
Introduction

Imatinib mesylate (IM, also known as STI571, Glivec or 

Gleevec) is a competitive tyrosine kinase inhibitor com-

monly used for treatment of chronic myeloid leukemia 

(CML). It has also proven effi  cient for the treatment of 

advanced gastrointestinal stromal tumors (GISTs), c-KIT 

mastocytosis and myeloproliferative disorders with re-

arrangement of the platelet derived growth factor recep-

tor (PDGFR) gene. In CML, IM inhibits the tyrosine 

kinase activity of the fusion protein of breakpoint cluster 

region (BCR) gene and the ABL tyrosine kinase (BCR-

ABL), which results from a t(9;22)(q34,q11) translocation 

known as the Philadelphia chromosome; this fusion 

protein has a role in leukemogenesis [1]. IM occupies the 

ATP-binding pocket of the ABL kinase domain; this 

prevents a change in conformation of the protein that 

would otherwise convert the molecule to its active form, 

and IM binding thereby leads to the apoptosis of target 

cells.

Th ree main criteria can be used to evaluate the 

response to CML treatment: complete hematological 

remis sion, defi ned as a normal peripheral blood count 

with normal spleen; complete cytogenetic response 

(CCyR), defi ned by absence of the Philadelphia chromo-

some in bone marrow metaphase analysis; and major 

molecular response (MMR), defi ned by the thousand-

fold (3 log) reduction in BCR-ABL transcript levels 

relative to the standardized baseline [1]. Other levels of 

cytogenetic or molecular response can be used [1], as 

mentioned in Table 1. Despite outstanding results of IM 

in the treatment of chronic phase CML, some patients do 

not achieve response criteria (for example, about 25% of 

patients did not achieve CCyR at 18 months [2], and 

some patients (about 25%) who initially responded well 

subsequently acquired resistance [3]. Apart from dosage 

errors, drug interactions and non-compliance with 

treatment, several mechanisms can contribute to the 

development of resistance: changes to the target protein 

(occurring through mutations or BCR-ABL amplifi ca-

tion); downstream BCR-ABL-independent pathways; and 

drug pharmacokinetics parameters (absorption, distri-

bution, metabolism and excretion). In malignancies other 

than CML, IM inhibits the tyrosine kinase domains of 

KIT and PDGFRα/β. Myeloproliferative disorders with 

PDGFR rearrangement show great sensitivity to IM and 

mostly require a lower dose of IM; this is especially true 

of chronic eosinophilic leukemia, which involves a fusion 

transcript of FIP1-like1 and PDGFRA [4]. In masto-

cytosis, the overall response rate varies according to 

c-KIT mutational status and has been reported to be 18 

to 36% [5]. In GISTs, IM leads to a response rate of 50 to 

70%, with a 2-year overall survival rate of 70% [6].

In the conventional dose range, a fourfold inter-patient 

variability has been reported both in the systemic 

exposure for a given dose and in the dose required to 

achieve a specifi c target level [7]. Variation in drug 

concentration may result in excessive toxicity or sub-

optimal anticancer eff ect. Reduced IM effi  cacy has been 
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Table 1. Summary of studies of the effi  cacy of IM treatment in relation to pharmacokinetic genetic variants*

Genes SNP*
Base 

substitution†
Functional 

eff ect‡ No of patients Response criteria IM dosage Association References

ABCB1 rs1128503 C1236T + 90 French MMR at 12 months 400 mg in front line or 

2nd line after IFN

Higher MMR with 

1236T allele

[20]

- 62 Japanese MMR ≥400 and ≤300 mg No [26]

229 Canadian CyR and MR at 1, 1.5, 2, 

3, 4 and 5 years§

400, 600 or 800 mg No [25]

87 English MMR¶ at 18 months 400 mg No [24]

46 Dutch Cumulative incidence 

of MMR and CMR at 12 

months

800 mg Higher MMR and CMR 

with CC genotype

[22]

557 French MMR at 12 months 400 mg; 400 mg + 

IFN 400 mg + AraC; 

600 mg

No [21]

52 Chinese CCyR at 12 months 400 mg Lower CCyR with TT 

genotype

[23]

rs2032582 G2677T/A + 90 French MMR at 12 months 400 mg in front line or 

2nd line after IFN

Lower MMR with 

2677G allele

[20]

- 62 Japanese MMR ≥400 and ≤300 mg No [26]

229 Canadian CyR and MR at 1, 1.5, 2, 

3, 4 and 5 years§

400, 600 or 800 mg No [25]

46 Dutch Cumulative incidence 

of MMR and CMR at 12 

months

800 mg Lower CMR with TT 

genotype

[22]

557 French MMR at 12 months 400 mg; 400 mg + 

IFN 400 mg + AraC; 

600 mg

Higher MMR with 

2677G allele in the arm 

400 mg + AraC

[21]

52 Chinese CCyR at 12 months 400 mg Higher CCyR with AG/

AT/AA genotypes

[23]

rs1045642 C3435T¥ - 90 French MMR at 12 months 400 mg in front line or 

2nd line after IFN

No [20]

- 62 Japanese MMR ≥400 and ≤300 mg No [26]

ABCB1 rs1045642 C3435T¥ 229 Canadian CyR and MR at 1, 1.5, 2, 

3, 4 and 5 years§

400, 600 or 800 mg Overall survival lower 

with TT genotype 

but not confi rmed in 

multivariate analysis

[25]

46 Dutch Cumulative incidence 

of MMR and CMR at 12 

months

800 mg Lower CMR with TT 

genotype

[22]

557 French MMR at 12 months 400 mg; 400 mg + 

IFN 400 mg + AraC; 

600 mg

No [21]

52 Chinese CCyR at 12 months 400 mg Higher CCyR with CC 

genotype

[23]

ABCG2 rs717620 - 62 Japanese MMR ≥400 and ≤300 mg No [26]

rs2231142 C421A¥ + 62 Japanese MMR ≥400 and ≤300 mg No [26]

229 Canadian CyR and MR at 1, 1.5, 2, 

3, 4 and 5 years§

400, 600 or 800 mg Higher CMR with 

AA genotype; more 

frequent need for IM 

dose escalation for CC 

genotype

[25]

rs2231137 G34A 229 Canadian CyR and MR at 1, 1.5, 2, 

3, 4 and 5 years§

400, 600 or 800 mg Lower MCyR and CCyR 

with GG genotypes

[25]

SLC22A1 rs12208357 32 Austrian MMR at 18 months 400 mg No [52]

- 132 English MMR 400 mg No [37]

229 Canadian CyR and MR at 1, 1.5, 2, 

3, 4 and 5 years§

400, 600 or 800 mg No [25]

Continued overleaf
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linked to low drug exposure; the main reported toxicities 

of IM are neutropenia, superfi cial edema, nausea, muscle 

cramps and rashes [1-3]. Trough IM plasma levels (C
min

) 

have been reported to be associated with MMR in CML 

patients following standard drug dose [8,9] A plasma 

threshold of 1,002  ng/ml had the best sensitivity and 

specifi city to predict MMR [8]. Patients with C
min

 below 

this threshold have less chance to achieve MMR com-

pared with patients with C
min

 above it. Likewise, higher 

circulating levels of IM correlated with a better response 

rate and with a longer time to progression in patients 

with advanced GISTs with C
min

 of more than 1,100 ng/ml 

[10].

Observed inter-patient pharmacokinetic variability 

may be due to patients’ genetics. Polymorphisms in genes 

related to IM absorption, distribution, metabolism and 

excretion may aff ect the drug’s bioavailability and 

consequently the response to the drug. Th e oral bio-

availability of IM depends on its gastrointestinal absorp-

tion and on how much of it survives the extensive fi rst 

pass metabolism that it encounters. Approximately 95% 

of IM in the human body is bound to plasma proteins, 

Table 1. Continued

Genes SNP*
Base 

substitution†
Functional 

eff ect‡ No of patients Response criteria IM dosage Association References

- 136 Australian MMR at 2 years <600 mg or ≥600 mg No [38]

rs2282143 - 132 English MMR 400 mg No [37]

- 62 Japanese MMR ≥400 and ≤300 mg No [26]

229 Canadian CyR and MR at 1, 1.5, 2, 

3, 4 and 5 years§

400, 600 or 800 mg No [25]

rs34130495 G1201A¥ - 132 English MMR 400 mg Higher MMR with GA 

genotypes

[37]

SLC22A1 - 136 Australian MMR at 2 years <600 mg or ≥600mg No [38]

rs622342 - 132 English MMR 400 mg No [37]

rs1867351 - 62 Japanese MMR ≥400 and ≤300 mg No [26]

229 Canadian CyR and MR at 1, 1.5, 2, 

3, 4 and 5 years§

400, 600 or 800 mg No [25]

rs683369 C480G - 62 Japanese MMR ≥400 and ≤300 mg No [26]

229 Canadian CyR and MR at 1, 1.5, 2, 

3, 4 and 5 years§

400, 600 or 800 mg Higher risk of loss 

of response and 

treatment failure with 

GG genotypes

[25]

rs628031 A1222G - 62 Japanese MMR ≥400 and ≤300 mg Higher MMR with GG 

genotypes

[26]

229 Canadian CyR and MR at 1, 1.5, 2, 

3, 4 and 5 years§

400, 600 or 800 mg No [25]

- 136 Australian MMR at 2 years <600 mg or ≥600mg No [38]

rs 72552763 - 136 Australian MMR at 2 years <600 mg or ≥600mg No [38]

SLCO1B3 rs4149117 - 62 Japanese MMR ≥400 and ≤300 mg No [26]

CYP3A5 rs776746 A6986G - 62 Japanese MMR ≥400 and ≤300 mg No [26]

229 Canadian CyR and MR at 1, 1.5, 2, 

3, 4 and 5 years§

400, 600 or 800 mg Lower MCyR and CCyR 

with AA genotypes

[25]

265 Indian Hematological response 

(HR)

400 mg Lower HR with GG 

genotypes

[41]

rs28383468 229 Canadian CyR and MR at 1, 1.5, 2, 

3, 4 and 5 years§

400, 600 or 800 mg No [25]

AGP rs3182041 229 Canadian CyR and MR at 1, 1.5, 2, 

3, 4 and 5 years§

400, 600 or 800 mg No [25]

*All patients were in chronic phase except for the study of Kim et al. [25], in which 203 patients were in chronic phase and 26 patients in accelerated phase or in 
blast crisis. †The base substitution and rs number taken from the National Centre for Biotechnology information SNP database [53] are indicated for polymorphisms 
positively associated with IM response. For the remaining SNPs for which no association was found, only the rs number is indicated. ‡Functional impact in vivo: 
association had been found between polymorphisms and transcript levels of candidate genes or with trough IM concentration. §CyR, cytogenetic response; MR, 
molecular response; the cumulative incidence of major cytogenetic response (MCyR), CCyR, MMR, complete molecular response (CMR), loss of response, treatment 
failure and overall survival was measured. ¶MMR in patients with CCyR. ¥Polymorphisms with demonstrated functional eff ect in vitro.
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mainly serum albumin and α1 acid glycoprotein (AGP). 

Removal of IM is mediated by the P glycoprotein (P-gp, 

also called ABCB1 or MDR1) and breast cancer resis-

tance protein (BCRP), and uptake is mediated by human 

organic cation transporter 1 (hOCT1). IM is mostly 

metabolized by the cytochrome P450 (CYP) proteins 

CYP3A4 and CYP3A5 [11]. Various studies have analyzed 

the polymorphisms in genes encoding these proteins in 

relation to IM pharmacokinetics and response, as 

detailed below and in Table 1.

Overview of pharmacogenetic studies

Pharmacokinetic determinants
Cancer cells have the ability to become resistant to 

multiple diff erent drugs known as the multi drug resis-

tance (MDR) phenomenon. Th is is due, among other 

mechanisms, to increased transport of drugs out of the 

cell. Mahon et al. [12] showed that IM is a substrate of 

P-gp and could thus be aff ected by MDR. Th is was 

confi rmed by the facts that CML patients who did not 

achieve a CCyR had higher levels of expression of ABCB1 

and that there was a correlation between BCR-ABL and 

ABCB1 transcript levels in these patients [13]. However, 

in GIST patients, the expression level of ABCB1 did not 

seem to impair the initial response to IM [14].

ABCB1 contains 28 exons and is located on chromo some 

7q21.1. Th e silent C3435T polymorphism (rs1045642) in 

exon 26 of ABCB1 was the fi rst poly morphism to be 

described; it was reported to modify P-gp expression [15] 

(Table 1). Decreased substrate specifi city, lower levels of 

intestinal P-gp and reduced levels of ABCB1 mRNA in 

3435TT individuals were reported [15-17]. Consistent 

with this, increased bioavailability of some P-gp sub-

strates has been observed to be associated with the 

3435TT genotype in several studies, although confl icting 

reports have subsequently appeared showing higher or 

no correlation with ABCB1 expression or P-gp activity 

[18]. Th e C3435T polymorphism is in linkage disequili-

brium with a silent C1236T polymorphism (rs1128503) 

in exon 12 and a non-synonymous substitution G2677T/A 

(rs2032582) in exon 21, which leads to an amino acid 

change of Ala893 to serine or threonine; this may also 

contribute to the observed functional eff ect of variation 

at the C3435T polymorphism or at associated haplotypes.

Gurney et al. [19] reported a higher IM clearance in 

CML and GIST patients with the TT genotype at each of 

three positions in the ABCB1 gene (positions 1236, 2677 

and 3435). Reduction in dose as a result of toxicity also 

tended to be less commonly needed in these individuals 

[19]. We and our colleagues [20] found a higher 

frequency of MMR in CML patients carrying the 1236T 

allele and in patients with non-G genotypes at position 

2677. However, we could not confi rm these results in a 

larger patient cohort [21]. Only in the subgroup of 

patients treated with both IM and cytarabine (also called 

AraC) was an association with the ABCB1 2677 poly-

morphism found, but, contrary to the initial fi nding [20], 

the presence of allele 2677G (GA or GG or GT) was 

associated with a higher rate of MMR [21]. Th is fi nding is 

surprising given that AraC is not a substrate of P-gp. Th e 

result is nevertheless similar to that reported by Deenik 

et al. [22], who observed a lower probability of cumulative 

MMR for CML patients who were homozygous for the 

ABCB1 alleles 3435T and 2677T, as well as for those 

having at least one 1236T allele. Finally, Ni et al. [23] 

reported a higher resistance rate in homozygous ABCB1 

1236T patients and in those with at least one 3435T 

allele, whereas better CCyR was observed for patients 

with the AG/AT/AA genotype at position 2677. Th ree 

other studies conducted with CML patients did not fi nd 

an association between ABCB1 polymorphisms and 

MMR [24-26].

BCRP, which, like P-gp, causes removal of IM, is 

encoded by the ABCG2 gene located on chromosome 

4q22. BCRP is expressed not only in hematopoietic stem 

cells but also in hepatic and intestinal epithelial cells, and 

this aff ects the bioavailability of IM [27]. Th e SNPs G34A 

(rs2231137), which substitutes a valine for a methionine, 

and C421A (rs2231142), which substitutes a glutamine 

for a lysine, are the most frequent non-synonymous poly-

morphisms in ABCG2 across various populations 

(Table  1) [28]. Experiments in vitro using various drug 

substrates showed that the Gln141Lys substitution aff ects 

the transport effi  ciency of BCRP and may result in altered 

pharmacokinetics and drug-resistance profi les [28]. 

Human embryonic kidney cells transfected with the 

141Lys variant of BCRP showed greater IM accumulation 

in vitro [29]. Consistent with this, a lower IM clearance 

and a higher dose-adjusted IM trough concentration 

were found in CML patients with the 141Lys variant 

[26,30], whereas the 141Gln variant reduced the response 

to IM [25]. In addition, the 34GG genotype was asso-

ciated with a lower frequency of cytogenetic response 

[25], although the functional eff ect of this variant is less 

clear. In contrast to the reports on CML, pharmacokinetic 

IM parameters were not signifi cantly diff erent across 

genotypes of Gln141Lys polymorphism in patients with 

GISTs and KIT-positive soft tissue sarcoma [29].

Th e hOCT1 protein, encoded by the solute carrier 

family 22 gene (SLC22A1) on chromosome 6q26 [31], 

may also aff ect the response to IM by regulating its 

uptake. CML patients with low hOCT1 activity showed 

lower probability of achieving MMR [32], whereas those 

with high baseline level showed better survival and 

higher probability of achieving a cytogenetic or molecular 

response [24,33,34]. Given the important predictive role 

of SLC22A1 expression, some investigators have focused 

on gene variations that may aff ect hOCT1 function 
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[35,36]. For example, the Arg61Cys, Cys88Arg and 

Gly401Ser amino acid replacements resulting from the 

corresponding genetic polymorphisms were shown to 

aff ect the transport of hOCT1 substrates [30]. Bazeos et 
al. [37] identifi ed an association between Gly401Ser sub-

sti tution (G1201A, rs34130495) and the transcription 

level of the SLC22A1 gene (Table 1). In addition, CML 

patients with the 1201GA genotype had higher proba-

bility of achieving MMR than patients with the 1201GG 

genotype. Th ese results, however, need to be confi rmed 

in a larger cohort given the low frequency of the A allele. 

Indeed, White et al. [38] were not able to replicate this 

fi nding. Kim et al. [25] showed instead that the SLC22A1 
C480G polymorphism (rs683369), which leads to 

Leu160Phe replacement, is associated with IM response 

in CML. Patients with the 480GG genotype showed a 

higher risk of treatment failure or loss of response than 

other genotypes. Finally, Takahashi et al. [26] showed 

that the SLC22A1 A1222G polymorphism (rs628031), 

which leads to Met408Val replacement, is associated with 

molecular response in the group of patients treated with 

IM doses lower than 400 mg. Patients with the 1222GG 

genotype showed a higher MMR rate.

Uptake of imatinib has also been described, in vitro, to 

be mediated to a modest extent by SLCO1B3, which 

encodes the organic anion-transporting polypeptide 1B3 

[39], but Takahashi et al. [26] did not fi nd any association 

with IM response (Table 1).

Metabolizing enzymes
Among CYP3A5 polymorphisms, the CYP3A5*3 allele 

is particularly interesting, as it appears with a 

suffi  ciently high frequency and has a clear functional 

role. Th e CYP3A5*3 allele is defi ned by the A6986G 

substitution (rs776746), which generates a cryptic splice 

site and the introduction of a premature stop codon 

[40]. Individuals who are homozygous for this allele 

have reduced CYP3A5 levels and reduced metabolic 

capacity. In the study of Kim et al. [25], the 6986AA 

genotype had an adverse impact on achievement of 

CCyR, whereas Takahashi et al. [26] did not fi nd an 

association between this allele and dose-adjusted IM 

trough concentration or clinical response (Table 1). In 

contrast, Sailaja et al. [41] found a higher frequency of 

the 6986GG genotype in CML patients with a minor or 

poor hematological response.

Binding proteins
Th e role of AGP in the mechanisms of IM resistance is 

not yet clear [42]. In GIST patients, an association was 

found between high plasma AGP levels and a lower 

clearance of IM and its metabolite [43]. Kim et al. [25] 

did not observe any association between AGP 

polymorphisms and IM response in CML patients.

Pharmacodynamic determinants
IM tyrosine kinase targets represent potential pharma co-

dynamic determinants. Any modifi cation in these targets 

could modulate the effi  cacy of IM and aff ect its 

mechanism of action.

Acquired point mutations in the tyrosine kinase 

domain of BCR-ABL are the most frequent mechanism 

of acquired resistance to IM in CML [44]. Th ese 

mutations should be distinguished from the poly-

morphisms in the ABL gene that could be responsible for 

primary resistance. However, their role is not yet clear. 

For example, the Lys247Arg amino acid replacement 

resulting from an adenine-to-guanine substitution does 

not seem to be functional [45]. Ernst et al. [46] found six 

diff erent polymorphisms in CML patients with failure of 

treatment or suboptimal IM response, but the clinical 

impact of these variations still needs to be investigated.

Approximately 95% of GIST patients express the 

receptor tyrosine kinase KIT and 86% of GISTs contain 

c-KIT activating mutations that lead to a ligand-

independent activation of the tyrosine kinase. Th ese 

somatic mutations mostly occur in the juxtamembrane 

domain (encoded by exon 11) and extracellular domains 

(exon 9). Th e target kinase mutations in exon 11 are asso-

ciated with a better overall partial response rate using 

standard Southwest oncology group response criteria [47].

Some GIST patients without c-KIT mutations show 

alterations in the juxtamembrane domain (encoded by 

exon 12) or activation loop domain (exon 18) of 

PDGFRA, with those with exon 18 mutations having a 

poor response to IM [47]. Resistance due to the somatic 

mutations in the tyrosine kinase domain of PDGFRA has 

also been described in a few cases of chronic eosinophilic 

leukemia [48]. IM-associated edema is believed to involve 

a disruption of PDGF signaling. Th e role of PDGFR 

polymorphisms in the risk of developing severe edema 

during IM treatment from CML was analyzed by Bruck 

et al. [49], but no signifi cant association was found.

Dressman et al. [50] analyzed the eff ect of 68 

polymorphisms in 26 genes on the cytogenetic response 

to IM. Th ey found a signifi cant association between the 

rs2290573 polymorphism located in an intron of a 

putative tyrosine kinase gene, DKFZP434C131, and the 

major cytogenetic response (MCyR) in a subset of IM-

treated patients. Patients homozygous for the C allele had 

a signifi cantly lower MCyR rate and a higher risk of 

disease progression than patients with other genotypes. 

It is unknown whether this polymorphism has a func-

tional eff ect or whether it is a genetic marker in linkage 

disequilibrium with another polymorphism that is 

functional.

A substantial proportion of patients with IM resistance 

do not have BCR-ABL tyrosine kinase domain mutations, 

suggesting the involvement of additional mechanisms in 
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IM resistance. Activation of other signaling pathways 

when IM blocks the BCR-ABL-mediated pathway might 

facilitate cell death avoidance in CML [51]. Recently, Kim 

et al. [51] analyzed a variety of polymorphisms in the 

genes of the apoptosis, angiogenesis, cell growth, Wilms 

tumor gene or interferon (IFN) signaling pathways in 

CML patients. An association obtained both in test and 

validation cohorts is particularly interesting. Th e CC 

genotype of the rs2069705 polymorphism in the IFNG 
(IFN-γ) gene was associated with a higher rate of 

molecular and cytogenetic response, suggesting a 

potential involvement of the IFN-γ signaling pathway in 

the mechanism of IM action in CML.

Clinical relevance of the pharmacogenetics of IM

Given that there is a large variability in response rate and 

IM systemic exposure following a standard drug dose, 

pharmacogenetic studies may provide insights into the 

role of genetic components in this variability. Focusing 

on a variety of genes whose products are essential for IM 

levels and action, these studies may identify potential 

pharmacokinetic and/or pharmacodynamic markers of 

IM response. Th ese markers, complementing existing 

ones such as drug plasma concentrations, could allow the 

prediction, for each individual, of a lack of effi  cacy or 

excess toxicity, leading fi rst to pharmacogenetically 

guided prospective clinical trials and ultimately to 

personalized treatment. Pharmacogenetic IM studies 

have been conducted so far mainly in patients diagnosed 

with CML or GIST, probably because of the higher 

incidence of these two diseases. Th e effi  cacy and toxicity 

of IM seem to depend on both IM pharmacokinetics, 

infl uenced by several enzymes and transporters, and IM 

pharmacodynamics, infl uenced by mutational status of 

the target. Several polymorphisms aff ecting the pharma-

co kinetic determinants of IM have been identifi ed. 

Nevertheless, the data are not yet suffi  ciently conclusive 

to translate into individual drug dose adjustment (several 

reasons for this are outlined below). Meanwhile, trough 

IM plasma levels could help physicians to defi ne the best 

IM dose [8]. In addition, the determination of hOCT1 

activity before initiation of IM therapy may also be 

helpful [38].

Concluding remarks

Despite several groups attempting to demonstrate the 

impact of candidate gene polymorphisms, confl icting 

results remain. Th ese discrepancies could be explained, 

at least in some cases, by diff erent response criteria, 

study sample size, IM dosage and treatment protocols. 

Most studies have focused on ABCB1 polymorphisms, 

and constitutive or compensatory changes in expression 

of other ABC transporters, or IM-induced changes in 

ABCB1 expression, may confound the observed results in 

these studies. Th e results are not always supported by the 

expected functional eff ect of a given polymorphism, and 

they still require replication. It will be necessary to target 

other genotypes beyond those already analyzed to more 

comprehensively estimate the eff ect of the genes from the 

analysis of both individual polymorphisms and 

haplotypes.

It seems clear that the eff ect of IM depends on several 

genes. An approach involving multiple candidate genes 

may thus give the benefi t of including the potential 

eff ects of gene-gene interactions, but this has not been 

much explored and usually requires larger studies. 

Further studies are clearly needed to elucidate the real 

impact of candidate gene polymorphisms on the IM 

response and to what extent the use of second generation 

tyrosine kinase inhibitors (nilotinib and dasatinib) may 

eventually overcome the resistance imposed by certain 

genetic variations.
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