.7 3.2 0.92 9.3 3.2 0.90

0.01 0.1 1.9 1.4 0.97 2.4 1.5 1.00 1.7 1.3 1.03

0.01 0.5 13.0 4.4 0.68 51.7 9.9 0.53 34.8 8.1 0.54

0.01 0.7 26.6 7.0 0.54 76.8 12.3 0.51 62.3 11.3 0.49

0.01 0.95 67.3 11.7 0.49 97.0 13.0 0.57 94.6 12.9 0.57

0.001 0.1 2.8 1.7 0.96 4.0 2.0 1.00 1.2 1.1 1.06

0.001 0.5 54.8 10.5 0.49 516.5 41.6 0.30 342.5 34.0 0.30

0.001 0.7 157.8 20.6 0.37 796.8 51.4 0.30 638.5 49.5 0.26

0.001 0.95 599.8 47.5 0.27 989.9 57.6 0.30 968.6 55.9 0.31

h2
L  is an input parameter for the Probit model. For each h2

L  τ is estimated from the Probit model simulation and used as input to the CRisch and Odds model 
simulations. h2

L  is used as the benchmark as τ is dependent on n, p and K.
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so here we have made comparisons on the more realistic 

constrained (CRisch) model.

Diff erences between the models unlikely to be detectable 

in practice

Since we reject the additive and Risch models, we 

concen trate on the comparison of the CRisch, Odds and 

Probit models. We chose to compare models with two 

fi xed benchmarks, disease prevalence and eff ect size of 

an individual risk allele, taken at the average number of 

risk alleles (that is, τ). Under this benchmarking, the 

probability of disease associated with carrying the 

minimum number of alleles in the population diff ers 

between models, but in all models this will be very close 

to zero given the number or risk loci now expected to 

contribute to complex genetic disease. Although we 

assume that each risk locus has the same individual eff ect 

size, the models diff er in the way that the eff ect sizes 

combine. For example, a given risk locus with observed τ 

and p explains a smaller proportion of the risk to relatives 

under a Probit model than under a CRisch model. How-

ever, we conclude that for all operational purposes, in the 

foreseeable future, it is unlikely that we will be able to 

distinguish between the models either on the basis of 

recurrence risks to relatives or on the basis of estimates 

of eff ect sizes of risk loci. Slatkin [13] also compared the 

CRisch and Probit models and benchmarked on a range 

of parameters. Our results are complementary to, and 

consistent with, his, although direct comparison is 

prevented by his models distinguishing between hetero-

zygotes and homozygotes at each locus, so that the multi-

plicativity of risk alleles was only between loci and not 

within loci. Inability to distinguish between multi-locus 

risk models on the basis of recurrence risks is perhaps 

not surprising given that Smith [24] was unable to 

distinguish between more extreme models on this basis. 

Ability to distinguish between the models is only possible 

in the very tail of the risk curve and would only be 

achievable if genomic profi les could be constructed using 

measured variants that accounted for the totality of the 

genetic variance. If this were possible, sets of individuals 

could be identifi ed with high predicted risk and the 

proportion succumbing to disease could be measured 

and compared to the proportion expected under diff erent 

models. Such hypothetical scenarios at present seem 

unattainable.

Each individual carries a unique portfolio of risk loci

From Figure 1 it becomes clear that when there are many 

risk loci contributing to disease each of small eff ect, that 

all individuals in the population necessarily carry a large 

number of risk alleles. For example, when 1,000 loci with 

risk alleles of frequency 0.1 underlie a complex disease, 

all individuals in the population carry at least 150 risk 

alleles, an average individual carries 200 risk alleles and, 

when disease prevalence is low and heritability is high, 

most of those with disease carry 230 to 250 risk alleles. 

Since, in this example, there is a total of 2,000 risk alleles, 

each individual will carry their own unique portfolio, 

which could underlie the phenotypic heterogeneity 

typical of many complex diseases.

Large amounts of epistasis on the risk scale despite 

additivity on underlying scales

Our results show that additivity of individual genetic 

variants on some underlying scale can convert to, some-

times considerable, non-additive genetic variance on the 

risk scale, particularly when the disease prevalence is low. 

Th ese results are not new and were presented by Dempster 

and Lerner [14], but are sometimes overlooked. Human 

diseases usually have prevalences of less than 0.1, in 

which case the majority of the genetic variance on the 

risk scale is epistatic. Th ese results imply that the models 

underpinning GWAS already account for one type of 

gene-gene interaction, if each τ could be estimated 

without error. Likewise, our usual models also imply 

genotype-environment interaction on the risk scale 

because the eff ect of an environmental factor is greater in 

people with higher genetic risk. Our defi nition of 

epistasis is one of statistical interaction; the extent to 

which statistical interaction relates to biological or 

functional interaction has been much debated (see [25] 

for a review) and will not become clear until more of the 

genetic variance can be explained by identifi ed genomic 

variants.

True versus estimated τ
We set out to benchmark models on the basis of two 

observable parameters, disease prevalence (that is, K) 

and the eff ect size of a single risk allele (that is, τ). In 

building the models we have assumed that the true τ is 

known and have defi ned it as the eff ect of a single risk 

locus in the background of the average number of risk 

loci. However, the estimates of τ made from experimental 

data may be quite diff erent to these true values. If the 

genotypes at all risk loci were known and a complete 

model was fi tted to the data, then the correct estimate of 

τ would be obtained (within experimental sampling 

error). In practice, however, usually only the eff ect of a 

single risk locus is included in the statistical model and 

under these circumstances we will estimate the eff ect of 

an extra risk allele averaged across all background 

genotypes rather than the eff ect at the mean background 

genotype. Th e eff ect of this may be dependent on the true 

way in which loci combine to infl uence risk of disease, 

which, of course, is unknown. Under the CRisch model of 

Figure 1a, all individuals with >650 risk alleles get the 

disease, so above 650 risk alleles there is no eff ect of an 
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extra risk allele. Conversely, below 650 risk alleles each 

extra risk allele increases the probability of disease by τ. 

Th e experimental estimate will be a weighted average of 

these two estimates (zero and τ). In practice, therefore, 

variants detected with small relative risk may refl ect 

greater biological importance than might otherwise be 

inferred. Under the Probit model the τ calculated at the 

average number or risk loci is:

                                   a – t                     – t
Φ ( ______________ ) / Φ ( ______________ )                               √(1 – h 2

L
)            √(1 – h 2

L
)

whereas the τ estimated when a single risk locus is in the 

statistical model is Φ(a – t)/Φ(– t) because then all other 

risk loci are part of the residual variance in liability and 

so the residual variance approaches the phenotypic 

variance, which is 1.0.

Comparison of the models in practice is diffi  cult and 

distinguishing between them may be impossible, espe-

cially if the true n is large and the true τ is small. Since we 

have demonstrated that the models are diffi  cult to 

diff erentiate, the use of the Probit model, which has 

mathematical tractability and a known relationship 

between the estimates of τ in diff erent genetic back-

grounds, is likely to be the model of choice. Th e estimated 

variance on the liability scale explained by a locus with 

estimated eff ect size τ̂ is 2p(1 – p)(τ̂ – 1)2/i2 [26], so that 

the estimated eff ect on the liability scale is â(τ̂ – 1)/i, 

where i is the mean liability of the diseased group, i = z/

K, where z is the height of the normal curve at the 

threshold t.

Limitations

Th e true genetic architecture (in terms of number, fre-

quency and eff ect size of risk variants and the way in 

which they combine) is unknown and may be quite 

diff erent for the diff erent diseases listed in Table 1. For 

simplicity, we have described disease in terms of aff ected/

unaff ected, ignoring time-dependent onset, and we have 

ignored phenotypic heterogeneity (which may refl ect 

genetic heterogeneity) in the defi nition of disease status 

and other real-life complications. In principle, our 

approach could refl ect any defi nition of disease if the 

genetic epidemiology and genetic risk variants can be 

defi ned - for example, early and late onset disease may be 

considered as diff erent diseases - but despite this any 

simple model is likely to be a poor representation of 

disease. None of the models we have considered are likely 

to be the true model, but since they can all generate 

recurrence risks consistent with complex genetic diseases 

(given the right combination of parameters), they can 

give useful insight until empirical data provide evidence 

for them to be rejected. Th ese simple models provide 

some boundaries, demonstrating some properties that 

must be upheld by the true genetic architecture in order 

to be consistent with observed data.

Conclusions

In this paper we set out to compare diff erent models that 

combine the eff ects of multiple risk loci into an overall 

genetic risk. We conclude that a model that is additive or 

multiplicative on the risk scale across all loci is incom-

patible with the observed recurrence risks to relatives. 

Th e constrained multiplicative (CRisch), Odds and Probit 

models are all compatible with the observed data and, in 

fact, it is diffi  cult to distinguish between them when the 

relative risk at an individual locus is small. Importantly, 

we show that the unconstrained multiplicative (Risch) 

model, often used in theoretical studies because of its 

mathematical tractability, is not a realistic model as 

impossible probabilities of disease are implied. Specifi -

cally, the multiplicative Risch model generates a 

relationship of λ
MZ

/λ2
Sib

 = 1, but we have demonstrated 

that this not possible under many disease scenarios and 

occurs in the theoretical derivation because probabilities 

of disease are not constrained and can exceed 1. We have 

demonstrated that under more realistic models in which 

probabilities of disease are constrained to 1, the ratio 

λ
MZ

/λ2
Sib

 is often much less than 1, a result that is 

consistent with empirical estimates from a range of 

diseases. Finally, we conclude that it will only be possible 

to distinguish between the CRisch, Odds and Probit 

models in practice if genetic risk profi les are able to 

reconstruct the majority of the known genetic variance; 

this is unlikely for the foreseeable future.
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risk of disease in relatives of diseased individuals for relatives of type R; λ
Sib

, 

recurrence risk of disease in sibs of diseased individuals; τ, the risk (probability) 

of disease of a risk allele relative to the other (wild-type) allele for a single locus 

(for the unconstrained Risch model τ = g
x–1

/g
x
 for all x = 0, 2n – 1); a, additive 

eff ect size of each risk allele on the liability scale in Normal standard deviation 

units; f
n , 

probability of disease in a person with wild-type alleles only at all n 

contributing loci; g
x
, the genetic risk (or probability) of disease of an individual 

given their multilocus genotype of x risk alleles; h2

01
, narrow sense (that is, 

additive genetic) heritability on the risk scale; h2

L
, heritability on the liability 

scale, on this scale all genetic variance is additive; H2

01
, broad sense (that is, total 

genetic) heritability on the risk scale - on this scale the phenotype, disease, is 

either not diseased (0) or diseased (1); K, disease prevalence in a population; 

K
R
, disease prevalence in relatives of diseased individuals for relatives of type 

R; n, the number of loci that contribute to the genetic variance of the disease; 

p, frequency of risk allele; t, threshold truncating proportion K in the right-

hand tail of the normal distribution; x, number of risk alleles harbored by an 

individual, between 0 and 2n.
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