
Biomarkers for personalized transplantation 
medicine
In 2010, 28,663 transplantations were performed in the 
United States. Currently, more than 100,000 US patients 
are waiting for an organ transplant, and each month 
approximately 4,000 patients are added (Organ Procure-
ment and Transplantation Network data as of April 
2011). A significant number of patients on the waiting list 
are added due to functional failure of a first transplant, 
reflecting our current inability to ensure long-term allo-
graft function and survival and representing a major 
problem in transplantation medicine.

�e major reason for late allograft loss is chronic 
allograft damage (CAD), seen as the progressive decline 
of graft function >1 year post-transplantation. �e under-

lying mechanisms of CAD are poorly understood and 
need to be unraveled if graft function and treatment are 
to be successful. �e definition of valid pre- and post-
transplantation biomarkers will facilitate personalized 
transplantation medicine, leading to long-term graft 
survival and decreasing numbers of patients on the 
waiting list.

Identification of biomarkers will aid the understanding 
of underlying mechanisms by indicating damage early 
post-transplantation when pathological changes are 
taking place at the molecular level. �is will enable us to 
better predict the likelihood of an individual’s allograft 
survival and assist the development of currently un-
available treatments for CAD. Biomarkers will also allow 
better matching of donor and recipient and the assess-
ment of an individual’s risk for graft injury. Current 
methods for diagnosing graft injury require invasive 
biopsies and detect pathological changes at advanced and 
often irreversible stages of allograft damage. �e use of 
more sensitive and specific methodologies based on 
donor and recipient genotyping, and transcriptional and 
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proteomic profiling to differentiate and detect early 
stages of organ injury would bridge this gap. This high­
lights the importance of -omics-based approaches for the 
improvement of transplant practice.

Nowadays, biomarker studies increasingly integrate 
information from multiple platforms, such as genotype 
analyses of single-nucleotide polymorphisms (SNPs), 
epigenetic studies and analyses of mRNA, microRNA 
(miRNA), as well as protein, peptide, antibody and 
metabolite profiling. High-throughput analyses are 
becoming more accessible, affordable and customizable, 
and rapid developments in analytical tools now allow 
integrated meta-analyses of different datasets across 
different experiments, platforms and technologies [1-4]. 
Functional biomarker studies require a discovery and 
several validation stages, including horizontal and 
vertical meta-analyses and prospective validation. By this 
means, several potential biomarkers have been identified. 
However, advances towards regulatory application, 
approval and clinical implementation have been slow and 
costly, partly because of the difficulties faced in externally 
and prospectively validating these biomarkers.

Here, we concentrate on recent advances made in 
transplantation biomarker medicine, focusing on the key 
stages of the biomarker development process. We high­
light both laboratory test-based and clinically applied 
pre- and post-transplantation genomic, transcriptomic 
and proteomic biomarkers of acute and chronic allograft 
injury and graft accommodation. We point out the 
advantages and pitfalls of trying to identify non-invasive 
blood-based biomarkers and present recent approaches 
to overcoming related obstacles. Finally, we critically 
discuss the current status of transplant biomarker 
research along the road to clinical application.

Identification of clinically relevant biomarkers
The number of biomarker studies performed so far with 
respect to solid organ transplantation exceeds 15,000, yet 
the number of resulting US Food and Drug Adminis­
tration (FDA) approved biomarker-based diagnostic tests 
in transplantation stands at two, one being a functional 
immune assay and the other a non-invasive test based on 
blood gene expression for predicting the absence of acute 
allograft rejection (AR) after heart transplantation [5]. 
Needless to say, the path from discovery and validation of 
a biomarker in the academic laboratory to its approval 
for the clinic is torturous. Well-thought-out validation 
and prospective feasibility studies are needed to move 
the biomarker discovery process towards FDA applica­
tion, approval and clinical implementation (Figure 1).

The initial key steps in biomarker development are the 
discovery phase and the validation phase. In the discovery 
phase, usually high-throughput technologies on multiple 
molecular platforms and subsequent biostatistical analyses 

identify a first biomarker panel, which often comprises 
several hundreds of candidates. The platforms and 
molecular techniques used in this phase, such as DNA, 
RNA, miRNA microarray or antigen-based proto-arrays, 
usually generate large quantities of data; these methodo­
logies have recently been reviewed by us in detail [6]. 
Mandatory data deposition in the public domain, such as 
into the Gene Expression Omnibus (GEO), increasingly 
allows the use of publicly available data for the biomarker 
discovery phase and the use of new patient samples for 
the validation phase. Pathway and network analyses 
enable integration of experimental data into biological 
and cellular contexts, and by studying cellular crosstalk 
and molecular interactions, pathological pathways can be 
better elucidated [1-4]. In the near future, data obtained 
by next-generation sequencing, copy number variation 
analyses and SNP arrays will be added.

The discovery phase is followed by one, or most 
frequently, two or three validation phases to increase 
sensitivity and specificity. The first validation phase 
analyzes the initial biomarker panel in independent 
samples, leading to a refined set often consisting of 50 to 
100 candidates. Meta-analyses improve the sensitivity 
and specificity of the initial candidate set, integrating 
results from different, often publicly available datasets. 
Horizontal approaches investigate the same molecular 
platform in different organs [7-10], and vertical meta-
analyses involve integration between different platforms, 
as in proteogenomic studies [11-13]. The advantages of 
meta-analyses are increased sample sizes and reduced 
experimental work, which help to increase the specificity 
and sensitivity of the initial biomarker. For example, a 
putative gene-based fingerprint in peripheral blood for 
kidney transplant tolerance was identified using this 
approach [14]. Information from the statistical analysis of 
microarrays (SAM) and predictive analysis of microarray 
(PAM) techniques identified an initial biomarker set, 
which was then cross-validated in independent samples 
and further refined in sample data from different 
microarray platforms [15].

However, the comparability of data from different 
laboratories has to be ensured and different laboratory 
procedures, inter-center variations and array perfor­
mance on different days and when performed by different 
people have to be corrected for. For this purpose, the 
microarray quality control (MAQC) studies [16,17] were 
initiated. These consisted of two phases aiming to provide 
quality control tools, develop data analysis guidelines and 
assess limitations and capabilities of various predictive 
biomarker models. As a result, common practices for the 
development and validation of microarray-based classifier 
models were defined and guidelines for global gene 
expression analysis established. A third phase is under­
way, focusing on next-generation sequencing techniques.
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After the initial validation and refinement, the bio-
marker panel needs to undergo prospective validation in 
the clinical setting to establish the sensitivity, specificity 
and negative and positive predictive values for clinical 
application. �e organizational challenges and expense of 
conducting prospective observational or interventional 
studies on biomarkers are reflected by the fact that, so far, 
only few studies have reached this status in the biomarker 
development process [5,18,19]. Increased numbers of 
patients and samples need to be investigated for a long 
period, often for a minimum of 2 years, before clinically 
relevant conclusions can be made. �ese studies require 
skilled staff and financial resources as well as sufficient 
laboratory infrastructure. Most importantly, the health 
and safety of patients and transplant organs remain the 

first priority, and prospective studies often carry 
unpredicted risks.

Identifying confounders
Another step towards confirming the clinical usefulness 
of a biomarker is to identify and control for experimental 
confounders. Confounders include sample bias, tech-
nology bias and patient bias. A peripheral blood-based 
transcriptomic biomarker has the advantage of being 
minimally invasive and assessable on a frequent basis at 
reduced cost and risk compared to biopsied samples. 
Importantly, a peripheral transcriptomic biomarker might 
also be measurable early, when no or minimal allograft 
damage has taken place. However, most cellular compo-
nents of peripheral blood respond quickly to exogenous 

Figure 1. Outline of the biomarker development process in the US from clinic to bench and back to clinic. As in drug development, the key 
phases are the discovery and validation phases, which involve complex FDA-regulated processes. (a) High-throughput, often in silico technologies 
are used to discover genomic, transcriptomic, proteomic or integrative investigational biomarkers, which are then (b) rede�ned in several validation 
phases using independent samples, technologies, and horizontal and vertical meta-analyses. (c) A clinically applicable biomarker assay based on 
good manufacturing practice (GMP) can be developed after prospective studies have con�rmed the investigational biomarker. The FDA has to 
approve clinical studies, and only after successful completion and additional FDA regulation can the biomarker be considered valid and (d) be 
implemented into the clinic.
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stimuli, such as temperature changes or shear force, 
inducing changes in gene expression ex vivo. In this 
regard, a hypoxia-associated gene expression signature 
was detected in peripheral blood mononuclear cells 
(PBMCs) after delayed sample processing compared to 
immediate sample processing [20].

Different laboratory techniques for sample allocation 
and handling make comparison of results difficult, or 
even lead to controversial results [21-27]. This aspect 
becomes particularly important in multi-center studies 
or when using publicly available data from independently 
performed studies. Therefore, safe, quick and easy hand­
ling during sample procurement must be ensured to 
minimize the overall impact of ex vivo changes to gene 
expression. Currently there are no uniform sample 
procurement guidelines. Several studies have been 
addressing this issue [20,28,29].

The complex composition of samples useable for non-
invasive tests, such as blood and urine, make the identifi­
cation of valid biomarkers difficult. For example, the 
abundant presence of globin mRNA as well as the hetero­
geneous nature of blood are important internal confound­
ing factors to be controlled for when trying to identify a 
blood-based biomarker. Globin mRNA leads to decreased 
percentage present calls, decreased call concordance and 
increased signal variation when analyzing whole-blood 
gene expression profiles by microarray. Debey et al. [30] 
presented a method of combined whole-blood RNA 
stabilization and globin mRNA reduction followed by 
genome-wide transcriptome analysis. We also reported 
[31] the interference of globin mRNA when using whole 
blood for the discovery of peripheral biomarkers of acute 
renal allograft rejection. A comparison of four different 
protocols for total RNA preparation, amplification and 
synthesis of complementary RNA or cDNA and array 
hybridization revealed that only a combination of globin 
mRNA reduction during handling together with a 
mathematical algorithm provided depletion of globin 
mRNA expression. This approach improved the detection 
of biological differences between blood samples collected 
from patients with biopsy-proven AR or stable graft 
function [31].

Another obstacle in identifying a blood-based biomarker 
is the heterogeneity of blood. A typical blood sample 
contains a large number of cell types, each with its own 
distinct expression profile [32]. Heterogeneity is further 
compounded by the frequency of the same cell type being 
different between individuals [33]. Consequently, a 
differential expression profile observed in whole blood 
between two phenotypes could be caused by either a 
change in frequency of a specific type of cell without a 
change in the expression profiles of each cell type or a 
change in the expression profile of a cell type while the 
frequency of the cell type remains constant. Although 

one way to address this issue is to isolate subsets of 
specific cell types (for example, using cytometry or laser 
capture microdissection) and profile them, such tech­
niques are expensive, time consuming and limited by 
difficulties in obtaining sufficient purified tissue with 
adequate RNA, and they may affect cell physiology and 
gene expression [20,34]. To address these challenges, we 
and others have proposed several statistical approaches 
to deconvoluting gene expression profiles from hetero­
geneous tissues [35-37]. Using a deconvolution approach, 
we showed [35] that although whole-blood expression 
profiles did not reveal differential expression between 
patients with AR and those with stable transplant func­
tion, cell-type-specific expression profiles estimated by 
deconvolution of microarray data identified dramatic 
changes in two cell types that would have otherwise been 
completely missed. Differentially expressed genes in AR 
and stable transplant patients at a false discovery rate of 
0.05 were identified between lymphocytes and neutro­
phils, as well as 137 upregulated genes in monocytes 
from the AR patients.

Laboratory test-based biomarkers in 
transplantation medicine
Currently, a match between the human leukocyte antigen 
(HLA) in the sera of the donor and the recipient is the 
best pre-transplant biomarker [38]. Yet even in the case 
of a total match, the risk of clinical or subclinical AR and 
or CAD cannot be excluded. Post-transplant biomarkers 
include functional parameters that are mainly measured 
at the protein level, such as serum creatinine. The current 
gold standard to differentially diagnose allograft 
pathologies is the histological assessment of invasive 
graft biopsies. The threshold indicating allograft damage 
by current post-transplant biomarkers is high and reached 
at a point when significant damage has already occurred 
(Figure 2). Therefore, biomarkers for predicting the risk of 
damage or for indicating preclinical damage at the 
molecular level are needed. Applications that require an 
invasive biopsy limit the clinical applicability of identified 
biomarkers, and functional monitoring assays that use 
non-invasive samples, such as peripheral blood or patient 
urine, are more favorable (for patients and economically).

Pre-transplantation biomarkers
Genomic analysis of donor and recipient peripheral 
blood DNA before transplantation has identified SNPs 
that indicate the risk or severity of allograft damage or 
predict allograft survival, and these markers are useful at 
the pre-transplantation stage [39]. Mutations in the innate 
immune system protein Toll-like receptor in donor and/or 
recipient blood were associated with reduced risk and 
severity of allograft rejection in liver, lung and kidney 
transplantation [40-45], and complement factor C3 
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mutations were predictive for renal allograft survival 
[46], further supporting the relevance of innate immunity 
for transplantation outcome. However, the success of 
SNP-based studies is often hindered by the need for large 
numbers of samples. Using samples across multiple 
centers might overcome this problem but results in inter-
center variation. This variation has been successfully over­
come by using statistical approaches, and a biomarker 
panel of ten SNPs for predicting AR was identified 
(Table  1a). Pre-transplantation transcriptome analyses 
have shown significant differences in C3 gene expression 
between living and deceased donors, and these 

differences were directly related to the length of cold 
ischemia. Cold ischemia during transplantation begins 
with the perfusion of the graft after procurement, which 
decreases the organ temperature due to the absence of 
blood supply and creates an environment of hypoxia. 
Cold ischemia for living donor transplantation was 
significantly shorter than that for deceased donor 
transplantation, and changes in C3 gene expression 
correlated with 2-year graft function [47].

More recently, the detection of novel antigens located 
in allograft tissue that drive allograft damage has been 
another means to predict AR before the development of 

Figure 2. Biomarkers in transplantation medicine. The application of biomarkers in transplantation medicine is very sensitive to time. Allograft 
damage progresses with time after transplantation, and the earlier allograft damage is detected, the better the chances for long-term allograft 
function become. Transplantation is the process that initiates the changes that lead to allograft damage. Post-transplantation biomarkers are 
dynamic, and the current post-transplantation biomarkers have a high threshold, allowing clinical diagnoses only long after transplantation 
damage, when changes are clinically and histologically manifested. Novel post-transplantation biomarkers require high sensitivity and a low 
threshold to indicate allograft damage pre-clinically; examples include non-invasive transcriptomic or proteomic biomarkers that will be applied 
to diagnose pathologies, to predict rejection, functional outcome, or the individual patient’s response to immunossupression. Other applications 
include targets for novel therapeutic interventions New pre-transplantation biomarkers are stable and are needed to indicate a patient’s baseline 
risk for damage or graft accommodation after transplantation. New pre-transplantation biomarkers are also needed to predict graft rejection and/or 
accommodation or the response to immunosuppression.
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corresponding antibodies in the serum. Integrative pro­
teogenomic analyses have identified tissue-specific novel 
non-HLAs that led to serological responses in renal 
transplant patients. Antibodies against MHC class I poly­
peptide related sequence A (MICA) in the recipients that 
recognized antigens specific to the renal pelvis and the 
renal cortex were identified [12]. The association of such 
novel non-HLA antigens with clinically relevant pheno­
types could identify specific immunogenic epitopes in 
AR and CAD [12,48-50].

Post-transplantation biomarkers
Transplantation initiates the processes responsible for 
AR and CAD (Figure 2). Biomarkers of different subtypes 
of rejection injury in the graft itself that indicate damage 

at the molecular level are needed and could help distin­
guish rejection episodes with high versus low probability 
of full functional recovery after anti-rejection therapy 
[51]. Similarly, biomarkers for graft accommodation 
could lead to reduction of immunosuppressive drugs or 
identification of novel drug targets.

Biomarkers of acute allograft rejection
Advances in immunosuppressive therapy and improved 
patient monitoring have decreased the incidence of AR in 
solid organ transplantation. However, the lack of non-
invasive biomarkers makes early diagnosis and optimized 
treatment regimens difficult, leading to approximately 10 
to 30% of all transplant patients being diagnosed and 
treated for AR episodes within the first year after 

Table 1. Laboratory-based biomarkers

	 Organ	 Sample	 Proposed mechanism	 Biomarker	 References

(a) Pre-transplantation biomarkers
Kidney, lung, liver Blood (DNA) Genetic variants in donor/recipient are associated 

with risk and severity of AR and with allograft 
survival

15 SNPs, TLR, C3 [39,40-
44,46]

Kidney Biopsy (mRNA) Expression profiles of innate immunity-related genes 
predict allograft survival

C3 [47]

Kidney Serum (protein); 
biopsy (mRNA)

Novel immunogenic epitopes Non-HLA antigens [12,48-50]

(b) Post-transplantation biomarkers: acute allograft rejection
Kidney Blood (PBMCs, 

mRNA), urine (mRNA)
Cytotoxic proteins indicate AR FasL, GranzymeB, Perforine [27,54,57-

58]
Kidney, lung, liver, 
heart

Blood (PBMCs), 
serum, BALF, urine 
(mRNA, protein)

Donor/recipient cytokine expression predicts/
detects AR 

CXCR, CXCL10 CXCL9 [59-63]

Kidney Biopsy, blood 
(PBMCs, mRNA)

Alterations in miRNA are associated with AR miR-142-5p, miR-155, miR-223 [64-67]

Kidney Biopsy Biomarkers for antibody-mediated rejection 
(diagnostic/predictive)

CD38, endothelial cell genes [70,71]

Kidney Biopsy, serum 
(protein)

Antibodies against novel non-HLA antigens 
(diagnostic/predictive)

AT1R-AA, MICA, Duffy, Kidd, Agrin [50,72-75]

Kidney, heart Biopsy, serum 
(mRNA, protein)

Integrative proteogenomic biomarkers predict and 
diagnose AR across organs

Novel non-HLA antigen PECAM1 [12,76]

Post-transplantation biomarkers: chronic allograft damage
Kidney Blood (mRNA), 

biopsy (mRNA), urine 
(mRNA)

Predictive peripheral genes and proteins for mild/
moderate chronic allograft damage and chronic 
antibody-mediated damage

TRIB1, CCL2 [13,77,82]

Kidney, heart Blood (protein), 
biopsy (mRNA), urine 
(protein)

Early diagnostic peripheral and urinary gene 
expression for IF/TA and anti-fibrotic target

KIM-1, CTGF [78,79,​
85,86]

Post-transplantation biomarkers: graft accommodation
Liver, kidney Blood (PBMCs, 

mRNA)
Peripheral gene expression identifies 
transplant recipients for discontinuation of 
immunosuppression 

(a) Three classifiers of 2,3 and 7 genes; 
(b) 33-gene panel;  
(c) 343 genes

[88,89]

Kidney Blood (mRNA) B-lymphocyte-related gene signature of tolerance in 
transplant patient PBMCs

(a) B-cell signature (IGKV1D-13, IGKV4‑1, 
IGLL1); (b) B-cell signature, ratio of 
FOXP3/α-1,2-mannosidase

[90,91]

AT1R-AA, agonistic antibodies against angiotensin type II receptor 1; BALF, bronchoalveolar fluid; CCL, CC chemokine ligand; FasL, Fas ligand; FOXP3, Forkhead box 
P3; IGKV, immunoglobulin kappa variable group; IGLL1, immunoglobulin lambda-like polypeptide 1; KIM-1, kidney injury molecule 1; TLR, Toll-like receptor; IF/TA, 
interstitial fibrosis/tubular atrophy.
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transplantation [52,53], on top of a high number of 
undetected subclinical episodes. AR represents a major 
risk factor for long-term allograft dysfunction.

Among the first non-invasive, gene-expression-based 
cellular AR biomarkers discovered were the lethal 
chemokine perforine, tumor necrosis factor α, transmem­
brane protein Fas ligand and the serine protease 
granzyme B, proteins involved in cytotoxic lymphocyte 
function [27,54] (Table 1a). Several whole-genome 
transcriptional studies using PBMCs or urine specimens 
from transplant patients showed that expression of these 
genes indicated cell-mediated AR. However, the results 
could not always be confirmed in gene expression studies 
using graft biopsies or geographically distinct sample 
sets. In addition, the differential expression of these 
potential markers in other renal diseases limited their 
feasibility as AR-specific biomarkers in kidney transplan­
tation [21-23,55]. Only urinary cell transcriptional levels 
of perforin, granzyme B [56] and granulysin [57] were 
found to be diagnostic of biopsy-proven cell-mediated 
AR in renal transplant patients [58].

Other extensively studied potential biomarkers across 
liver, lung, kidney and heart transplants include chemo­
kines and cytokines. These molecules lead to the differen­
tiation, migration and proliferation of immune cells 
during AR. In this regard, the chemokines CXCL9 and 
CXCL10 and the chemokine receptor CXCR3 have been 
identified as potential biomarkers to predict AR and can 
be assessed in transplant patient serum, peripheral blood, 
urine and bronchoalveolar fluid. Other studies revealed 
their potential as novel therapeutic targets [59-63]. How­
ever, none of them has yet reached clinical trial status, 
and the relevance of these molecules needs to be deter­
mined in large cohort studies.

Other gene-expression-based AR biomarkers of increas­
ing interest are miRNAs. These are small (about 19 to 25 
nucleotides), naturally occurring noncoding RNAs that 
primarily repress the translation of mRNA or lead to its 
degradation [64]. miRNAs are potential biomarkers in 
renal transplant patient biopsies and stimulated PBMCs 
[65]. miR-155 has been found to be overexpressed in 
PBMCs from AR patients [65] and to enhance the 
development of inflammatory T cells [66]. miRNAs can 
influence AR, CAD and induction of tolerance [67].

Proteomic approaches identified urinary protein and 
peptide biomarkers that can correlate with AR. These 
studies provided a powerful means to distinguish for the 
first time between AR and BK virus nephropathy, two 
conditions that seem very similar when biopsied yet 
require opposing management strategies. A non-invasive 
urine-based test to distinguish between these entities is a 
major advance for the renal transplant field, especially 
with the increasing incidence of BK virus infection in 
transplant recipients [68,69].

Antibody-mediated AR occurs in a minority of 
transplant patients and is characterized by the recipient’s 
B lymphocytes forming antibodies against donor anti­
gens. Current diagnosis is based on the presence of 
donor-specific antibodies in the periphery and on 
immunostaining for CD20 and peritubular deposition of 
complement-activated factor C4d. Recently, C4d-negative 
antibody-mediated AR episodes have been reported and 
asymptomatic episodes were associated with poor allo­
graft outcome. This potentially leads to higher numbers 
of actual antibody-mediated AR cases when assessed retro­
spectively, further strengthening the necessity for new 
biomarkers of rejection. Endothelial cell gene expression 
in kidney transplant biopsies has been positively asso­
ciated with the presence of antibody-mediated AR [70] 
and the presence of infiltrating clusters of CD38-positive 
plasmablasts, which correlated better with antibody-
mediated rejection than with intragraft C4d staining [71].

Antibody-based biomarkers have been identified by 
investigating non-HLA antigen responses after transplan­
tation, which have a greater role in allograft outcome 
than previously thought and thus represent novel diag­
nostic and predictive biomarkers. Of note are the agonistic 
antibodies against the angiotensin II type 1 receptor 
(AT1R-AA) described in renal allograft recipients with 
severe vascular types of AR [72]. Antagonistic antibodies 
against MICA, the chemokine receptor Duffy, Kidd 
polymorphic blood group antigens and the most abun­
dant heparin sulfate proteoglycan, Agrin, were associated 
with decreased allograft survival [50,73], chronic allograft 
damage [74] and the development of glomerulopathy [75].

In an integrative approach using transcriptomic and 
proteomic data, novel non-HLA antigens were identified 
as triggering de novo serological responses after trans­
plantation in renal transplant recipients [12]. Interest­
ingly, the antigens with the highest immunogenic power 
were located in the renal pelvis of the allograft. In another 
integrative study, genes coding for serum- and urine-
detectable proteins that were differentially expressed in 
renal and cardiac biopsies from AR patients were tested 
for their potential as diagnostic protein biomarkers in a 
cross-organ, cross-platform study. Upregulated platelet 
endothelial cell adhesion molecule 1 (PECAM1) in 
biopsies, serum and urine identified renal AR with 89% 
sensitivity and 75% specificity in a cross-organ study 
using publicly available microarray data [76].

Biomarkers for chronic allograft injury
In contrast to AR, chronic allograft injury is a slow 
progressive disorder involving complex multistage 
molecular processes, which can be seen from gradual, 
accumulative changes that lead to declining allograft 
function after 1 year post-transplantation and finally 
often result in allograft loss. These processes remain 
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poorly understood and studies are hampered by the slow 
rate of changes that only slowly reveal a measurable 
phenotype, and by increasing post-transplantation 
external biases introduced by immunosuppressive treat­
ment, associated side-effects, patient compliance, life­
styles and subclinical processes, often resulting in in­
conclusive findings. As a result, biomarkers, and 
especially non-invasive biomarkers specific for chronic 
allograft injury, are sparse, and extremely sensitive 
methods are needed to detect relevant changes before 
they accumulate and become clinically detectable.

Non-invasive markers of CAD, including urinary and 
peripheral biomarkers, could not only be readily 
identified and validated at numerous time-points but 
would also allow regular monitoring over a long period of 
time at low cost and would be associated with low patient 
risk. In an attempt to correlate blood expression signa­
tures with biopsy-proven chronic allograft damage, gene 
expression panels were identified that predicted mild and 
moderate/severe chronic allograft damage, and Tribbles-1 
(TRIB1) was identified to predict chronic antibody-
mediated rejection [13,77]. Well studied molecules in the 
pathogenesis of fibrosis, as seen in chronic allograft 
damage, are the transforming and connective tissue 
growth factors (transforming growth factor-β and 
connective tissue growth factor (CTGF)) [78,79]. CTGF 
was increased in transplant patient urine before histo­
pathological and functional chronic dysfunction, reveal­
ing it as a potential early non-invasive biomarker [80] and 
as a potential antifibrotic target [81]. Urinary expression 
of the chemokine CCL2 at 6 months post-transplantation 
predicted the development of chronic allograft dysfunc­
tion at 24 months post-transplantation in 111 patients 
[82]. Kidney injury molecule 1 (KIM1), previously dis­
covered as a proximal tubular biomarker of acute kidney 
injury [83,84], was associated with chronic allograft 
damage, including calcineurin inhibitor toxicity and inter­
stitial fibrosis/tubular atrophy [85,86]. However, KIM1 
expression also correlated with transplant-independent 
drug-induced nephrotoxicity [87] and renal cell carcinoma 
[84], revealing it as a marker of general renal injury [83].

Biomarkers for monitoring graft accommodation
Achieving an immunosuppression-free state, referred to 
as clinical operational tolerance, is the ultimate goal in 
transplantation. Current estimates report only 100 cases 
of clinical operational tolerance in renal transplants so 
far [88] and tolerance induction protocols, such as peri­
operative infusion of donor bone-marrow-derived stem 
cells or perioperative lymphocyte depletion, have failed 
and have led to graft loss in most cases. Specific 
biomarkers indicating immune quiescence and 
representing targets for novel tolerance induction 
protocols are needed. In a recent study [89], three 

gene-expression-based classifiers were identified, 
predicting liver tolerance and identifying liver transplant 
recipients for discontinuation of immunosuppression. 
Here, a combined approach of microarray discovery and 
quantitative reverse transcriptase (qRT)-PCR validation 
using PBMCs from a total of 44 tolerant and 48 non-
tolerant patients was used [89] to determine a first gene 
expression signature of renal allograft tolerance consist­
ing of 33 genes. This panel was able to predict the 
presence of a peripheral tolerant phenotype suggesting a 
pattern of reduced co-stimulatory signaling, immune 
quiescence, apoptosis and memory T cell responses [14].

Recently, two groups identified tolerance gene expres­
sion signatures in kidney transplant patients associated 
with B cells by applying the same microarray and qRT-
PCR approach [90,91]. Genes identified by Newell et al. 
[90] were associated with clinical and phenotypic para­
meters and with increased expression of multiple B-cell 
differentiation genes. The tolerance signature identified 
by Sagoo et al. [91] was also related to B cells, consisting 
of ten individual genes with a high ratio of the forkhead 
box protein FOXP3 to α-1,2-mannosidase. Tolerant 
patients showed an expansion of peripheral blood B and 
natural killer lymphocytes, fewer activated CD4+ T cells, 
a lack of donor-specific antibodies and donor-specific 
hyporesponsiveness of CD4+ T cells. Similar studies on 
operational tolerance have also been done in liver trans­
plant recipients [89]. Tolerance-associated gene-expression 
signatures seem to be promising, as validation studies 
have proven their relevance. Whether these signatures 
can be used to predict or monitor tolerance in transplant 
patients has to be assessed in prospective studies using 
larger numbers of patients, which will be difficult given 
the low incidence of tolerance.

FDA-approved biomarkers
A transcriptomic analysis of peripheral blood samples 
from heart allograft patients identified an 11-gene panel 
that discriminated patients with stable allograft function 
from patients with moderate or severe AR [92], which led 
to the development of the first FDA-approved non-
invasive diagnostic test for acute heart allograft rejection 
(AlloMap, XDx). Applying a mathematical algorithm, 
gene expression was translated into a diagnostic score 
[93] that discriminated stable transplants from AR and 
mild from severe AR. Another approach has exploited 
the measurement of the ATP release that depends on T-
cell stimulation (iATP) [94-96], hypothesizing that the 
activation status of T cells indicates patients at high risk 
of acute rejection or at high risk for over- or under-
immunosuppression. The iATP levels led to the develop­
ment of a therapeutic response assay, ImmuKnow (Cylex) 
[18,97-100] (Table  2). Nevertheless, a new set of bio­
markers is desperately needed to replace or complement 
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these tests in order to improve clinical practice with 
regard to the function of transplanted organs. This will be 
achieved only with a biomarker panel - gene- or protein-
based - that has high positive predictive value for injury 
(which is missing in the AlloMap panel) and has very 
high specificity and sensitivity for injury (which is 
missing in the Cylex test).

Conclusion}
The ultimate goal of biomarker studies in transplantation 
is to find non-invasive biomarkers of transplant patho­
logies using patient urine or blood that indicate changes 
at the molecular level, before the development of a 
clinical phenotype, that predict allograft outcome or 
response to therapy, and that possibly reveal novel targets 
for therapeutic interventions. As a result of the techno­
logical advances in high-throughput methodologies, 
multiple biomarker studies have been performed, leading 
to numerous potential biomarkers being published. 
However, only very few have graduated from the 
laboratory and gained FDA approval.

Laboratory-dependent confounding factors include 
differences in sample processing and data analyses, 
making comparability of data difficult. Regulatory elements 
and analytical guidelines, as suggested by the NIH or the 
MACQ studies, have been introduced to increase the 
validity and robustness of identified biomarkers and to 
make studies more homogenous. Sample-dependent 
confounding factors, such as the abundance of globin 
mRNA in whole blood, have been identified and success­
fully overcome, and advances in analytical methods now 
allow horizontal and vertical meta-analyses.

Promising non-invasive biomarkers for acute rejection 
and operational tolerance have therefore been identified 
and now need prospective validation in large patient 
cohorts. Multi-center studies have been introduced: the 
US ‘Clinical Trials in Organ Transplantation’ (CTOT and 
CTOTC), the Canadian ‘Biomarkers in Transplantation’ 
(BIT) project and the European study of ‘Reprogramming 
the Immune System for Establishment of Tolerance’ 
(RISET).

In addition, we have gained deeper knowledge about 
the underlying pathogenic mechanisms of AR and CAD. 
The detection of novel non-HLA antibodies, C4d-nega­
tive antibody-mediated rejection, and the role of the 
innate immune system in acute rejection, as seen in the 

relevance of complement-system-associated molecules, 
will further biomarker development.

As seen for drug development studies, biomarker 
development studies need to become more uniform and 
standardized. Standard operating procedures for sample 
handling, experimental procedures and performance of 
data analyses need to be introduced, in addition to 
requirements for sample sizes, number and kind of 
validation studies.

Once transferred to the clinic, these recent advances 
will eventually lead to personalized transplantation 
medicine, including improved donor-recipient matching, 
individual immunosuppressive regimens, and individual 
risk assessment for AR or CAD and prediction of graft 
accommodation. These improvements will undoubtedly 
reduce the costs of health care dramatically. Finally, these 
changes will be reflected by increased allograft survival 
and decreased patient morbidity.
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