
Clash of giants: relative complexity of metabolic 
pathways and genomes
�ere are approximately ten times as many expressed 
genes (proteins) as there are different metabolites in most 
cells. Biochemical analysis of cells has been the art of the 
possible; you know about what you can detect. In the 
past, assays have largely focused on small organic (bio)

molecules analyzed by colorimetry or spectrophotometry. 
�e genome projects have revealed a completely different 
data set from that of classical metabolic biochemistry, 
and a totally different perspective on metabolism. Two 
different perspectives, as neatly presented by Gerrard et 
al. [1], are presented in Figure 1; note how the genome 
draws attention to the proteins, many of which are 
enzymes, but many of which are not. So, measuring the 
concentrations of metabolites as we do in clinical 
biochemistry only indirectly reports on which of the 
enzymes, control proteins, or structural proteins are at 
fault in a case of chemical poisoning, drug side-effects, or 
in an inborn error of metabolism.

Figure 2 reminds us that there are at least 5,000 
different enzymes, with as many metabolites in pathways 
that interconvert molecules in well-ordered sequences of 
reactions in an ‘average’ human cell. Figure 3 emphasizes 
that any one metabolite (denoted γ in this case) can 
modulate reactions from within its own pathway, across 
pathways, and even alters expression of genes and trans-
lation of messenger RNA into protein. An enzyme can 
also serve to modulate the activity of another enzyme, 
and affect its level of expression. Cations, including H+, 
and extraneous compounds such as xenobiotics (H in 
Figure 3), also exert effects on enzymes and metabolites 
that potentially affect fluxes through multiple pathways.

Traditional clinical biochemistry versus 
metabolomics
A modern and emerging form of advanced diagnostic 
strategy in chemical pathology is metabolomics, also 
called metabonomics [2]. �ere is a semantic and opera-
tional difference between these ‘omics’. �e former is the 
study of an extensive collection of metabolites present in 
a cell or tissue under a particular set of conditions (the 
metabolome) generating a biochemical profile. �e latter 
involves the same profiling but in response to an influ-
ence (drug, toxin, or genetic defect) and then prediction 
of metabolic pathway(s) for the process(es). �e approaches 
adopt an overview strategy that is superficially described 
as ‘fingerprinting’. �e investigator does not need to have 
a preconceived notion of what the metabolic problem 
might be with a patient because the methodology is 
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non-selective for particular metabolites, and yet speci-
fically detects a broad range of them. In contrast, what 
has traditionally been done in clinical biochemistry is to 
work with a diagnostic hypothesis because only a limited 
set of tests exists to apply to a patient’s blood, or biopsy 
tissue, to help make a diagnosis. So focus is placed on a 
biochemical system; if the test points in a particular 
direction of enquiry, then another test is ordered, and so 
forth. Not so with the metabol(n)omics ‘shotgun’ approach!

Now that genes can be inserted into cells to correct 
metabolic defects in animals (for example, [3]), and pre-
sumably ultimately in humans, it will be important to be 
able to predict and monitor the metabolic consequences 

of these genetic manipulations, thus bringing together 
the two paradigms: namely delineating metabolism by 
perturbing it with small molecules such as toxins and 
drugs, and perturbing it by manipulating gene expression, 
thus affecting enzyme activities.

To elaborate on the previous point, ‘Will the insertion 
of a “good” gene into a baby who has inherited a defective 
gene lead to them having a normal life?’ On contem-
plating this point, it becomes obvious that: (1) the gene 
must be able to be targeted to those tissues where it 
usually functions; (2) it must be delivered in sufficient 
quantities to transform a large enough fraction of the 
cells in the tissues to a normal state with normal 

Figure 1. Two di�erent ways of representing metabolic pathways. (a) The ‘old view’ in which the metabolites hold ‘center stage’. The names 
of enzymes (in yellow boxes) are written above reaction arrows that show the chemical transformation of reactants (red circles; representing one 
or more co-reactants) to new metabolites. These can often be detected, characterized, and quanti�ed by physical and chemical techniques, most 
notably in recent years by mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy. (b) The modern ‘genome-centric view’ of 
metabolism in which the enzymes (gene products themselves) hold ‘center stage’. Note that the metabolic pathway is represented as a string of 
enzymes (E1 to En), with the metabolites entering and leaving above the arrows. The tools of genomics include the polymerase chain reaction (PCR) 
for gene ampli�cation and thence sequencing, and identi�cation of the code with that of a particular protein, and DNA sequencing, which makes 
genome-genome comparisons almost commonplace.
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responses to nervous and endocrine ‘cues’; and (3) ‘What 
if only a small fraction of the cells were transformed? 
What is the minimum fraction that would lead to 
“rescuing” the metabolic state of the whole organ(s) and 
hence the individual?’

Quantitative prediction of metabolic responses
How do we begin to predict the metabolic responses to 
experi mental genetic manipulations in something as 
chemically complex as a baby (or even a mouse), when 
we struggle to describe metabolism in quantitative terms 
for even the simplest of cells, notably erythrocytes (for 
example, [4-10])? To give an impression of the task at 
hand, consider glycolysis and the pentose phosphate 
pathway of the human erythrocyte (Figure 4a): there are 
approximately 25 enzymes involved (but there are as 

many, again, doing other things, not included here, such 
as peptidases, phospholipases, catalase, carbonic anhydrase, 
and so on), and hexokinase, the first enzyme in the 
pathway, has the level of details shown in Figure 4b to 
account for its reaction rate as a function of the con-
centration of substrates, products and effectors, including 
H+! In order to account for the exquisite pH dependence 
of the steady-state concentration of 2,3-bisphos-
phoglycerate, the pH dependence of all the key reactions 
(enzymes) needed to be incorporated into the expressions 
for the various equilibrium and kinetic constants. Only 
then was it possible to analyze the mathematical model 
to identify the fact that H+ ions exerted their effect on the 
concentration of 2,3-bisphosphoglycerate mostly via 
three different enzymes, two of which are far removed in 
the pathway. Such is the behavior of a system that in 

Figure 2. Representation of the enzyme-centric view of metabolism. The horizontal rows of arrows represent the various groups of enzymes 
that are associated with the systematic changing of an input metabolite(s) to an end product, be it a fuel, an e�ector/controller of another reaction, 
or a building block for a biopolymer, such as protein or nucleic acid. The vertical green arrows denote the gene-to-messenger RNA-to-protein 
sequence of reactions that occur for the approximately 5,000 di�erent enzymes of human metabolism.
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effect is run by a committee! �is type of analysis was only 
made possible by performing a type of meta-analysis on 
the model using the guiding principles of metabolic 
control analysis [11] and especially the important idea of 
co-response coefficients [12,13]. In other words, having 
done an experimental study of a metabolic system, a 
mathematical model consisting of rate equations is 
formulated; and the simulations are used to test 
hypotheses that relate to control of the reaction network. 
�is abstraction is then used to inform further 
experiments on the real system, and so forth, in a series of 
iterative loops between numerical simulation and real 
experiment, thus refining understanding of the real system.

Metabolic processes in unicellular organisms such as 
bacteria and yeast have been studied using this approach, 
but they turn out to be even more complex than the 
human erythrocyte. �is is because they have the full 
complement of metabolic machinery that is required to 
maintain an autonomous existence and to reproduce 
themselves; the human (mammalian) erythrocyte is an 
end-stage differentiated cell and thus, while relatively 
simpler, it is still complex. �e human erythrocyte has 
been subjected to the most detailed biochemical analysis 
and computer modeling of all known cell types, and has 
been a fruitful guide to the future of metabolic 
simulations and quantitative analysis of metabolic 

Figure 3. Reminder of the complexity of the control of the activity of an enzyme. In the bottom metabolic pathway, the generic metabolite 
γ can be: (a) a positive- or negative-feedback e�ector of the generic enzyme E5000; (b) a positive- or negative-feedforward e�ector of the generic 
enzyme E5000+k; (c) a product inhibitor or homotropic e�ector of the enzyme that catalyzes its production; (d) a positive or negative e�ector of an 
enzyme that catalyzes a chemically ‘distant’ (unrelated, non-precursor chemical structures) reaction in another pathway’; and (e) a product a�ecting 
the transcription of a gene and/or its translation to a mature enzyme that is properly transferred to its ‘correct’ cellular compartment. The generic 
enzyme E100 a�ects other reactions: (f ) by protein-protein interactions, as a macromolecular e�ector; and (g) through entry into the nucleus and 
a�ecting DNA transcription, or, in the cytoplasm, messenger RNA translation into protein. External e�ectors (H), such as H+ ions, hormones, or 
xenobiotics, can interact with one of more enzymes and metabolites to in�uence the �ux through one or more metabolic pathways.
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responses [7-9]. This analysis probably already includes 
most of the concepts that will be necessary to scale up to 
a model of the whole human metabolic network.

Computer models of metabolism
It is intriguing that the first serious attempts to model 
metabolism in cells considered yeast, hepatocytes, and 
myocytes, and the models began with a high level of 
complexity. Consideration was given to the detailed 
mechanisms of the individual enzymes in many metabolic 
pathways, such as those shown in stylized form in Figure 
1a, with control of enzymes by small molecules as is 
represented in Figure 3. Such work was exemplified by that 
of Britton Chance, Edwin Chance and Joseph Higgins, and 
later by that of David and Lillian Garfinkel and colleagues 

[14]. As it was obvious 40 years ago, and is even more 
apparent today, it is difficult to obtain the coherent/
consistent sets of data required to guide the development 
of quantitative models of metabolism in a particular tissue 
[7-9]. Future developments will need some, and more, of 
the blanket approaches to identify and quantify metabo
lites that have been used in metabol(n)omics, such as 
chromatographic methods linked to mass spectrometry 
and nuclear magnetic resonance spectroscopy [15,16]; also 
called ‘hyphenated modalities’.

Those interested in optimizing batch cultures of micro
organisms for the industrial production of substances 
such as antibiotics, or even simple ethanol, have adopted 
a more phenomenological approach to their models 
[17,18]; in other words, an attempt is made to represent 

Figure 4. Human erythrocyte metabolism modeled using detailed enzyme rate equations. The enzyme rate equations are described in [10]. 
(a) The reaction scheme for the glycolytic pathway, and (b) the first rate equation used in the model of the glycolytic pathway for hexokinase; many 
of the other enzyme rate equations are of similar complexity to this.
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or describe a phenomenon without trying to infer a 
detailed underlying mechanism for each enzymic reac
tion. While some of these models of metabolism are very 
complicated, they do not (generally) involve the fine 
details of pre-steady-state or even steady-state rate equa
tions for the respective enzymes. The set of simultaneous 
linear and non-linear differential equations that consti
tute deterministic models can be investigated using a 
form of sensitivity analysis (developed in the 1960s by 
chemical engineers [19], and now a part of metabolic 
control analysis [11]) to help identify flux-controlling 
steps (enzymes) that then become the target for genetic 
manipulations of the organism [5].

The main proponent of large-scale modeling of 
metabolism is Professor Bernhard Palsson and his team at 
the University of California, San Diego, California, USA. 
Their work to date has largely been phenomenological 
and can be classified as ‘biochemical engineering’; it is of a 
kind that also attracted attention to the late Professor 
James Bailey, who nevertheless recognized the need to 
consider genomics in formulating the next generation of 
metabolic models [20]. The emphasis is on process output 
and the amount of detail used, as in pragmatic 
engineering, is just sufficient for describing the bio
processing task in hand. The models are fundamentally 
different from those that biochemists have constructed of 
human erythrocyte metabolism [7-10]. However, in the 
process of setting up their massive databases, Palsson and 
colleagues have established a means of storing infor
mation relating to vast arrays of individual enzymes. This 
‘library’ system could, in principle, contain, and be used to 
curate, all the data compiled in any other highly enzyme-
mechanism-based model; indeed, they have already 
subsumed some of the more mechanistic equations from 
other models, such as in [6].

Thus, the large-scale and very ambitious projects in 
metabolic modeling have identified the need to curate 
data from disparate sources and make it available to one 
model. Palsson’s team recently listed 45 bacteria, 2 
archaea, and 11 eukaryotes, including Homo sapiens, 
among those with detailed models of metabolism in their 
database [21]. To obtain some idea of the complexity 
involved, consider Bacillus subtilis: there are 4,114 genes 
that express 1,103 enzymes/proteins involved in 1,437 
reactions with 1,138 metabolites [21,22]. Keeping track of 
the metabolites and the reaction kinetics with experi
mental data to justify particular choices of parameter 
values demands elegant file-handling programs and 
powerful computers.

The process of setting up the differential rate equations 
that are solved to predict time courses of metabolism 
under various conditions rests on a central idea that is 
well described in the book by Heinrich and Schuster [11], 
namely the stoichiometry matrix, and it has been 

implemented in other well-known programs (for 
example, [23], and also in [10]). This is a mathematical 
construct that has a list of reaction names (enzyme 
names) in the metabolic system across the top of the 
columns of the matrix. The matrix is often gigantic, 
having as many columns as there are enzymes, and the 
metabolite names (reactants), which can number in the 
thousands, down the rows. Automatic writing of the 
differential equations that describe the rates of the 
biochemical reactions is done by the computer program 
(for example, [21]; this has also been done, on a smaller 
scale, in Mathematica [10]); the process involves access
ing a separate list (the velocity vector) of rate equations 
that contains the kinetic descriptions of each reaction, 
either at the level of steady-state kinetics - for example, 
the Michaelis-Menten equation - or represented as 
simple first and second order rate equations where the 
enzyme concentration is implicit in the value of a rate 
constant. Thus, there are as many differential rate equa
tions as there are metabolites. In other words, the model 
can engulf all previous estimates of metabolite concen
trations and enzyme kinetic data relevant to the meta
bolic pathway under consideration.

The massive library of metabolic information, orga
nized around the velocity and substrate vectors and the 
stoichiometry matrix, can readily be expanded to 
incorporate control networks, such as hormone effects 
(for example, [17]). However, a major question that 
emerges from combining all these data is how do 
conflicts between disparate data sets, from different 
investigations/investigators with different techniques, get 
resolved? The problem has not been systematically 
resolved and has been left to individuals to do the 
filtering of the data (for example, [24]).

A coarser grained view
The major effort in quantitative holistic human modeling 
is the Human Physiome Project [25]. The Human 
Physiome Project runs under the aegis of the Inter
national Union of Physiological Societies, and the 
Institute of Electronic and Electrical Engineers’ Engineer
ing in Medicine and Biology Society, and it was made the 
main focus of the International Union of Physiological 
Societies for the decade commencing in 1993, and it 
continues today [26]; but the temporal and structural 
scales have not been those of metabolism - they are more 
those of tissue/anatomical structure. The Human 
Physiome Project is divided into 12 major systems, with 
the heart and cardiovascular system appearing to attract 
most attention (for example, [27,28]). The blood in this 
system (hematopoietic tissue plus circulating erythro
cytes; also called the erythron) constitutes approximately 
6 kg of the average adult mass (8.6%), with the approxi
mately 2 kg of erythrocytes visiting all tissues, being a 
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major antioxidant via plasma membrane oxidoreductases 
and intracellular glutathione; and blood is also the main 
vehicle for the distribution (and degradation) of 
hormones. A model of the blood should be a key aspect 
of the quantitative human physiome; it will tie all the 12 
systems together, with hormone signaling, nutrient and 
O2 delivery, and metabolite and CO2 disposal, as relevant 
to all tissues. On the other hand, there appear to be few 
signs that models of human erythrocyte metabolism are 
about to be included in the Human Physiome Project; so 
inclusion of the much more complex metabolic models of 
Palsson et al. (for example, [21,22]) into the Human 
Physiome Project appears remote at this juncture.

Metabonomics and its challenges
A recent application of metabonomics has been in 
experimental pancreatitis in animals in which major 
changes in blood chemistry are seen in response to 
arginine overloading. The interpretation of the metabolic 
profiles is based on known biochemical pathways, and 
yet the interpretation is still only qualitative. Neverthe
less, the work appears to lend itself to quantitative 
metabolic modeling, which could make predictions more 
robust before it is applied to humans [29]. In spite of the 
huge amount of biochemical information available in 
such studies, much more information is required to make 
an enzyme-mechanistic model of the system of the kind 
developed for the human erythrocyte [7-10].

Complicating issues
Thus far we have considered straightforward comparisons 
between standard enzyme kinetics and the prediction of 
metabolic responses. However, it is well known that some 
reactions inside cells do not follow the kinetics predicted 
from studies in vitro. One of the hopes for magnetic 
resonance spectroscopy is to study the kinetics of reac
tions as they occur in situ in cells or tissues. A compli
cation that arises in situ is metabolite/substrate 
channeling, and yet the only model to date that has been 
based on real experimental data is that of arginine 
channeling in the urea cycle of isolated rat hepatocytes 
[30]. How much more complicated would be the kinetic 
characterization of metabolite channeling in the human 
liver in vivo?

One way to begin to look more closely at the flux of 
carbon atoms in metabolites through intersecting meta
bolic modules is to use 13C nuclear magnetic resonance 
isotopomer analysis (for example, [31]). The ensuing 
increase in computational complexity brought about by 
the requirement to keep track of all combinations of 13C 
labels in isotopomers has seen this area of computer 
modeling move very slowly. Nevertheless, the recent 
example of B. subtilis metabolism is an important 
advance [22]. And there is another subtlety: not all sites 

in an end product of a metabolite may ever be labeled 
because of the particular subset of combinatorial shuf
fling of carbon atoms at different positions in a metabolite 
in a cell type. This realization both complicates possible 
experimental interpretations and could also serve as a 
type of diagnostic test, identifying which of a set of 
possible reactions are in operation in a tissue or cell type 
in a given time interval [32].

Conclusions
It appears that the methods of metabol(n)omics that 
generate massive data sets on metabolite concentrations 
might tempt speculation that a detailed quantitative 
predictive model of the whole human metabolic network 
is imminent. On the other side of the ‘conceptual divide’, 
modelers of complicated metabolism, who have solved 
the problem of data curation, and fast and accurate 
numerical integration of differential rate equations, imply 
that the ‘all that is needed are some data’; their methods 
are ready, waiting, and up to the task. Unfortunately, even 
modeling the metabolism of the simplest mammalian 
cell, the erythrocyte, has and still does require pain
staking experimental analysis by a range of techniques; 
the latest addition in this area (on glutathione synthesis) 
was 6 years in the making [24]!

In conclusion, it would be demoralizing to base our 
predictions of a date when the whole human metabolic 
network would be complete on present technology. What 
is needed is the counterpart of the sort of breakthrough 
in technology that saw the Human Genome Project reach 
fruition ‘from left field’ via shotgun DNA sequencing, 
which is utterly reliant on massive computer power. It 
appears that, in the present case, we have the computing 
power and methods, but what we lack are the techniques 
of metabolite analysis, and various means of rapidly 
recording protein-protein and ligand-protein interactions. 
Furthermore, the genome-centric view of metabolism is 
identifying new modes of metabolic regulation, such as 
the indirect effects of interfering RNAs, and these will 
need to be incorporated in models of metabolism and its 
control. Therefore, there is much to be done before 
computer models of metabolism form part of the suite of 
methods used in clinical management.
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