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and predicting novel indirect associations.

to compare MeSHOPs of genes and diseases.

properties.

biomedical informatics.

Background: MEDLINE®/PubMed™ currently indexes over 18 million biomedical articles, providing unprecedented
opportunities and challenges for text analysis. Using Medical Subject Heading Over-representation Profiles
(MeSHOPs), an entity of interest can be robustly summarized, quantitatively identifying associated biomedical terms

Methods: A procedure is introduced for quantitative comparison of MeSHOPs derived from a group of MEDLINE®
articles for a biomedical topic (for example, articles for a specific gene or disease). Similarity scores are computed

Results: Similarity scores successfully infer novel associations between diseases and genes. The number of papers
addressing a gene or disease has a strong influence on predicted associations, revealing an important bias for
gene-disease relationship prediction. Predictions derived from comparisons of MeSHOPs achieves a mean 8% AUC
improvement in the identification of gene-disease relationships compared to gene-independent baseline

Conclusions: MeSHOP comparisons are demonstrated to provide predictive capacity for novel relationships
between genes and human diseases. We demonstrate the impact of literature bias on the performance of gene-
disease prediction methods. MeSHOPs provide a rich source of annotation to facilitate relationship discovery in

Background
A key focus of genomic medicine is the identification of
relationships between phenotype and genotype. Genome-
wide association studies and exome/genome sequencing
can reveal hundreds of candidate genes that may contri-
bute to human disease. Given such a set of candidate
genes, the prioritization of these genes for functional vali-
dation emerges as a key challenge in biomedical infor-
matics [1]. Much focus has been placed upon the
development of methods for the quantitative association
of genes with disease [2].

Across biomedical research fields, scientific publica-
tions are the currency of knowledge. One near-universal
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tool of life scientists to access this ‘bibliome’ is the
MEDLINE®"/PubMed® bibliographic database of the US
National Library of Medicine (NLM), an actively main-
tained central repository for biomedical literature refer-
ences [3]. As of 2010, over 18.5 million citations have
been indexed by MEDLINE®, at a modern rate exceed-
ing 600,000 articles per year. Researchers face increasing
difficulty navigating the growing body of published
information in search of novel hypotheses. Encapsulat-
ing the bibliome for a disease or gene of interest in a
form both understandable and informative is an increas-
ingly important challenge in biomedical informatics
[4,5].

MEDLINE® provides data structures and curated anno-
tations to assist scientists with the challenge of extracting
pertinent articles from the bibliome of a biomedical
entity. In an ongoing process, curators at the NLM iden-
tify key topics addressed in each publication and attach
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corresponding Medical Subject Headings (MeSH) [6]
terms as annotations to each publication’s record in
MEDLINE®, covering over 97% of all PubMed-indexed
citations. The National Center for Biotechnology Infor-
mation (NCBI) PubMed portal utilizes the annotated
MeSH terms to empower search of the citation database,
extending the reach of users beyond naive word match-
ing to topic matching. As one of the constellation of
NCBI resources, MEDLINE®/PubMed® citations are
further linked to gene entries in Entrez Gene where
appropriate, with over 450,000 MEDLINE®/PubMed®
citations linked to an Entrez Gene entry for a human
gene.

The analysis of gene annotation properties and gene-
related literature is a core challenge within computational
biology. Biomedical keywords for properties of genes,
drawn from structured vocabularies, have been identified
from unstructured gene annotations [7,8], as well as
directly from the primary literature [9-11]. Sets of genes
can be analyzed to extract common annotated biomedi-
cal properties[12]. Assigned descriptive terms can be
visualized as ‘tag clouds’ [13,14]. Comparison of gene
annotation profiles can group genes - expanding protein-
protein interaction and phenotype networks, deriving
regulatory networks and predicting other gene-gene rela-
tionships [15-20]. Annotation analysis enables prioritiza-
tion of candidate genes in genetics studies [10,21-23],
and, when integrated with other information sources,
predicts novel properties of genes [24,25]. Existing tools
and techniques demonstrate the value, and suggest a
high potential impact, of annotation analysis. Significant
research opportunities remain to improve annotation and
annotation-based analysis methods.

The development of computational disease information
resources has run parallel to the aforementioned gene-
based efforts. Controlled vocabularies for medical descrip-
tions [26,27] and disease-specific annotations [28,29] are
emerging to facilitate medical information systems. Analy-
sis of biomedical annotations associated with disease lit-
erature, as well as networks of gene-disease association,
have been constructed to investigate the common biologi-
cal aspects underlying diseases [9,30]. In tandem with the
curation of MEDLINE® by the NLM, a disease category of
the Medical Subject Headings has been developed over
50 years, providing an extensive inventory of medical dis-
orders. By 2011, 4,494 MeSH disease terms had been
established.

Key to accelerating the identification of gene-disease
relationships is the development of systematic approaches
to quantitatively represent bibliometric information and
infer functionally important relationships between entities.
We have previously introduced MeSH Over-representa-
tion Profiles (MeSHOPs) as a convenient tool for con-
structing quantitative annotations for sets of papers in
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MEDLINE® where each paper refers to the same entity
(such as a gene or a disease) [31]. To demonstrate the fide-
lity of the MeSHOP knowledge representation at measur-
ing features important for prediction, we generate the
MeSHOPs for human genes and diseases, and compare
these MeSHOPs to predict novel associations. Predictive
performance for gene-disease relationships is validated
against co-occurrence in future publications and curated
databases. Comparing MeSHOPs is demonstrated to be an
effective way to identify novel relationships between genes
and diseases.

Results

Generation of MeSHOPs

Disease and gene MeSHOPs provide a concise quantitative
representation of the biomedical knowledge associated
with an entity (Figure 1). For this study, two large classes
of entities were analyzed - the human genes in Entrez
Gene and the diseases specified formally within MeSH.
MeSHOPs were generated for the classes ‘disease’ and
‘human gene’ by assessing the set of all linked MED-
LINE®/PubMed® records for each entity.

All human genes present in Entrez Gene were consid-
ered (38,604 in Entrez Gene 2007). Two sources for gene-
article linkages from Entrez Gene were evaluated: Gene
Reference Into Function (GeneRIF) and gene2pubmed.
GeneRIF is a curated set of links from Entrez Gene to
MEDLINE®/PubMed" citations provided by annotators at
the NLM and supplemented by validated public submis-
sions that specifically refers to a described function of the
gene [32]. These allow us to generate profiles based on
articles highly relevant to the gene of interest, looking spe-
cifically at the subset of articles addressing the function of
the gene. gene2pubmed is a set of links to MEDLINE®/
PubMed” articles relating to the gene, generally broader
in scope than GeneRIFs, combining information from a
panel of public databases. Due to its more general nature,
gene2pubmed provides gene links for a larger proportion
of the human genes, and links more articles for each gene
as it is not limited to articles specifically addressing the
function of the gene. We use these two sets of links to
examine the effect of the quantity and specificity of gene-
associated literature on prediction performance. GeneRIFs
link 11,750 human genes to 142,396 articles. gene2pubmed
links 26,510 human genes to 226,615 articles. The two
MeSHOP gene article linkage collections are both used in
the subsequently described validation.

Disease MeSHOPs were generated directly from MED-
LINE® via the curator-assigned MeSH disease terms. To
generate MeSHOPs for diseases, all terms from the dis-
ease category - MeSH category C [33] - were used; a set
composed of 4,229 unique terms in MeSH 2007 linking
to over 8 million articles (of 16 million MEDLINE®/
PubMed® articles).
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Figure 1 Comparing gene and disease MeSHOPs. A graphical representation of the comparison of the MeSHOPs for the human gene PAX6
and the disease aniridia. The most strongly associated terms for each profile are presented as a word cloud, scaling the size of each term with
the degree of association. Blue lines link shared terms between the profiles - the similarity scores quantitatively evaluate the difference between

the profiles by comparing all shared terms between profiles.

Quantitative comparison of gene and disease MeSHOPs
for prediction of future co-occurrence in research
publications
We hypothesize that a disease is likely to be associated
with a gene if the disease MeSHOP is highly similar,
under a quantitative profile comparison metric, to the
gene MeSHOP. For example, a disease with a functional
relationship to a gene may share MeSH terms between
profiles, such as localization, metabolic pathways, cellular
processes and symptoms, even if no links between the
gene and the disease have been previously reported in the
literature. When many biomedical terms are common
between two profiles, the likelihood for a future associa-
tion between the entities profiled is expected to increase.
Gene-disease relationship predictions using MeSHOPs
from 2007 are validated here against gene-disease co-
occurrences that appear in subsequent MEDLINE® (that
is, using data not represented in the MeSHOPs). A vali-
dated prediction means one or more articles referring to
both the gene and the disease was published during a sub-
sequent time period as reported in a future MEDLINE®
release (2009 or 2010). Two overlapping validation sets
(2007 to 2009 and 2007 to 2010) were extracted: (i) 95,845
novel gene-disease co-occurrences for gene-article map-
pings from gene2pubmed for 2007 to 2009; (ii) 183,407

novel gene-disease co-occurrences for mappings from gen-
e2pubmed for 2007 to 2010; (iii) 95,085 novel gene-disease
co-occurrences for gene-article mappings from GeneRIF
for 2007 to 2009; and (iv) 169,723 novel gene-disease co-
occurrences for mappings from GeneRIF for 2007 to 2010.
This approach is similar to the validation scheme pre-
sented in [34].

Using these validation sets, we evaluate scoring meth-
ods by computing the receiver operating characteristic
(ROC) curve for predictions from analysis of the baseline
2007 data and reporting the area under the ROC curve
(AUC). MeSHOP comparisons are defined as predictions
of future disease-gene co-occurrence if a similarity score
exceeds an applied threshold. To calculate the ROC
curve, we classify the novel gene-disease co-occurrences
appearing in the future gene MeSHODPs as ‘true positives’,
and all other gene-disease pairings as ‘true negatives’, and
for each possible threshold, we measure the sensitivity
and the false positive rate. An ideal prediction method
will produce an AUC score of 1, while random predic-
tions are expected to generate an AUC score of 0.5.

Gene and disease predictive bibliometric baselines
There is little quantitative information about baseline
performance against which to compare gene-disease
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association prediction methods. Intrinsic characteristics
of genes (for example, Entrez Gene identification num-
ber) were assessed for capacity to predict future gene-
disease term co-occurrence. For these controls, scores
were obtained for quantitative characteristics of each
gene. The scores represent gene-specific properties and
do not account for disease properties; gene rankings are
therefore the same for each disease in this baseline
assessment. Likewise for the one examined intrinsic dis-
ease characteristic (number of MeSH terms), the dis-
eases are ranked without regard to any specific gene.
Using these baseline rankings, the AUC score was calcu-
lated for each indicated characteristic (Figure 2). Gene-
specific characteristics evaluated were: percentage of
G/C mononucleotide content of the primary RefSeq
transcript, total number of associated cDNA sequences
reported in Entrez Gene, RefSeq transcript length, geno-
mic length (from the annotated Ensembl gene/transcript
start to end) and the Entrez Gene identification (ID)
numbers. GC content, number of transcripts, transcript
length and genomic length produced random AUC
scores (approximately 0.5; Table 1).

Strikingly, Entrez Gene ID is predictive of a gene’s like-
lihood to be linked to disease, with genes having lower
Entrez Gene IDs more likely to co-occur with a disease
in future publications (AUC ranging from 0.64 to 0.78).
Entrez Gene IDs reflect no direct biological feature of the
gene itself, but are sequentially assigned as genes are

ROC Curves Comparing Gene Literature Statistics
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Figure 2 Comparison of performance of gene characteristics.
ROC curves are shown comparing predictive gene characteristics.
Characteristics are computed from a 2007 Entrez Gene dataset and
the MEDLINE® Baseline 2007, predicting against all new disease
terms associated to gene MeSHOPs between February 2007 and
April 2010.
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added to the database, indirectly measuring the length of
time the gene has been studied. Therefore, the publica-
tion date of the oldest publication, estimating the length
of publication history, and the number of publications,
estimating the breadth of publication history, were exam-
ined for each gene using the Entrez Gene Feb 2007 data-
set (Table 2). The AUC for the oldest publication for
each gene exhibits higher predictive performance than
the Entrez Gene ID number (AUC of 0.66 to 0.80), and
the AUC for the number of publications is the highest of
all gene-related characteristics observed (AUC of 0.73 to
0.85). Correlation of Entrez Gene ID to a richer and
older publication history was reported by Leong and
Kipling [35]. As the number of publications for a gene is
correlated to the number of MeSH terms in the corre-
sponding gene MeSHOP, it is not surprising that
high AUC scores were obtained for MeSH term counts
(Table 2; Figure 2).

As observed for gene-only score ranking, disease-only
score rankings are non-random. The MeSH term counts
for the disease MeSHOPs were predictive for future
gene-disease co-occurrence in the literature (AUC from
0.76 to 0.90; Table 2; Figure 2). Across both gene and
disease entities and across all validation sets, an entity
that is highly annotated is substantially more likely to
co-occur with another entity in future publications.

MeSHOP similarity measures

Quantitative comparison of gene and disease MeSHOPs
improves prediction of future gene-disease co-occurrence
over the baseline values established above. Sixteen dis-
tinct similarity measures were evaluated using AUC
scores, from counting measures such as term overlap and
term coverage to calculated measures such as Euclidean
(L) and cosine distance of P-value profiles (Table 3).
The scores evaluate the shared characteristics from both
the gene and the disease MeSHOPs to make predictions.
Three previously assessed baselines are presented for
comparison: Entrez Gene ID, the number of terms in the
gene MeSHOP, and the number of terms in the disease
MeSHOP.

The MeSHOP prediction scores produced AUC ran-
ging from random at 0.51 to a nearly optimal AUC of
0.99, depending on the measure and the validation set
(see Tables 4 and 5 for the AUC results of each score
under each validation set). Each individual score was
consistent across multiple validation sets and the Gen-
eRIF or gene2pubmed article links, with the relative rank
of the scores remaining nearly identical.

Although scores such as Term Overlap and Term
Coverage (mean AUC of 0.87) have high scores com-
pared to random, these are only on par with the best
baseline scores (Table 6). The most effective similarity
score is the L, of log-p of overlapping terms only:
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Table 1 Performance of gene characteristics at predicting association with disease
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gene2pubmed GeneRIF
Scoring Validation (02/ Validation (02/ CTD validation Validation (02/ Validation (02/ CTD validation
method 2007-01/2009) 2007-04/2010) (11/2008) 2007-01/2009) 2007-04/2010) (11/2008)
Percentage GC 0.50 0.50 0.51 0.50 0.50 0.51
content
Number of 053 053 0.55 051 051 0.53
transcripts
Transcript length 0.51 0.52 0.50 0.52 0.52 0.53
Genomic length 0.52 0.52 0.50 0.51 051 0.52
Gene ID 0.73 0.71 0.78 0.64 0.63 0.69

Characteristics were compared against the 02/2007-11/2008 validation sets using gene2pubmed and GeneRIF gene references, as well as the 11/2008
Comparative Toxicogenomics Database (CTD) validation set. Gene characteristics were extracted from EnsEMBL. We compare the performance of these
characteristics at predicting new gene-disease relationships in our validation sets (for the genes with mapped characteristics).

3" (log (g() — log (d(1))°

ie(GND)

where, G and D refer to the MeSH terms of gene and
disease MeSHOPs, respectively, and g,(i) and d,(i) refer
to the P-value for the MeSH term i of the gene or disease
profile, respectively), which generates a mean AUC of
0.94 (Table 6; Figure 3). Although bibliometric baseline
scores - number of article links for a gene, number of
MeSH terms in the gene MeSHOP and number of terms
in the disease MeSHOP - are predictive of a future paper
that refers to the gene and a disease, a distinct improve-
ment in prediction is achieved by comparing gene and
disease MeSHOPs using this L, score, which will be used
for MeSHOP comparisons going forward.

Alternative validation methods

As an alternative assessment to AUC scores, one can
test assess a score’s ability to correctly rank a list of can-
didate genes. For a particular disease and validation set,
a list of n genes (for example, n = 200 genes) is con-
structed - one random disease-associated gene and n - 1
random non-associated genes. The list of genes is
ranked by the comparison score, and the test repeated.

In the case of a perfect metric, the mean test rank for
the positive would be 1, and in the case of completely
random predictions, the mean rank would be n/2. For
test lists of 200 candidate genes, the top four MeSHOP
comparison scores have mean test ranks from 12 to 20,
nearly all ranking on average within the top 10% of the
list. To compare, the mean test rank for scoring by the
number of gene MeSH terms is 39 and scoring using
Gene ID is 59 (Table 6).

Another alternative metric is the mean average preci-
sion (MAP). Consistent with the other metrics, the most
effective MeSHOP comparison score achieves a MAP of
0.94, with the number of disease terms and the number
of gene terms achieving MAP of 0.89 and 0.79, respec-
tively (Table 7).

Predicting association to disease

Co-occurrence of gene and disease references in the
same article does not confirm a functional relationship
between the gene and the disease. Such co-occurrence
could be observed for studies in which a gene-disease
relationship is evaluated and found to be false or not
significant, could arise from the gene and the disease
appearing in separate sections, or could indicate a nega-
tive association between the gene and the disease. To

Table 2 Comparison of the performance of Entrez Gene ID to gene-related literature measuresin MEDLINE®

gene2pubmed GeneRIF

Feature Validation AUC (02/ Validation AUC (02/ CTD validation Validation AUC (02/ Validation AUC (02/ CTD validation

2007-01/2009) 2007-04/2010) (11/2008) 2007-01/2008) 2007-04/2010) (11/2008)
Number of 0.74 0.73 0.81 0.80 0.85 0.82
MeSH terms
Number of 0.75 0.73 0.80 0.80 0.85 0.82
publications
Oldest 0.67 0.66 0.73 0.73 0.76 0.73
publication
(year)
Gene ID 0.64 0.64 0.66 0.69 0.75 0.73

The oldest publication for a gene has comparable performance to Entrez Gene ID, as measured by the AUC; however, the number of publications for a gene

proves to be even more predictive than the Entrez Gene ID.
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Table 3 Explanation of the scoring functions evaluated
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Scoring method Description

Cosine distance of term frequency-inverse document frequency Z (gl(])dl(]))/ Z (gi(j))2 Z (di(j))z
jeM jeM jeM

Cosine distance of P-values Z (gp(i)dp(i))/ Z (gp(i))z Z (dp(i))2
ieM ieM ieM

Cosine distance of term fractions Z (gf(i)df(i))/ Z (gf(i))2 Z (df(i))2
ieM ieM ieM

Sum of the log of combined P-values

Sum of the differences of log P-values

L, of log-p of overlapping terms only

L, of term fractions of overlapping terms only

L, of log of P-values

L, of P-values

L, of term fractions

L, of term frequency

Term coverage

Term overlap

Number of gene MeSH terms
Number of disease MeSH terms
Gene ID

" log (85(1) + dp(i) — 85 (i)dp(1))

ieM
ZM: 8 <§ZE3>' ) XM: [10g (3(7)) — log (&, ()]
> (log(g(1) — log (dy(1)))*
ie(GND)
> (gr) — i)’
i€(GND)

&Y\ o .
g(hg(d,,m)) i ;M(log@p(l)) log (dy(1)))
3 (85(0) — do(i)?
ieM
> (g(0) - d (i)’
ieM
> (8(0) —d(i))’
ieM

|GuD|
|GnD|
d
o

Entrez Gene ID of the gene

M refers to the set of all MeSH terms, G and D to the MeSH terms for the gene and disease profile, respectively. g(i), gdi), g,(i) and gi(i) refer to the frequency,
term fraction, hypergeometric P-value and term frequency-inverse document frequency for the MeSH term i of the gene profile. d(i), ddi), d,(i) and dj(i) refer to
the frequency, term fraction, hypergeometric P-value and term frequency-inverse document frequency for the MeSH term i of the disease profile.

address this limitation of co-occurrence analysis, the
predictive capacity of MeSHOP comparison is evaluated
against curated gene-disease relationships from the
Comparative Toxicogenomics Database (CTD) [36,37].
Relationships for genes identified as biomarkers, thera-
peutic targets in treatment or playing a role in the etiol-
ogy of the disease are extracted from published
literature and the Online Mendelian Inheritance in Man
(OMIM) database by CTD curators, and the OMIM-
derived diseases are mapped onto corresponding MeSH
disease terms [38]. These relationships are taken as the

positive associations for ROC curve analysis to assess
the MeSHOP predictions.

Performance of the MeSHOP scores on the CTD vali-
dation sets are consistent with the performance seen
when inferring novel disease terms for gene profiles -
bibliometric baselines exhibiting up to AUC 0.85 while
the best MeSHOP similarity scores achieve AUC over
0.9 (Table 2; Figures 3 and 4). Results confirm the effec-
tiveness of MeSHOP comparison to recover bona fide
gene-disease relationships. AUC shift by less than 0.08
when compared to the updated CTD April 2010 gene-
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Table 4 Performance using GeneRIF as the gene-literature data source sets
Scoring method Novel MEDLINE Novel MEDLINE  Pre-existing CTD Novel CTD Pre-existing Mean Rank
validation AUC (02/ validation AUC (02/ validation AUC validation AUC MEDLINE AUC
2007-01/2009) 2007-04/2010) (11/2008) (11/2008-04/ validation AUC
2010) (02/2007)
Cosine distance of term 0.90 0.89 093 091 0.98 092 2
frequency-inverse
document frequency
Cosine distance of P- 056 057 060 056 053 056 15
values
Cosine distance of term 0.86 0.84 0.91 0.88 0.96 0.89 4
fractions
Sum of the log of 0.86 0.85 0.92 0.90 0.94 0.90 3
combined P-values
Sum of the differences 091 091 0.77 083 093 087 6
of log P-values
L, of log-p of 0.94 0.93 091 0.92 0.98 0.94 1
overlapping terms only
L, of term fractions of 0.56 0.55 0.55 0.56 0.51 0.55 16
overlapping terms only
L, of log of P-values 0.90 0.90 0.76 0.83 093 0.86 9
L, of P-values 0.90 0.90 0.76 0.81 0.92 0.86 1
L, of term fractions 0.86 0.85 0.89 0.88 0.94 0.88 5
L, of term frequency 0.90 0.90 0.76 083 093 0.86 10
Term coverage 091 0.90 0.77 0.83 093 0.87 7
Term overlap 0.82 0.82 0.86 0.86 0.87 0.85 12
Number of gene MeSH 0.74 0.73 0.80 0.80 0.81 0.78 13
terms
Number of disease 0.90 0.90 0.77 0.83 093 087 8
MeSH terms
Gene ID 0.64 0.64 0.69 0.69 0.66 0.66 14

AUC of the described scoring methods were compared and tested on the validation. CTD, Comparative Toxicogenomics Database.

disease relationship data (Tables 4 and 5). Similarly,
when validating the prediction of new CTD relation-
ships under the MAP metric, the strongest performing
comparison score achieves MAP of 0.94, while the num-
ber of gene terms and the number of disease term bib-
liometric baselines achieve MAP of 0.88 and 0.78,
respectively (Table 7).

Comparative assessment of predictions with a literature-
based system: candidate genes for Alzheimer disease

To place MeSHOP comparisons in relationship to a top
literature-based candidate gene prediction tool, we evalu-
ated predictions for Alzheimer disease (AD)-gene rela-
tionships by MeSHOP comparison and a leading tool.
We identified the top 500 gene candidates (top 3% of
genes) for AD identified by MeSHOP comparison and by
the Génie system [39], plotting the relationships between
the ranks in Figure 5. Génie trains a naive linear Bayesian
classifier based on the articles for the disease topic, then
uses this classifier to rank the genes based on the articles
associated with a gene and its homologs. The top 50 can-
didate genes are most strongly correlated, overlapping for
32 of the genes (see Table 8 for the top 50 candidate

genes). Within Table 8, the gene candidates previously
investigated in the context of AD are indicated (46 of 50
genes) with the number of articles in gene2pubmed for
which both the gene and the AD MeSH term are
attached. For Génie, 48 of the top 50 candidates co-occur
with the AD MeSH term (not shown); a 49th gene -
Notch3 - co-occurs with AD in two abstracts (and thus
was detected as direct associations by Genie) but these
papers were not curated in the gene2pubmed or GeneRIF
sets as Notch3-focused articles. MeSHOP comparison
ranked Notch3 in the top 100 candidates for AD, despite
the lack of curated co-occurrence. Both systems provide
highly relevant lists of genes, with MeSHOP analysis
reporting more novel candidates in this particular case
study. Focusing on these novel genes with no pre-existing
links in the literature, the two methods both implicate
the HTT gene, which is known to be the causative gene
for the neurodegenerative disorder Huntington disease,
MeSHOP comparison ranks the XRCC3 gene highly, a
DNA repair gene that could be involved in apoptosis and
neuronal cell death (both of which are mechanisms asso-
ciated with AD in the literature). The most striking can-
didates identified may be the F2 and the F5 genes, which
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Table 5 Performance using gene2pubmed as the gene-literature data source

Scoring method Novel MEDLINE Novel MEDLINE  Pre-existing CTD Novel CTD Pre-existing Mean Rank
validation AUC (02/ validation AUC (02/ validation AUC validation AUC MEDLINE AUC
2007-01/2009) 2007-04/2010) (11/2008) (11/2008-04/ validation AUC
2010) (02/2007)
Cosine distance of term 092 091 0.95 093 0.98 094 2

frequency-inverse
document frequency

Cosine distance of P- 0.53 0.51 0.65 0.63 0.53 0.57 16
values

Cosine distance of term 0.90 0.89 0.93 091 0.96 0.92 5

fractions

Sum of the log of 091 0.89 094 094 0.94 092 3
combined P-values

Sum of the differences 091 091 0.77 083 093 087 7
of log P-values

L, of log-p of 0.96 0.95 092 094 0.99 0.95 1

overlapping terms only

L, of term fractions of 0.64 062 0.57 0.60 0.53 0.59 15
overlapping terms only

L, of log of P-values 0.90 0.90 0.76 0.83 093 0.86 10
L, of P-values 0.89 0.89 0.75 0.81 092 0.86 12
L, of term fractions 092 0.90 091 092 0.95 092 4
L, of term frequency 0.90 0.90 0.76 0.82 093 0.86 11
Term coverage 0.90 091 0.77 0.83 093 0.87 8
Term overlap 091 0.89 0.90 092 0.90 0.90 6
Number of gene MeSH 0.85 0.82 0.85 0.88 0.83 0.85 13
terms

Number of disease 0.90 0.90 0.76 0.83 093 0.86 9
MeSH terms

Gene ID 0.75 0.73 0.78 0.79 0.74 0.76 14

AUC of the described scoring methods were compared and tested on the validation sets. CTD, Comparative Toxicogenomics Database.

Table 6 Summary of MeSHOP performance

Scoring method Mean AUC AUC standard error Mean test rank (n = 200) Overall rank
Cosine distance of term frequency-inverse document frequency 093 0.03 15.03 2
Cosine distance of P-values 0.57 0.05 87.25 16
Cosine distance of term fractions 0.90 0.04 2021 4
Sum of the log of combined P-values 091 0.03 18.88 3
Sum of the differences of log P-values 0.87 0.06 2697 7
L, of log-p of overlapping terms only 0.94 0.03 12.06 1
L, of term fractions of overlapping terms only 0.57 0.04 86.70 15
L, of log of P-values 0.86 0.07 28.05 10
L, of P-values 0.86 0.07 29.62 12
L, of term fractions 0.90 0.03 20.39 5
L, of term frequency 0.86 0.06 2831 11
Term coverage 0.87 0.06 27.14 8
Term overlap 0.87 0.03 26.17 6
Number of gene MeSH terms 0.81 0.05 38.69 13
Number of disease MeSH terms 0.86 0.06 27.87 9
Gene ID 0.71 0.06 58.78 14

The AUC mean, standard deviation and ranking for the MeSHOP scores and the gene and disease baselines are described, over all validation sets and both
GeneRIF and gene2pubmed reference sets.
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ROC Curves Comparing Best Me SHOP Prediction to Baselines
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Figure 3 Comparing the performance of similarity scores to
gene characteristics. ROC curves for the L, of log-p of overlapping
terms gene-disease profile comparison score, compared against
curves for Gene ID, the number of terms in the gene MeSHOP and
the number of terms in the disease MeSHOP.

are involved in the blood coagulation pathway. The
widely studied AD-related beta-amyloid protein has been
shown to interact with fibrinogen, linking abnormalities
in coagulation to the pathology of AD in recent papers
[40,41].

Table 7 Mean average precision MeSHOP performance

ROC Curves For Top 5§ MeSHOP Scores
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Figure 4 Comparing the performance of similarity scores. ROC
curves are shown with AUC, computed for the top five similarity
metrics and the disease number of MeSH terms baseline. These
scores demonstrate predictions of gene-disease relationships using
February 2007 data validated against the Comparative

Toxicogenomics Database (11/2008) dataset.

Applied analyses for prediction of gene-disease
relationships

In the following sections MeSHOP gene-disease compar-
isons are performed for three distinct diseases: diabetes,
pancreatic cancer and breast cancer. In each case,

Scoring method Novel MEDLINE validation MAP (02/ Rank Novel CTD validation AUC (11/ Rank
2007-04/2010) 2008-04/2010)
Cosine distance of term frequency-inverse 087 " 0.92 4
document frequency
Cosine distance of P-values 0.55 15 0.66 15
Cosine distance of term fractions 087 12 0.90 6
Sum of the log of combined P-values 0.88 9 0.94 2
Sum of the differences of log P-values 0.90 3 0.79 9
L, of log-p of overlapping terms only 094 1 095 1
L, of term fractions of overlapping terms only 0.54 16 0.52 16
L, of log of P-values 0.89 7 0.78 13
L, of P-values 0.89 5 0.79 8
L, of term fractions 0.90 2 0.92 5
L, of term frequency 0.89 8 0.79 10
Term coverage 0.90 4 0.79 11
Term overlap 0.88 10 093 3
Number of gene MeSH terms 0.81 13 0.88 7
Number of disease MeSH terms 0.89 6 0.78 12
Gene ID 0.69 14 0.74 14

The mean average precision for the novel MEDLINE relationships (02/2007 to 04/2010) and the novel CTD relationships (11/2008 to 04/2010). In each trial, 100
positive relationships and 100 negative relationships were chosen uniformly at random, and the average precision was computed for each scoring method. The
mean average precision presented here is calculated over 100 random trials for each validation set.
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Alzheimer Disease Gene Ranks for Génie and
MeSHOP Similarity Predictions
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Figure 5 Comparison of the top 500 gene predictions for Alzheimer disease from Génie and MeSHOP similarity. The 215 genes ranked
in the top 500 gene predictions for both Génie and MeSHOP Similarity are compared, showing a correlation of 0.38. Of the genes ranked in the
top 500 by Génie, 79 did not have MeSHOPs and therefore did not have a computed MeSHOP similarity score to rank.

available knowledge about gene-disease relationships is
identified and compared to MeSHOP comparison results.
For each case, we report how many of the known genes
are present in the top 500 genes (top 3%), a number
selected to be suitable for manual review of results by
users.

To further depict the utility of the MeSHOP comparison
method, we illustrate the application of MeSHOP compar-
isons to predict gene-disease pairs arising in a genome-
wide association study (GWAS) of diabetes. In 2007, Sla-
dek et al. [42] reported a GWAS identifying eight novel
risk loci for type 2 diabetes in a French cohort. Comparing
the reported genes to the MeSHOP profiles (Table 9),
TCF7L2 (Entrez Gene ID 6934) already had eight articles
linking it to type 2 diabetes and hence a significant asso-
ciation was detected (corrected P = 0.018/raw P = 1.3e-7).
As well, IDE (Entrez Gene ID 3416) had a weaker estab-
lished link in four articles (corrected P = 0.50/raw P =
3.15e-6). No other genes emerging from the report had an
established relationship to type 2 diabetes, and all six fell
below the top 500 MeSHOP candidates. The gene HHEX
(Entrez Gene 3087), which was supported by results from
a subsequent diabetes study (Diabetes Genetics Initiative
of Broad Institute of Harvard and MIT, 2007), was
the fourth highest ranking of the eight GWAS candidates.
The results indicate the potential utility for MeSHOP
comparisons to aide in the interpretation of GWAS
results. The absence of a high ranking MeSHOP compari-
son score for a relationship does not imply the relationship

does not exist, but rather may reflect the limitations in the
literature pertaining to the gene.

To further show that MeSHOP comparison ranks can
supplement research results, we examine a study by
Jones et al. [43] combining sequenced RNA transcripts
from protein-coding genes with microarray-based detec-
tion of homozygous deletions and amplifications in pan-
creatic cancer. Jones et al. introduced a scoring
procedure to differentiate causal ‘driver’ genes from pas-
senger genes, identifying 6 likely driver genes within a
set of 83 candidate genes (where the 83 genes were
identified as having at least 2 genetic alterations in the
compiled data). In Table 10, the MeSHOP comparison
scores for ‘pancreatic neoplasms’ are reported for the 83
identified genes. Five of the six Jones et al.-ranked driver
candidate genes (TP53, CDKN2A, KRAS, TGFBR2,
SMAD4) were represented in the top 500 MeSHOP pre-
dictions; MeSHOP comparisons did not identify the
sixth gene, MLL3. The EP300 gene was low scoring in
the Jones et al. rankings, although it was ranked fifth
overall by MeSHOP comparisons. EP300 has been
shown to be downregulated by microRNA in highly
metastatic pancreatic ductal adenocarcinomas [44],
demonstrating the capacity for MeSHOP comparison to
identify candidate disease genes. The MeSHOP compari-
son provides a bibliometric view that both reinforces
and complements existing analytical methods.

A recent publication examined the genomes of 100
breast cancer tumors for somatic mutations looking for
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Table 8 Top 50 Alzheimer disease candidate genes by MeSHOP similarity

Rank Gene ID Gene name Score Génie rank Alzheimer disease gene2pubmed references
1 348 APOE 1.18E+04 4 812
2 351 APP 1.22E+04 2 576
3 4137 MAPT 1.23E+04 1 211
4 5663 PSENT 1.27E+04 3 249
5 6622 SNCA 1.27E+04 6 30
6 627 BDNF 1.28E+04 9 47
7 1312 comT 1.29E4+04 87 10
8 1401 CRP 1.29E4+04 210 5
9 6532 SLC6A4 1.30E+04 43 23
10 3064 HTT 1.30E+04 44 0
1 5444 PONT 1.30E+04 204 16
12 1813 DRD2 1.30E+04 114 1
13 4846 NOS3 1.30E+04 118 18
14 23621 BACET 1.30E+04 5 86
15 2950 GSTPI1 1.30E+04 470 4
16 5621 PRNP 1.31E+04 12 28
17 5054 SERPINET 1.31E4+04 NA 3
18 1636 ACE 1.31E4+04 32 45
19 2952 GSTT1 1.31E+04 NA 3
20 5071 PARK2 1.31E+04 13 6
21 120892 LRRK2 1.31E4+04 18 6
22 3553 IL1B 1.31E4+04 39 32
23 4023 LPL 1.31E4+04 172 7
24 6647 SOD1 1.31E4+04 36 6
25 3356 HTR2A 1.31E+04 121 16
26 10 NAT2 1.31E4+04 333 4
27 7515 XRCC1 1.31E4+04 NA 2
28 2944 GSTM1 1.31E4+04 NA 3
29 3552 ILTA 1.31E+04 30 36
30 3569 L6 1.32E+04 60 28
31 5664 PSEN2 1.32E4+04 7 78
32 6648 SOb2 1.32E4+04 131 4
33 2153 F5 1.32E+04 NA 0
34 338 APOB 1.32E+04 NA 1
35 7421 VDR 1.32E+04 NA 2
36 2147 F2 1.32E+04 NA 0
37 183 AGT 1.32E4+04 NA 2
38 1543 CYPIAT 1.32E4+04 NA 1
39 154 ADRB2 1.32E4+04 NA 1
40 4524 MTHFR 1.32E+04 57 30
41 1071 CETP 1.32E+04 197 8
42 3557 ILTRN 1.32E4+04 278 7
43 4318 MMP9 1.32E4+04 219 5
44 1565 CYP2D6 1.32E+04 238 9
45 335 APOAT 1.32E+04 135 7
46 7517 XRCC3 1.32E+04 NA 0
47 3990 LIPC 1.32E+04 NA 2
48 4153 MBL2 1.32E+04 NA 1
49 23435 TARDBP 1.32E4+04 10 10
50 345 APOC3 1.32E+04 NA 2

Genes are ranked by MeSHOP similarity score, and compared against the ranked list of Génie candidate genes for Alzheimer disease (a full analysis considering all
possible orthologs). Also provided is a list of the number of articles related to Alzheimer disease in the gene2pubmed references for the gene, when present. Rows in
bold indicate high-ranking predictions that have no prior association with Alzheimer disease in the literature. NA: gene not among the 566 genes ranked by Génie.
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Table 9 Summary of diabetes loci ranked by MeSHOP similarity

Locus Entrez Gene ID Predicted similarity score Rank Percentile Direct association
IDE 3416 7.59E+07 186 001 7.93E-02
TCF7L2 6934 591E+07 421 0.02 3.30E-03

EXT2 2132 2.96E+07 2616 0.10 NA

HHEX 3087 2.18E+07 4631 0.18 NA

KIF11 3832 1.87E4+07 5985 0.24 NA

ALX4 60529 1.55E4+07 8313 033 NA
SLC30A8 169026 1.55E+07 8352 0.33 NA
LOC387761 387761 NA NA NA NA

Loci identified by (Sladek et al. [42]) were ranked by MeSHOP similarity (L, of log-p of overlapping terms only). Direct association scores are the Bonferroni

corrected P-values generated using the February 2007 datasets. NA

potential driver mutations [45], reporting 13 somatic
cancer genes with seven or more observed mutations.
Six of the thirteen reported genes are in the top thirteen
MeSHOP candidates (Table 11). Within the top 500
MeSHOP candidates, including the set of 6, a total of 11
of the 13 somatic cancer genes were present. Top
MeSHOP candidates that were not reported in the
somatic breast cancer ‘driver’ gene list include several
genes with known hereditary roles in breast cancer (for
example, BRCA1 (MeSHOP rank 4) and BRCA2
(MeSHOP rank 8); Table 12).

Together these case studies demonstrate the utility of
MeSHOP predictions as a complement to laboratory
studies, providing support to a subset of candidate
genes, revealing classes of genes not detected, and high-
lighting novel genes for further investigation.

Availability of results

Results are freely accessible on the web [46]. MeSHOP
profiles can be browsed online for genes [47] and for
diseases [48]. Gene-disease MeSHOP profile-based pre-
dictions can also be viewed online [49], listing results by
disease (listing the most similar genes), or by gene (list-
ing the most similar diseases), sorted by similarity score.
Specific datasets relevant to this paper can be directly
downloaded [50].

Discussion

Quantitative annotation profiles based on MeSH annota-
tions, MeSHOPs, are shown to facilitate the identifica-
tion of gene-disease relationships. In assessing the
baseline properties of gene-disease relationship predic-
tions, we observe a striking bias introduced by the level
of annotation of the entities (gene and/or disease), such
that simply predicting future gene-disease relationships
based on the most studied genes (or diseases) is better
than random guessing. Accounting for this bias, we
demonstrate that comparison metrics using MeSHOPs
has high capacity to predict future gene-disease co-
occurrence in future research publications. Functional

relationships between genes and diseases were predicted
using reference collections, and shown to perform better
than baselines. Overall, MeSHOP comparison is shown
to be a useful tool for applied bioinformatics.

Strong performance of bibliometric baselines quantita-
tively indicates researchers may tend to explore addi-
tional relationships for existing well-characterized genes
and diseases, echoing the imbalanced research activity
seen by Agarwal and Searls [51]. On the other hand,
this may rather reflect methodological biases emphasiz-
ing easier to characterize genes and diseases. Well-stu-
died genes have pre-existing protocols and materials
such as animal models and PCR primers. Well-studied
diseases may be more commonly and reliably identified
through better-established diagnostic methods and phy-
sician familiarity. Rather than bias, it may reflect proper-
ties of a subset of genes and diseases. Certain types of
genes and diseases are involved in key processes, similar
to multifunctional proteins in interaction networks [52].
A ‘hub’ gene involved in many pathways could cause
many phenotypes when disrupted. Similarly, some phe-
notypes may actually be the result of many different
molecular processes, each of which when misregulated
due to a gene can cause different variations of the dis-
ease phenotype. As well, there are not just the causative
genes for a disease, but many other genes may regulate
the severity or provide protective immunity against the
disease phenotype. Regardless of origin of these
observed predictive biases, we strongly recommend that
all future gene-disease prediction methods be contrasted
to gene and disease bibliometric baseline characteristics
- ideally against the strongest metrics that evaluate the
degree of annotation (the number of MeSH terms in the
MeSHOPs for the gene and disease). Bibliometric base-
line comparison allows direct comparative assessment of
the predictive ability of methods compared to these uni-
versal trends.

Previous work demonstrated gene length, cDNA
length and protein length significantly differ between
control and disease genes [53,54]. Our literature-based
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Table 10 Comparison of MeSHOP results for pancreatic cancer candidate genes

Gene Entrez  Predicted Rank Percentile Mutations Deletions Passenger Passenger Passenger
gene similarity probability: low probability: mid  probability: high
rates rates rates
TP53 7157 1.24E+08 1" 100 18 2 < 0.001 < 0.001 < 0.001
CDKN2A 1029 8.29E+07 135 99 2 16 < 0.001 < 0.001 < 0.001
KRAS 3845 6.95E+07 266 99 24 0 < 0.001 < 0.001 < 0.001
TGFBR2 7048 6.76E+07 288 99 3 1 < 0.001 0.001 0.003
EP300 2033 6.37E+07 351 99 2 0 0.176 0482 0.984
SMAD4 4089 6.14E407 386 98 8 6 < 0001 < 0001 < 0001
ELN 2006 557E+07 509 98 2 0 0.115 0372 0413
F8 2157 551E+07 530 98 2 0 0.165 0482 0.853
SCN5A 6331 5.18E+07 629 98 2 0 0.176 0482 1.000
PRKCG 5582 4.77E4+07 798 97 2 0 0.115 0.372 0413
TPO 7173 4.71E4+07 831 97 2 0 0.115 0.375 0.694
PPP1R3A 5506 4.50E+07 946 96 2 0 0.115 0477 0.694
SMARCA4 6597 4.04E4+07 1243 95 2 0 0.062 0.183 0413
COL5AT 1289 3.72E407 1518 94 2 0 0.176 0482 0.984
MEPTA 4224 3.38E+07 1895 92 2 0 0.062 0.183 0413
IL2RG 3561 295E+07 2652 89 1 0 0.004 0.016 0.997
ATP10A 57194 277E407 2974 88 2 0 0.176 0482 1.000
MYH?2 4620 2.71E+07 3063 88 2 0 0.165 0477 0.853
GRIA3 2892 262E+07 3281 87 1 1 0.017 0.069 0.999
ABCA7 10347 2.56E+07 3426 86 2 0 0.033 0.139 0.201
DLG3 1741 251E+07 3540 86 1 0 0.003 0.015 0.997
DLCT 10395 247E407 3645 86 2 0 0.176 0482 1.000
GLTSCR1 29998 206E+07 5082 80 2 0 0.062 0.183 0405
PCSK6 5046 202E+07 5240 79 2 0 0.176 0482 0911
EVPL 2125 200E+07 5329 79 2 0 0.176 0482 0.942
NRG2 9542 1956407 5537 78 2 0 0.165 0477 0.853
SLITRKS 26050 1.93E+07 5655 78 2 0 0.165 0477 0.853
SEMAS5B 54437 1.92E+07 5713 77 2 0 0.062 0.183 0413
DPP6 1804 1.86E+07 6025 76 3 0 0.009 0.079 0201
PCDH15 65217 1.84E+07 6162 76 4 0 < 0.001 0.017 0.048
FMN2 56776 1.82E407 6266 75 2 0 0.176 0482 0911
CACNA2D1 781 1.77E407 6597 74 1 0 0.001 0.004 0.989
DLECT 9940 1.70E+07 7039 72 2 0 0.176 0482 0911
MLL3 58508 1.69E+07 7090 72 6 0 < 0001 < 0001 < 0001
PBI1 55193 1.63E+07 7597 70 2 0 0.165 0477 0.853
LRRN3 54674 1.60E+07 7856 69 2 0 0.062 0.183 0405
CYFIP1 23191 1.56E+07 8225 67 3 0 0.009 0.079 0.201
SF3B1 23451 1.55E+07 8290 67 3 0 0.009 0.079 0.201
PXDN 7837 1.55E+07 8302 67 2 0 0.176 0482 1.000
TNR 7143 1.54E+07 8453 66 2 0 0.176 0482 0911
SN 6614 1.53E+07 8484 66 2 0 0.176 0482 1.000
SLC6ATS 55117 1.53E+07 8488 66 2 0 0.062 0.183 0405
ARIDTA 8289 1.51E+07 8688 66 2 0 0.176 0482 0.984
SLC1A6 6511 148E+07 8908 65 2 0 0.115 0477 0.694
LRRTM4 80059 146E+07 9064 64 2 0 0.062 0.183 0413
GALNTI3 114805  142E4+07 9651 62 2 0 0.062 0.183 0.405
GUCY1A2 2977 1.39E+07 9964 60 2 0 0.062 0.183 0405
ZNF638 27332 1.37E+07 10174 60 2 0 0.115 0.375 0.694
PDZRN3 23024 1.33E+07 10522 58 2 0 0.033 0.082 0.201
DOCK2 1794 1.33E+07 10612 58 2 0 0.062 0.183 0405
MIZF 25988 1.32E+07 10714 58 2 0 0.062 0.183 0405
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Table 10 Comparison of MeSHOP results for pancreatic cancer candidate genes (Continued)

DACH2 117154 1.30E+07 10883 57 1 1 0.022 0.088 1.000
ST6GAL2 84620 1.26E+07 11302 55 2 0 0.115 0.375 0.694
KBTBD11 9920 1.19E+07 12083 52 1 1 0.006 0.025 0.998
CNTNS 53942 1.18E+07 12231 51 2 0 0.115 0.375 0.694
ABLIM2 84448 117407 12471 51 2 0 0.062 0.183 0405
PCDH18 54510 1.14E+07 12864 49 2 0 0.115 0.375 0.694
ADAMTS20 80070 1.09E+07 13668 46 2 0 0.176 0482 0911
CDH10 1008 1.09E+07 13703 46 3 0 < 0.001 0.017 0.048
KIAA1024 23251 1.09E+07 13715 46 2 0 0.115 0.375 0.694
TBX18 9096 1.08E+07 13821 45 2 0 0.062 0.183 0413
LRFN5 145581 1.07E+07 13894 45 2 0 0.062 0.183 0.405
DEPDC2 80243 1.07E+07 13953 45 3 0 0.055 0.183 0405
FMNL3 91010 1.05E+07 14376 43 2 0 0.055 0.179 0405
TM7SF4 81501 1.03E+07 14681 42 2 0 0.055 0.179 0405
ORI0R2 343406 1.02E+07 15126 40 2 0 0.033 0.139 0317
GPRI133 283383  1.02E+07 15188 40 2 0 0.062 0.183 0.405
PCDH17 27253 1.01E+07 15355 39 2 0 0.062 0.183 0405
BAI3 577 9.58E+06 16457 35 3 0 0.033 0.082 0.201
KIAAO0774 23281 949E+06 16660 34 2 0 0.176 0482 0.984
CTNNA2 1496 942E+06 16781 33 3 0 0.033 0.179 0405
KLHDC4 54758 8.66E+06 18571 26 2 0 0.033 0.082 0.201
ZAN 7455 845E+06 19030 25 2 0 0.176 0482 0.984
DKFZP586P0123 26005 738E+06 20579 18 2 0 0.165 0477 0.853
UNC13C 440279  7.38E+06 20835 17 2 0 0.115 0.372 0.694
FLJ39155 133584  7.38E+06 21333 15 2 0 0.176 0482 0.942
RASSF6 166824  7.38E+06 21543 15 2 0 0.062 0.183 0.405
OVCH1 341350  579E+06 24923 1 2 0 0.165 0477 0.853
Q9H5FO_HUMAN NA NA NA 3 0 < 0.001 0.004 0.009
Q9HEA7_HUMAN NA NA NA 2 0 0.165 0477 0.853
FLJ46481 389197 NA NA NA 2 0 0.062 0.183 0405
XR_017918.1 NA NA NA 2 0 0.062 0.183 0405
LOC441136 441136 NA NA NA 2 0 0.009 0.079 0.201

This table shows all genes from Supplementary Table S7 of Jones et al. [43] listed by strength of MeSHOP similarity score (via the L, of log-p of overlapping
terms only metric). NA, no MeSHOP available.

Table 11 MeSHOP similarity analysis of known breast cancer genes with seven or more observed mutations

Chromosomal location/gene(s) Mutations observed MeSHOP similarity rank
TP53 38 1
PIK3CA 33 55
chr17:37833600-38018803/ERBB2 21 2
GATA3 15 773
chr8:37353781-37489508/FGFR1/ZNF703 15 191/8,493
chr8:128504497-128948225/MYC 15 19
chr11:69224506-69556470/CCND1 11 9
MAP3K1 9 417
chr20:52065876-52723895/ZNF217 9 2,102
PTEN 7 12
NCOR1 7 360
CDKN2A 7 6
CDH1 7 11

Genes known to be implicated in breast cancer from Supplementary Table 4 of [45] are compared to the MeSHOP similarity ranking of human genes for breast
neoplasms. The rows in italics highlight genes with a MeSHOP similarity rank less than 13.
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Table 12 Highest ranked breast cancer gene candidates
with MeSHOP similarity analysis

Rank Gene Probability of MeSHOP similarity
oncogenicity rank
1 MAP3K1 1 417
2 TBX3 0.99996 2513
3 TN 0.99952 1842
4 NCOR1 0.99835 360
5 MTMR4 0.98201 10529
6 MAP3K13 097383 9545
7 CDKN1B 0.96378 22
8 DIDO1 0.90433 4931
9 SMARCD1 0.88007 3098
10 CASP8 0.86462 150

We list the top ten breast cancer candidate genes from Supplementary Table
5 of [45], ranked by probability of oncogenicity. Genes in bold are in the top
500 by MeSHOP similarity rank.

analysis shows neither genomic length nor transcript
length have significant predictive ability in our current
validation sets, suggesting these previous biases are no
longer foretelling of future gene-disease association.
Advances in methodology such as high-resolution
microarrays and sequencing may have removed the
influence of the bias, suggesting that literature bias
favoring well-studied genes may correct itself as more
genes become better characterized.

The L, of log-p of overlapping terms similarity metric
outperformed all other methods, but many methods per-
formed nearly as well. The highest-performing metrics
all focus on the terms shared by the profiles and empha-
size terms unlikely to be associated by chance. The L,
metric is conceptually straightforward and supported by
all statistical and mathematical analysis packages. The
fact that multiple metrics perform well suggests that the
performance may be constrained by the data properties.
The quality of MeSH annotations appears high, as
MeSH annotations are assigned by domain experts at
the NLM. However, the limited time that can be
devoted to any single article necessarily means that the
assigned terms are limited to the main topics of the arti-
cles. MeSHOPs and comparison methods may benefit
from more comprehensive annotation assignments
based on automated full-text analysis.

Comparison to other MeSH-related methods

A related but different method of CoPub Discovery [55]
seeks to identify hidden links between genes and dis-
eases through shared keywords in MEDLINE® abstracts.
They assess predictions using historical entries from
before 2000, identifying genes and keywords from
entries using text mining. As a comparison scores, they
employ a straightforward linear summation of the mini-
mum score of the shared MeSH terms. In contrast, our
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predictions use the larger corpus of MEDLINE® up to
2007, and our MeSHOPs-based method builds on
curated MeSH terms and Entrez Gene article links,
enabling a broad range of applications. We also evaluate
measures of MeSH term association strength to generate
MeSHOPs and many different comparison scores for
comparing gene and disease MeSHODPs.

The text mining method reported by Srinivasan [56]
extracts MeSH terms of importance to summarize a set
of articles related to an entity. This considers common
MeSH terms between profiles as potential paths to con-
nect two entities. MeSHOPs use a statistical scoring
method to compute P-values for the profiles, and
further evaluates a large number of different methods
for generating and comparing the MeSHOPs, analyzing
all terms between profiles computationally.

Sarkar et al. [14] use weighted profiles of MeSH terms
and visualize the terms as a MeSH cloud to summarize
a collection of documents retrieved from MEDLINE®
and to facilitate further investigation of related articles
in MEDLINE®.

MeSHOPs share conceptual similarities with the
method of CAESAR [22]. CAESAR scores the occur-
rences of extracted keyword terms in an authoritative
text that summarizes the topic of interest. MeSHOPs
use all relevant articles, each with individual associated
MeSH biomedical terms, reflecting both the main direc-
tions of research and associated topics.

Future directions

The use of MeSHOPs to infer term attachment and pre-
dict novel associations need not necessarily be limited
to the attachment of disease terms to genes and vice
versa. This methodology could be expanded to the
attachment of any subset of MeSH terms to biomedical
topics of interest.

MeSHOPs could be explored for gene-disease associa-
tions in other species than human - preliminary analysis
predicting mouse genes associated with MeSH disease
terms have achieved similar performance results. Human
disease gene prioritization has been shown to be improved
through incorporation of mouse phenotype data [25], sug-
gesting incorporation of orthology data could be used to
improve predictions. New candidates for complex diseases
could also be evaluated through their similarity to known
genes related to the disease of interest, as seen in an analy-
sis by Taniya et al. [57] for rheumatoid arthritis and pros-
tate cancer using several other sources of gene annotation.

Conclusions

MeSHOPs quantitatively represent the MeSH biomedi-
cal terms associated with any defined entity with an
identified set of MEDLINE®-indexed papers. Results
demonstrate MeSHOP similarity can infer functional
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annotation of genes and diseases. Specifically, the simi-
larity between gene MeSHOPs and disease MeSHOPs is
highly predictive of future gene-disease ties. Although
bibliometric characteristics, such as the number of
terms in the disease MeSHOP, are predictive of gene-
disease association, our best predictions, using L, of log-
p of overlapping terms, achieve a mean AUC of 0.94, an
improvement of 0.08 over the mean AUC for the num-
ber of disease terms baseline, and an improvement of
0.13 over the mean AUC for the number of gene terms
baseline. The consistency of the results over five valida-
tion sets duplicated over two sources of gene article
links demonstrates that the predictive performance of
our method is stable and replicable. Beyond the predic-
tion of annotation, MeSHOP comparison predicts genes
with functional roles in disease process, validated using
curated gene-disease relationships in CTD and in case
studies.

Materials and methods
MeSHOP generation for genes and diseases
We describe here the construction of MeSHOPs - a
detailed introduction and establishment of this method
is presented elsewhere [31]. A MeSHOP is a quantitative
representation of the MeSH annotations associated with
a set of articles where the set is composed of articles
that address a specific entity (such as a gene or disease).
The computation of a MeSHOP initiates from a set of
articles that address a specific entity. Each article has a
curator-assigned set of MeSH terms available in MED-
LINE®. Comparing the observed frequency of each
MeSH term annotated to a set of articles relative to the
background rate for each term returns a measure of
over-representation. A MeSHOP is a vector of tuples <
(t;, my), (to my), ... (¢, m,) >. For each tuple (¢, m;) in a
MeSHOP, ¢; is a distinct MeSH term in the MeSH voca-
bulary and m; is the numeric measure of the strength of
association of the MeSH term t; to the set of articles
(for example, the over-representation measures). To
account for the tree structure of MeSH, for each MeSH
term associated with an article, the article is considered
associated to all of the parent terms of that MeSH term.
Several scoring metrics have been implemented to
report the strength of association between an entity and
a MeSH term in a quantitative fashion. A basic measure
is the raw count of articles annotated with each term.
Such counts can be normalized by dividing the raw
count by the total number term annotations for the par-
ticular gene or disease to address the degree of annota-
tion. However, counting methods fail to account for
statistical significance; the frequency in which term
appears in MEDLINE®™ should be accounted for. To
address this deficiency, P-values can be computed based
on a hypergeometric distribution via Fisher’s exact test.
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MeSHOPs are generated for each member of a class
by assessing the set of all linked MEDLINE®™ records for
each member. We use Fisher’s exact test to determine
P-values, computed from a 2 x 2 contingency table
composed of: 1) the frequency of occurrence of the
term ¢; in the set of articles addressing the entity of
interest; 2) all articles addressing the entity of interest
without the term ¢; 3) the frequency of the term ¢; in
the background set not addressing the entity of interest;
and 4) the remaining number of articles in the back-
ground set that do not refer to the term ¢; and do not
address the entity of interest. A universal background of
MeSH term frequency is applied in this case derived
from a set of 17 million MEDLINE® articles assigned
MeSH terms. For every MeSH term that occurs in the
articles associated with a gene, we compute the statisti-
cal significance of the association. Entity class-specific
MeSH frequency backgrounds can be applied for
improved visualization when comparisons are not
sought as described in [31]; in this paper, however, we
use the universal background described here that is
common to both genes and diseases.

Inferring novel gene-disease association

To infer entity-MeSH annotation relationships, we
hypothesize that a previously unassociated MeSH term ¢
is likely to be associated with an entity e if the MeSHOP
P, for the MeSH term ¢ is highly similar to the entity’s
MeSHOP P.. The scoring of similarity was performed
with a panel of formulae presented in Table 3. Once the
profiles for each human gene and each disease term in
MeSH were computed, we measured the similarity of
each human gene profile against each disease profile.

Quantitative validation of gene-disease similarity
measures

ROC curves were computed for each of the similarity scores
evaluated. AUC was measured to assess the accuracy of the
scoring metrics. In the case where there are no ties, the
ROC curve is composed of horizontal and vertical sections;
in the case of ties, diagonal sections also occur. AUC values
can be converted to mean rankings by noting that the AUC
reports the mean probability that, for a random disease,
given a random positive gene and a random negative gene,
the positive gene is scored higher than the negative gene.
The ranking of the positive is the result of # - 1 Bernoulli
trials, where the positive is compared to each of the nega-
tives. Each ‘failure’ in this case causes the rank to drop by 1.
The average rank is given by 1 + (1 - AUC)(n - 1).

Data sources

The annual MEDLINE® Baseline releases 2007, 2009
and 2010 were used as the source of MeSH annotations
for articles. All gene-disease co-occurrences (that is, the
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gene and the disease directly linked to the same article)
were extracted for each release. Similarly, we manually
downloaded snapshots of Entrez Gene, including the
links from genes to MEDLINE"™/PubMed™ articles from
GeneRIF and gene2pubmed, approximately matched to
the date of the MEDLINE® releases. For each MED-
LINE® Baseline release matched with Entrez Gene
downloaded snapshot, we generated the MeSHOP for
each disease in MeSH, the MeSHOP for each human
gene using the associated GeneRIF annotation, and the
MeSHOP for each human gene using the associated
gene2pubmed annotation. We compared each gene
MeSHOP with GeneRIF annotation against each disease
using the similarity scores. Each gene MeSHOP with
gene2pubmed annotation was also compared against
each disease using the similarity scores. See Table 13 for
details of the size and contents of these datasets. We
use the references from the 2007 Entrez Gene snapshot
and the 2007 MEDLINE® Baseline to generate MeSHOP
similarity scores for all human genes with GeneRIF
annotations. The MeSHOP similarity scores for all
human genes with gene2pubmed annotations were also
generated. These two sets of gene-disease MeSHOP
similarity scores were validated for the ability to predict
novel co-occurrences of genes and diseases in MED-
LINE®, as well as the ability to predict new curated
gene-disease relationships.

Gene-disease novel co-occurrence validation sets

To validate the effectiveness of predicting using
MeSHOP similarity, we generated predictions using
archived versions of all the datasets (MEDLINE® and
Entrez Gene), involving data up to 2007. Using more
recent versions of MEDLINE® and Entrez Gene, we
identify new gene-disease relationships that appeared
after 2007. These novel relationships are considered the
true positives for validation. We then evaluated the
accuracy of the MeSHOP similarity comparison of the
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2007 data at predicting novel gene-disease relationships
appearing after 2007, quantitatively evaluated using
ROC AUC. We also measured the accuracy of the simi-
larity measures at predicting the existing gene-disease
relationships up to 2007.

Gene characteristics were extracted from EnsEMBL 53
(April 2009) and these characteristics were mapped to
the human genes in Entrez Gene. The genes with
mapped gene characteristics were then evaluated for the
ability to predict novel gene-disease predictions, provid-
ing a baseline to contrast the performance of the
MeSHOP similarity predictions.

Novel curated gene-disease relationship validation sets
Two sets of curated gene-disease relationships were
extracted from the CTD. These gene-disease relation-
ships are identified from OMIM and published MED-
LINE" literature by CTD curators. The first set was all
gene-disease tuples involving MeSH disease terms
downloaded November 2008 (3,630 tuples covering 828
diseases and 2,092 genes for the genes with gene2-
pubmed-based MeSHOPs, and 3,178 tuples covering 780
diseases and 1,714 genes for the genes with GeneRIF-
based MeSHOPs). We compared these relationships
with the relationships present in the version of CTD
downloaded April 2010, and created a validation set
where the ‘true positives’ composed of all the new tuples
present in the April 2010 dataset that were not present
in the November 2008 dataset (1,760 new tuples cover-
ing 426 diseases and 1,068 genes for the genes with gen-
e2pubmed-based MeSHOPs, and 1,602 new tuples
covering 409 diseases and 942 genes for the genes with
GeneRIF-based MeSHOPs). This validation set was used
to evaluate the performance of the MeSHOP similarity
scores generated using MEDLINE® and Entrez Gene
data up to 2007. Gene characteristic baselines were also
evaluated to contrast the performance of the MeSHOP
similarity scores.

Table 13 Datasets used in the analysis with details on size and relevant contents

Dataset February 2007 January 2009 April 2010
Entrez Gene (including gene2pubmed and GeneRIF)
Total genes 2,460,748 4,710,910 5,999,558
Human genes 38,604 40,183 45,423

Baseline 2007 (Nov 2006)

Baseline 2009 (Nov 2008) Baseline 2010 (Nov 2009)

MEDLINE®
Total articles 16,120,073 17,764,232 18,502,915
gene2pubmed (Linking Entrez Gene and MEDLINE®
Total links 3,081,413 12,960,489 5979167
Total human gene links 272,123 445650 527,821

Although the number of human genes has not increased much over the years, the number of non-human links has increased substantially since 2007, while the
human gene links have increased at a more moderate rate. Previously, MEDLINE"/PubMed™ links from genomic sequence were propagated to all related genes.
This practice was discontinued in March 2009, resulting (at the time) in a 60% decrease in links and the disparity in the number of overall links from 2009 to

2010.
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Predictive performance for pre-existing relationships

To confirm the expected capacity for MeSHOP compar-
isons to detect established gene-disease relationships, we
evaluated the performance of similarity measures at
ranking pre-existing gene-disease relationships (relation-
ships reported in the literature before 2008). This
assessment was performed for gene-disease co-occur-
rences obtained from Entrez Gene and MEDLINE® as
well as from the November 2008 relationships curated
from CTD.

Examining overlapping terms

While MeSHOP similarity scores provide a quantitative
assessment of the similarity of a gene MeSHOP and a
disease MeSHOP, examining the overlapping terms
between the profiles and the associated P-values could
also provide insight into the medical topic areas that are
shared by the MeSHOPs and provide clues into how the
concepts can be related. We provide a link when brows-
ing the MeSHOP similarity scores online to the list of
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overlapping MeSH terms between the two profiles,
ordered by the similarity of the P-values for the shared
terms. An example showing the top 100 shared terms
between PAX6 and anirida is provided in Table 14,
showing both general terms relating to genetics and
heritable diseases such as ‘mutation, missense’ and
‘exons’, as well as terms specifically linking the gene to
disease such as ‘chromosomes, human, pair 11’ and
‘cataract’.

Implementation
The analysis was performed using Python 2.5.2 [58],
XSLT [59], and the MySQL database system 5.0.51a
[60]. Fisher’s exact test P-values were computed using
the R statistics package [61]. Results were generated
using 50 CPUs of a compute cluster running under Grid
Engine 6.2 [62]. A typical cluster machine is a 64-bit
dual processor 3 GHz Intel Xeon with 16 GB of RAM.
Datasets were downloaded from Entrez Gene [63] -
including the gene2pubmed and GeneRIF links - and

Table 14 Top 100 terms shared by the MeSHOPs of PAX6 and aniridia

Common MeSH term Gene MeSHOP P-value Disease MeSHOP P-value Score

DNA mutational analysis 0.00E+00 0.00E+00 0.00e+0
Pedigree 0.00E+00 0.00E+00 0.00e+0
Polymorphism, single-stranded conformational 1.40E-44 1.67E-42 1.66e-42
Humans 6.82E-24 0.00E+00 6.82e-24
Exons 8.53E-24 2.98E-23 2.13e-23
Mutation, missense 1.45E-23 9.72E-21 9.70e-21
Chromosomes, human, pair 11 2.73E-20 0.00E+00 2.73e-20
Codon, nonsense 1.15E-18 1.96E-21 1.15e-18
Cataract 2.37E-17 0.00E+00 2.37e-17
Point mutation 6.94E-17 7.02E-18 6.24e-17
Frameshift mutation 9.77E-15 2.11E-21 9.77e-15
DNA primers 527E-12 2.69E-15 5.27e-12
Fovea centralis 241E-16 6.03E-11 6.03e-11
Introns 501E-10 2.15E-13 501e-10
Nystagmus, congenital 9.55E-10 3.29E-11 9.22e-10
Genes, dominant 7.39E-09 245E-14 7.39e-9
Asian continental ancestry group 2.23E-16 1.07E-08 1.07e-8
Lens, crystalline 2.40E-08 5.62E-24 240e-8
Alternative splicing 6.14E-13 7.97E-08 797e-8
Corneal opacity 2A5E-06 147E-16 245e-6
Child, preschool 3.63E-06 3.08E-44 3.63e-6
Family health 1.03E-05 1.69E-07 1.01e-5
Gene expression regulation, developmental 246E-15 1.04E-05 1.04e-5
Genes, homeobox 1.40E-05 6.32E-09 1.40e-5
Adolescent 1.92E-05 1.71E-18 1.92e-5
Conserved sequence 6.20E-06 1.18E-04 1.12e-4
Heterozygote 1.15E-04 6.94E-08 1.15e-4
Radiation hybrid mapping 1.72E-05 1.50E-04 1.33e-4
Alleles 2.29E-04 4.17E-05 1.87e-4
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Table 14 Top 100 terms shared by the MeSHOPs of PAX6 and aniridia (Continued)

Abnormalities, multiple 291E-04 0.00E+00 291e-4
Iris 345E-04 0.00E+00 345e-4
Blepharoptosis 4.54E-04 4.55E-08 4.53e-4
WAGR syndrome 5.13E-04 0.00E+00 5.13e-4
Tomography, optical coherence 1.14E-03 447E-04 6.97e-4
Corpus callosum 6.03E-07 9.38E-04 9.38e-4
Pregnancy 9.62E-01 9.60E-01 1.09e-3
Open reading frames 2.56E-10 1.12E-03 1.12e-3
Forkhead transcription factors 1.27E-03 1.95E-05 1.25e-3
Face 142E-03 3.94E-05 1.38e-3
Nucleic acid heteroduplexes 2.02E-04 1.73E-03 1.53e-3
In situ hybridization, fluorescence 1.61E-03 3.22E-29 161e-3
Gene deletion 1.65E-03 1.77E-21 1.65e-3
PAX9 transcription factor 846E-04 2.50E-03 1.66e-3
Proprotein convertase 1 1.71E-03 1.27E-05 1.69¢e-3
Ectopia lentis 1.81E-03 1.42E-05 1.79e-3
Albinism, ocular 1.86E-03 3.98E-14 1.86e-3
Databases, nucleic acid 3.09E-04 2.63E-03 2.32e-3
India 1.13E-04 2.79E-03 2.68e-3
Amino acid substitution 2.03E-06 3.07E-03 3.06e-3
Transcriptional activation 1.10E-23 3.22E-03 3.22e-3
Genetic markers 343E-03 1.71E-10 343e-3
Anophthalmos 5.77E-03 145E-04 5.63e-3
3" Untranslated regions 8.26E-06 5.66E-03 5.65e-3
Young adult 1.18E-02 491E-03 6.84e-3
Limbus corneae 7.58E-03 148E-18 7.58e-3
RNA, transfer, Lys 4.19E-03 1.23E-02 8.16e-3
Dna transposable elements 9.49E-03 9.94E-04 8.50e-3
Heteroduplex analysis 4.54E-03 1.34E-02 8.84e-3
Chromosome deletion 9.12E-03 0.00E+00 9.12e-3
Homozygote 1.09E-02 1.29E-03 9.57e-3
Otx transcription factors 5.70E-06 1.00E-02 9.99%-3
Genetic predisposition to disease 1.16E-02 8.84E-05 1.15e-2
Microphthalmos 1.17E-02 2.34E-12 1.17e-2
Vision, low 1.24E-02 6.65E-04 1.17e-2
Optic nerve 1.26E-02 5.64E-08 1.26e-2
Exotropia 7.21E-03 2.12E-02 1.40e-2
Cytosine 2.70E-03 2.15E-02 1.88e-2
Magnetic resonance imaging 4.92E-04 1.96E-02 1.92e-2
United States 9.81E-01 1.00E+00 1.93e-2
Trabecular meshwork 2.22E-02 2.11E-03 201e-2
Polymorphism, restriction fragment length 2.30E-02 7.12E-04 2.23e-2
Body patterning 3.32E-03 2.62E-02 2.29e-2
Dichotic listening tests 1.21E-02 3.55E-02 2.34e-2
Multigene family 246E-02 8.37E-04 2.38e-2
373 Cells 3.00E-06 2.67E-02 267e-2
Cognition disorders 4.77E-02 2.05E-02 2.72e-2
Esotropia 1.42E-02 4.14E-02 2.72e-2
Mutagenesis, insertional 4.08E-03 3.18E-02 2.77e-2
Endothelium, corneal 2.94E-02 1.06E-04 293e-2
Restriction mapping 3.25E-02 2.53E-06 3.25e-2

Thymine 4.15E-02 7.24E-03 343e-2
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Table 14 Top 100 terms shared by the MeSHOPs of PAX6 and aniridia (Continued)

Sequence homology, amino acid 3.52E-02 331E-04 349e-2
Glutamine 5.38E-03 4.13E-02 3.59-2
Chromosomes, human, pair 10 1.97E-02 5.72E-02 3.75e-2
Cytogenetics 3.86E-02 241E-04 3.84e-2
Nervous system malformations 5.11E-02 9.30E-02 4.18e-2
Organ specificity 2.36E-01 1.90E-01 4.62e-2
Catenins 6.22E-02 1.59E-02 4.63e-2
Genetic heterogeneity 2A45E-02 7.09E-02 4.64e-2
Brain-derived neurotrophic factor 5.07E-02 6.24E-07 507e-2
Chromosomes, human, pair 12 2.70E-02 7.77E-02 5.08e-2
Leucine zippers 1.64E-04 5.28E-02 5.26e-2
Verbal behavior 2.09E-01 1.53E-01 5.57e-2
Mice, transgenic 6.20E-02 5.89E-03 561e-2
Visual acuity 5.65E-02 0.00E+00 5.65e-2
DNA fingerprinting 9.30E-02 344E-02 5.85e-2
Sequence alignment 1.69E-02 7.59E-02 5.90e-2
Autistic disorder 9.48E-02 357802 591e-2
Fluorescent antibody technique, indirect 9.84E-02 3.83E-02 6.00e-2
Age factors 9.37E-01 9.97E-01 6.03e-2

The top 50 most similar MeSH terms of the 235 MeSH terms shared by both the MeSHOP for aniridia and the MeSHOP for PAX6 are presented here. The P-value
of the term in the gene MeSHOP and the disease MeSHOP are presented, and ordered by the difference in the two P-values.

MEDLINE® via a lease from the NLM [64]. The CTD
validation set was taken from the gene-disease relation-
ships dataset [65].

Availability of source code

Source code is available for the gene and disease profile
analysis [66], and for the evaluation and validation of
results [67].
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