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Abstract

With exome sequencing becoming a tool for mutation detection in routine diagnostics there is an increasing need
for platform-independent methods of quality control. We present a genotype-weighted metric that allows
comparison of all the variant calls of an exome to a high-quality reference dataset of an ethnically matched
population. The exome-wide genotyping accuracy is estimated from the distance to this reference set, and does
not require any further knowledge about data generation or the bioinformatics involved. The distances of our
metric are visualized by non-metric multidimensional scaling and serve as an intuitive, standardizable score for the
quality assessment of exome data.

Background
In recent years, next-generation sequencing (NGS)-
based exome screens have become an invaluable tool in
Mendelian disease gene discovery and are now being
introduced as clinical diagnostic tools for genetic disor-
ders of high phenotypic and genetic heterogeneity [1,2].
Various solutions for exome enrichment and sequencing
exist and numerous algorithms for sequence read map-
ping and variant detection are in use [3-12]. There are
recommendations for sequencing depth and benchmarks
for the distribution of sequence read coverage over the
target region. The common core of the diverse
approaches to sequence exomes represents the consen-
sus coding sequences as defined by the consensus cod-
ing sequence (CCDS) project [13]. The majority of
publications [12] related to this field seem to confirm
that a mean sequencing depth of this target region with
high quality short sequence reads should be above 50-
fold and more than 90% of the CCDS exons should be
covered by at least 10 sequence reads for diagnostic pur-
poses. Another recently introduced parameter for the
quality assessment of multiple read alignments is the

variance of the ratio of reads that support the alternate
allele at heterozygous positions [14]. The lower this var-
iance, the lower the error rate to be expected from
amplification artifacts. The ratio of transitions versus
transversions (ti/tv) and the proportion of variants that
are already listed in databases of genetic variation such
as the Single Nucleotide Polymorphism database
(dbSNP) [15] are measures of quality that may be
applied to the entire variant call set of an exome. The
ti/tv ratio should be close to 3:1 for the CCDS exons,
and the proportion of singletons should be below 10%
[16]. However, the ti/tv ratio is influenced by the target
region, whereas the number of novel variants may
depend on the background population. The higher the
amount of non-coding variants, the lower the ti/tv ratio,
and higher proportions of novel variants may be
observed if the sequenced individual is from a popula-
tion that is poorly represented in the variant databases.
Although these parameters may serve as valuable indi-

cators for quality they do not directly indicate the accu-
racy of a sequenced exome and to our knowledge there is
no criteria for assessing whether the variants identified
by whole exome sequencing represent a comprehensive
list. Specifically, it is not possible to estimate an exome-
wide false positive or negative rate for variant detection
that is purely based on the quality scores of genotype
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calls. Sequencing technology-specific error signatures
[17] can yield artificial variant calls of erroneous high
quality and result in an underestimated proportion of
false calls, while poorly adjusted bioinformatics pipelines
for data processing may lead to missed calls. In most
NGS studies, a Phred-like quality score is provided for
each called genotype. This score describes the confidence
in a genotype call. Based on a certain likelihood model
for genotypes, the Phred score represents the probability
that the genotype call is wrong, given the reads in an
alignment ).
In a model that assumes, for example, a Bernoulli distri-
bution of the sequence reads at a heterozygous position,
the Phred score of a heterozygous genotype would
decrease the more the ratio of reads supporting the alter-
nate allele deviates from the expected value of 0.5. How-
ever, this quality score not only depends on the raw data
but also on the mapping algorithms and probability mod-
els that were used for variant calling. That means that
processing the same raw data by different bioinformatics
pipelines may result in different distributions of quality
scores, suggesting different genotyping error profiles for
the same exome. Even variant calling approaches that are
based on similar Bayesian methods do not yield the same
genotype probabilities due to different priors [18], and
methods of quality score recalibration cannot completely
adjust for that effect (Additional file 1, Table S1).
In order to enable interoperability and platform inde-

pendence, we have developed a method to measure the
accuracy of a set of variants by assessing its composi-
tion. In our metric, the distance between sets of variants
from two exome samples is computed without consider-
ing genotyping quality scores. The basic idea is that the
distance between variant sets of comparable quality is
closer than the distance between variant sets of very dif-
ferent quality. In our comparison, the variant data of
individuals of the 1000 genomes project [19] serve as a
gold standard and we refer to them as the reference set.
If the genotype concordance between the reference var-
iant call set and the test variant call set is high, this sug-
gests a comparable sequencing quality. We will show in
the following that the distance of a test sample to this
high quality reference data is an indicator for the geno-
typing accuracy of the exome.

Methods
Generation of exome data, accession of reference data
and data processing
Genomic DNA of European individuals was enriched
for the target region of all human CCDS exons with
SureSelect Human All Exon Kit (Agilent, Santa Clara,
USA) according to the manufacturer’s protocol and
sequenced on a HiSeq 2000 (Illumina, San Diego, USA),

yielding more than 5 gigabases raw sequence data per
exome. The Charité University Medicine ethics board
approved this study, which conforms to the Helsinki
Declaration, and we obtained informed consent of all
participants.
Publicly available NGS raw data and variant calls of

1,063 individuals of different populations were down-
loaded from the ftp server of the 1000 genomes project
[19]. Exome variants of these individuals served as refer-
ence variant sets in our work. Exome variants of the
5000 exomes project and of de Ligt et al. were used for
testing the accuracy predictions [20,21].
Exomes of test samples were enriched with Human All

Exon SureSelect baits from Agilent and sequenced on
Illumina Genome Analyzer IIx and Illumina HiSeq 2000
as 100 bp single-end reads or paired-end reads according
to the manufacturers’ protocols. Short sequence reads
were mapped by Novoalign (Novocraft, version 2.08) or
BWA[22] to the reference sequence GRCh37. Variants
were detected with default settings with SAMtools [23]
or GATK [10] on bam-formatted alignments [22]. Var-
iant calls in variant call format (vcf) [24] were restricted
to single nucleotide changes and to the consensus exome
target region of the 1000 genomes project. Additionally,
sites that were classified as technical artifacts by the 1000
genomes project were ignored.

Distance function

The distance between any two samples and

for all positions in the target region (exome), where
the called genotypes differ from the reference sequence
in at least one sample, can be calculated by a weighted

indicator function , with:

and .

This means that for the same genotypes the indicator
I is weighted by the reciprocal of the genotype fre-
quency , which is based on the reference set
with an appropriate background population. To give an
example, a genotype for individual at a given position

, ,
would refer to a genotype frequency

, if 1 out of 1,000 individuals in
the reference set differs from this genotype.
For genotypes that were present only in the test sam-

ple but not observed at all in the reference set, we set
their frequency to , where is the total

number of individuals in the reference set.
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Based on that the distance is defined as:

where is used as a normalizing

constant.
Therefore, a disagreement at a position of low varia-

bility in the reference set contributes more to the total
distance than one at a highly variable position.
In the resulting distance matrix, , pairs of indivi-

duals who are ‘closely related’ can be distinguished from
those who are distinctly apart by lower distance values.

Thus, a distance means total agreement of all

genotypes and a distance value of means total

disagreement of all genotypes.

Visualization of distance matrices by non-metric
multidimensional scaling
The output of the above-described pairwise comparison
of variant sets is a high-dimensional distance matrix
with given distances or dissimilarities between pairs of
individuals that satisfy all conditions of a metric. To
represent the dissimilarities as distances between points
in a low-dimensional space, we used a statistical techni-
que named non-metric multidimensional scaling (MDS),
that is, a visualization method such as principal compo-
nent analysis or metric MDS. However, in contrast to
principal component analysis (PCA) and metric MDS,
non-metric MDS does not make any assumptions about
the distribution of the underlying high-dimensional data.
With a pre-specified number of dimensions for the
embedding � and an appropriate initial configuration,
the isoMDS function of the MASS R-package was used
to minimize the goodness of fit, called stress S, of Krus-
kal and Shepard (see [25]). To promote readability and
an easy interpretation of the data, we chose a standard
two-dimensional embedding with:

where defines the Euclidean norm.

Down sampling of raw data and simulation of
genotyping accuracy
For coverage-adjusted comparisons, we randomly
removed sequence reads from the original alignments.
Variants were recalled on these down-sampled exomes
as described above. As genotyping accuracy we define
the percentage of the entire exome that was correctly

genotyped, that is the sum of true positive genotype
calls (alternate and reference genotypes) divided by the
entire size of the exomic target region. For our simula-
tions, we assumed that the reference set had a genotyp-
ing accuracy of 100% and introduced genotyping errors
at random positions. As most of the exomic positions
had low variability in the reference set, the contribution
of genotyping errors to the distance function could be
approximated by adding twice a binomial distributed
random variable, , to the normaliz-

ing constant , with probability p equaling the speci-

fied genotyping error and the number of trials
bp is the total size of the exome,.

Computation of the standardized dissimilarity score and
reference curve
Distances between all individuals of the reference set were
measured and the averaged values of the median and
interquartile range of all columns of the distance matrix
were computed to standardize the median of a test sample.
The median of the distances from a test sample to all indi-
viduals of the reference set was computed and normalized
by subtracting the pre-calculated median of the reference
set and dividing the interquartile range (IQR) of the refer-
ence set. The reference curve and both 5% and 95% quar-
tiles for the standardized dissimilarity score (SDS) were
computed for the reference set and simulated data sets of
decreasing error groups.

Results
An error sensitive genotype-weighted metric
Like any metric, the distance measure that we used to
compare different sequences of a set of test samples
induces a topology. Variant calls, which describe the mea-
surable differences between samples, represent true genetic
variation, as well as genotyping errors. The subject of our
work is the quality assessment of a set of exome genotypes,
thus our metric needs to induce a topology that is sensitive
to sequencing errors while being robust to true genetic dif-
ferences. By using a weighting method for genotypes that
uses their frequency of occurrence, we achieved higher pre-
cision in accuracy prediction compared to an unweighted
hamming distance (Figure S1 in Additional file 1). If two
samples are not the same at an exonic position, which is
highly constrained in the population, this contributes more
to the total distance, because such an event has a higher
probability of being a genotyping error than divergent gen-
otypes at a highly variable site of the exome. When we
compare two exomes, our metric works on all genotypes
that have been called in these samples. The genotypes are
weighted by the degree to which the genotype is con-
strained in the population. Though several definitions for
measuring the degree of genotype conservation have been
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suggested [26,27], most variable positions in the human
genome are biallelic and for simplicity we approximate the
conservation of a genotype by the inverse of its frequency.
Thus the differences in two variant sets are weighted by
their respective genotype frequencies, and the detection of
many rare variants in a test sample therefore points to a
higher proportion of false positive genotype calls. By con-
trast, if many variants that are common in the population
are not detected in a test sample, this points to a high false
negative error rate. By this means, we compute a matrix
that contains the distances of the test sample to all the
samples of a reference set as well as their mutual distances.
These distances are a result of a function that works on the
entire exomic target region, as defined by the 1000 gen-
omes project, and may therefore be viewed without distor-
tion only in the multivariate, exomic space. We have
implemented and tested our method using whole exome
data, but it could be applied to other types of high-
throughput sequencing data. However, the precision of
predicting the accuracy of genotyping decreases for smaller
target regions (Figure S2 in Additional file 1).

Non-metric multidimensional scaling is best suited for
distance visualization
Because distance is based on multiple variables of
weighted categorical data, visualization in a plane
requires a transformation. We tested several standard
techniques of data visualization and found that non-
metric MDS [28] showed the best characteristics in con-
veying the differences in genotyping accuracy in two
dimensions (Figure S3 in Additional file 1). We there-
fore project the exomic distance matrix into two artifi-
cial dimensions of F1 and F2 that have the smallest
loss of information [29-31].
The reference samples of the 1000 genomes project

form clusters according to their ethnicity (Figure S4 in
Additional file 1) and for any test sample we chose
the closest cluster as the best matching reference set.
Samples from the same population background form
homogeneous clusters in non-metric MDS scaling, indi-
cating a comparable genotyping quality (Figure 1A).
We then analyzed two test samples of European des-

cent but of unknown genotyping accuracy and included
them into the MDS projection of all central European
(CEU) individuals from the 1000 genomes project, which
is shown in Figure 1B. Except for one representative
recalled sample, NA06986, all individuals of the CEU
reference set are displayed as black circles, whereas the
two exome test samples are represented by the colored
triangles. Although the mean sequence coverage of the
exome target region is above 60× for both test samples,
they clearly differ in their mean distance to samples from
the reference set: the second sample is close to the clus-
ter formed by the individuals of the reference set,

whereas the first sample is an outlier, indicating inferior
quality. This considerable difference in the mean distance
is remarkable given the high sequencing depth and a
comparable ti/tv ratio of 3:2 (Additional file 1, Table S1).
Also the proportion of variants found in dbSNP is around
97%, which is comparable to NA06986. Only the variance
of the heterozygous allele frequencies, which increases
with a growing number of artifacts from the amplification
steps during the library preparation, suggests a lower
quality for sample 1 with var(het AF) = 0.017 compared
to 0.012 in test sample 2 and 0.013 in NA06986 at the
same mean coverage [14].

Visualization of exomes of different genotyping accuracy
We measured the mean distance to the reference set for
85 exomes of European descent that were all analyzed
in the context of NGS research projects. The two sam-
ples displayed in Figure 1B illustrate the extreme spec-
trum of the mean distance to the reference set that we
encountered. We hypothesized that variants often
detected in exomes of the 1000 genomes project, but
not in the outliers of our test samples, might point to a
subset that requires high data quality to be properly
detected and that might explain partly the separation
from the reference cluster. Figure 2A displays the value
pairs of variant allele frequencies that are based on 85
CEU individuals from the 1000 genomes project and 85
exome test samples. For technical replicates one would
expect all allele frequency value pairs to lie close to the
diagonal in this kind of visualization. For two sample
sets of equal size that are drawn from the same popula-
tion, one would expect a certain degree of variance in
the measured allele frequency that is simply based on
the finite sample size: given the allele frequencies one
would expect for a sample size of 85 that about 95% of
the frequency value pairs fall inside the boundaries of
the displayed ellipse based on a Bernoulli distribution.
However, in our case there are considerably more out-
liers than expected by chance.

Characteristics of sequence variants with high error rates
We looked for similarities of these outliers and com-
puted the GC content of 100 bases flanking the variant
alleles that were present in more than half of the indivi-
duals analyzed in the 1000 genomes project but in only
one or less of our analyzed samples. The distribution of
the GC content of these variants clearly deviates from
the distribution that one would expect for randomly
located variants in the exome (Figure 2B).
To investigate the reasons for the higher false negative

error rate for variants in a GC-rich sequence context,
we computed the mean read coverage of the target
region depending on the GC-content. Figure 2C shows
that the distribution of the coverage is smaller for test
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Figure 1 Similarities of exome samples. (A) The similarity between exome samples is measured with a genotype frequency weighted metric.
The similarity matrix is visualized by non-metric multidimensional scaling in the two-dimensional plane. Variant sets of individuals of European
descent that were analyzed by the 1000 genomes project form a homogeneous cluster, irrespective of the applied sequencing technology. (B)
Two test samples of the same ethnicity that we genotyped according to a standard exome protocol are compared to samples of the reference
set. The larger distance of sample 1 to the reference cluster indicates a lower genotyping accuracy, while sample 2 points to a high quality.

Figure 2 Analysis of low quality samples. (A) Comparison of variant allele frequencies in different sample sets. Value pairs of genotype
frequencies were computed for exomes of the reference set (CEUs from the 1000 genomes project) and compared to test samples of the same
ethnicity that are low quality. The ellipse indicates twice the standard deviation assuming a binomial model for the allele frequency p. Variants in
the right lower quadrant were called with a lower probability in our test samples and are characterized by a GC content that deviates from the
expected mean. (B) GC content at false negative positions. Variants that are underrepresented in exomes with a large distance to the high
quality reference set are overrepresented in exome regions with high GC content (violet curve). The green curve indicates the distribution of the
GC-content that is expected for an equal number of variants that are randomly drawn from the exome. (C) Coverage against GC content. The
mean sequence coverage of the consensus exome varies with the GC content of the target region. The overall coverage for an exemplary
sample from the 1000 genomes project (NA06986) was higher compared to test samples 1 and 2. Test sample 1 has a particularly low coverage
in regions with extreme GC content, suggesting a higher error rate.
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sample 1 compared to test sample 2 and NA06986 that
was sampled down to a comparable mean coverage.
Thus, the higher distance of test sample 1 to the refer-
ence set is partly due to a critically low sequence read
coverage of regions with an extreme GC-content. Benja-
mini et al. studied the bias caused by GC content
depending on read coverage in detail for Illumina
sequencing data and showed that it also varies between
technical replicates [32]. This also means that two sam-
ples may have different genotyping accuracy for the
whole exome although they have been processed by the
same protocol.

The distance to the reference set versus coverage and
error rates
We hypothesized that the distance to the high quality
reference set should grow when the amount of raw

sequence data decreases. We therefore successively
reduced the sequence coverage in the raw exome data of
NA06986, called variants anew, and observed an increas-
ing distance to the reference set (green to blue circle in
Figure 3). A decreasing sequencing coverage will not only
yield an increasing rate of false negative genotypes but
also increase the rate of false positive calls. It is more
likely that a sequencing error will be called as a heterozy-
gous variant, and a heterozygous variant as homozygous,
if the position is only covered by a few reads. We then
analyzed how an increasing false positive error affects the
distance to the reference set by simulating detection arti-
facts that were randomly distributed over the target
region and added to a sample from the reference set. The
triangles in Figure 3 show that the data points follow a
trajectory that departs from the reference cluster with
growing error rate. It has to be noted that the

Figure 3 Distance to the reference set for decreasing coverage and increasing error rate. A reduction of the raw sequence amount for a
randomly chosen sample of 1KG project, NA06986, reduces the similarity to the reference set (green-blue circles) indicating decreasing
genotyping accuracy. A similar effect is observed when simulated genotyping errors are added to the variant calls (red-yellow triangles).
A decreasing similarity of the test samples results in divergent trajectories.
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visualization of multiple versions of the same test sample
that differ only in coverage or error rates in a single MDS
plot contorts the relative distances. All the depicted
simulated data points in Figure 3 originate from the same
data set and are therefore self-similar. The self-similarity
is high for a low error rate and high coverage and
decreases with increasing error rate and decreasing cov-
erage, as the divergent trajectories of circles and triangles
indicate. We also obtained similar results in the analysis
of simulated data sets of other ethnic backgrounds (Fig-
ure S5 in Additional file 1).
A genotyping error of 0.00001 corresponds to an

expectation of one genotyping error in approximately
100 kb of the target region. Two randomly chosen
samples from the reference set would differ in about
100 positions in such a window of 100 kb [21]. The
samples with the simulated error rate begin to separate
from the high quality cluster for error rates above
0.00001, which corresponds to a positive predictive
value of 0.99 (number of true positive divided by num-
ber of positive calls). Interestingly, the positive predic-
tive value that was reported by Tennessen et al. for
the variant calls of the 5000 exomes project is between
0.97 and 0.98 [21]. The resolution of our visualization
techniques is therefore sufficient to display these quali-
tative differences.

Comparison of exome data from different next-
generation sequencing studies
In contrast to the 1000 genomes project, the genotype
calls from the 5000 exomes project were publicly available
only in a collapsed form as genotype frequencies for
European Americans and African Americans and not as
separate variant sets for each sample. In addition to our
in-house exome data, we also analyzed the distances to the
reference cluster for exomes that we simulated based on
the genotype frequencies from these European Americans
and 100 exomes that were already studied by de Ligt et al.
[20]. Figure 4A shows the distribution of the SDS, which
represents a normalized distance of a test sample to the
reference cluster. The mean SDS for the simulated exomes
of the 5000 exomes project is comparable to our exome
data and lower than the SDS of the de Ligt et al. exomes.
The smaller variance of the SDS distribution in the 5000
exomes samples, which points to a higher self-similarity, is
due to a simulation process that did not properly represent
the haplotype substructure of the data. The higher mean
SDS of the de Ligt et al. data is mainly explained by out-
dated genotyping algorithms with higher error rates and a
lower mean coverage of the target region. Figure 4B
depicts the coverage distribution over the exome and addi-
tional quality parameters for an exemplary sample from de
Ligt et al. and our two test samples.

Figure 4 Distributions of standardized dissimilarity scores for different exomes. (A) 100 samples, including test samples 1 and 2, were
sequenced on the Illumina platform with mean coverage above 60×. The mean SDS for the Illumina samples is comparable to the mean SDS of
100 exomes that were simulated based on genotype frequencies from the 5000 exomes project. The variation of these SDS is smaller due to
missing haplotype information. (B) The mean SDS of 100 exomes that were sequenced on a Solid platform is considerably higher due to a lower
and less uniform sequence distribution over the target region and due to less accurate variant calls.
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By simulating increasing sequencing noise for all exome
data sets of the 1000 genomes, we derived distributions
for the mean distances of the original data. Based on these
distributions, we computed a reference curve for the SDS
of an unknown sample that correlates with its exome-wide
accuracy (Figure 5). The SDS that is measured for our test
samples may be used for estimating their genotyping accu-
racy by intersecting with the reference curve. For test sam-
ple 1, the mean distance to the reference set was 0.29,
which corresponds to an estimated genotyping error of
0.0001. By contrast, the SDS of 0.11 for test sample 2 indi-
cates an error rate that is much closer to that of the 1000
genomes project. Interestingly, the distance to the refer-
ence set shows characteristics of a phase transition, when
the contribution of genotyping errors exceeds the genetic
variability between individuals. We also checked the valid-
ity of our approach by deriving the genotyping accuracy
via a complementary method. In Heinrich et al., we ana-
lyzed the effect of amplification steps during sample

preparation and derived rates of genotyping errors from
technical replication [14]. The SDSs for these replicates
indicate genotyping accuracy for the exomes between
99.99% and 99.999%, which is in good agreement with the
previously computed accuracy.
Thus, the SDS is a parameter derived from the composi-

tion of a variant set and is even more powerful in predict-
ing the data quality than other quality control parameters
such as coverage distributions, which require access to the
read alignments (Additional file 1, Table S1).
We tested the influence of the sequencing platform on

the error prediction by our approach by restricting the
reference set to samples that were sequenced with the
same technology (Illumina). Although the visualization
in metric MDS clearly shows that the test samples are
closest to the Illumina samples from the reference set
(Figure S3 in Additional file 1), the effect of the sequen-
cing platform on the accuracy prediction is marginal
(Figure S6 in Additional file 1). The SDS is therefore

Figure 5 Estimation of genotyping errors from standardized dissimilarity scores. The reference curve with its 5% and 95% quantiles is
based on the distances of samples with simulated error rates to the reference set. The SDS of a test sample indicates its error rate by its
intersection with the reference curve. The estimated error rate of test sample 1 is considerably higher than of test sample 2 and of NA06986
from the 1000 genomes project. SDS, standardized dissimilarity score.

Heinrich et al. Genome Medicine 2013, 5:69
http://genomemedicine.com/content/5/7/69

Page 8 of 11



robust and can be applied to predict the quality of geno-
typing data from different sequencing technologies. We
used the platform independence of our approach to ana-
lyze the quality of a sample from the 1000 genomes pro-
ject, NA12878, that was recently re-sequenced by a new
technology (Proton, Ion Torrent, aligned with TMAP
and genotyped with variantCaller). In Figure 6, the dis-
tance of this Proton variant set of NA12878 to the refer-
ence set is compared to a variant set of the same
individual based on Illumina raw data that was down-
sampled to a mean coverage of 30 fold as described
above. This figure visualizes how the quality of two
exomes of the same individual that were generated on
two different sequencing platforms and processed by dif-
ferent bioinformatics pipelines may be interpreted at a
glance. We used the SDS to estimate the genotyping
accuracy and predicted 99.9% for the low coverage Illu-
mina exome and above 99.99% for the Proton exome,
which is in good agreement with the values based on
Sanger validation for this sample.

Discussion
We have described a new approach to assess the accu-
racy of variant calls from NGS studies. The genotyping
accuracy for variant calls, that is genotypes that differ
from the true sample sequence, has been estimated in
large-scale NGS-based projects such as the 1000 gen-
omes project [19] or the exome sequencing project [21]
and comparisons of NGS platforms [33]. In these

projects, samples were sequenced to a very high mean
coverage on different sequencing platforms and the
reported variants represent an intersection of technical
replicates and independent analysis pipelines. Even in
these high quality data sets, up to about 2% of the var-
iants cannot be validated if re-sequenced by a comple-
mentary approach such as ABI Sanger. In such a high
quality exome, one detects around 15,000 single nucleo-
tide variants per 30 Mb coding sequence and approxi-
mately 300 of them are likely false positive calls, which
corresponds to an error rate of 300/30*106 = 0.00001.
Based on simulated accuracy groups for variant calls,

we were able to assess the quality of an exome test sam-
ple without detailed knowledge of the applied enrich-
ment and sequencing technology or of the
bioinformatics pipeline that was used to align the reads
and call the genotypes. The SDS is therefore suitable for
a comprehensive quality control in all exome-based
mutation screens and might turn out especially useful as
a criterion for data inclusion in studies that combine
exome data of different sources, due to its platform
independence. The estimated genotyping error in parti-
cular might serve as quality criterion before variants
detected in an exome are further analyzed: only if the
estimated error is comparable to that of a high quality
reference set such as the 1000 genomes project would
one proceed with variant analysis. We envision that our
approach to estimate the genotyping accuracy of exomes
will facilitate the quality assessment of NGS data.

Figure 6 Comparison of exome data of different NGS platforms. A) Exome genotypes of individual NA12878 were called based on an
Illumina read data set of low coverage and a Proton dataset. The Proton exome is closer to the CEU reference data than the low coverage
Illumina exome. B) The accuracies of the exome genotype sets were estimated based on the mean distance to the reference set.
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Software that computes the SDS, visualizes the dis-
tances to data of the 1000 genomes project, and predicts
the genotyping accuracy is available for download and as
a web service at GeneTalk [19].

Web resources
The URLs for data and methods presented herein are as
follows:
NHLBI Exome Sequencing Project (ESP) Exome Var-

iant Server, http://evs.gs.washington.edu/EVS/
GeneTalk, https://gene-talk.de/qc
ftp server of the 1000 genomes project, ftp://

ftp.1000genomes.ebi.ac.uk./vol1/ftp/

Additional material

Additional file 1: Supplementary material. Figure S1: Distribution of
dissimilarities of simulated error groups for different distance metrics. The
distance of simulated test samples of different error groups were to the
reference set was measured with an unweighted hamming metric and a
genotype frequency weighted metric. The variance of the dissimilarities
of the test samples is smaller in the genotype frequency weighted
metric and thus allows a more precise prediction of the error group.
Figure S2: Visualization of distances and estimation of error rates for
different target regions. The distances of two test samples (sample 1 of
high and sample 2 of medium quality) to the reference data were
computed for five different target regions that differ in size. The CCDS
exome comprises 29 Mb, the human phenotype ontology (HPO) [34]
panel contains all exons of genes associated with phenotypic features
(5.8 Mb), the Kingsmore panel comprising 548 genes of known inherited
diseases (1.2 Mb) [35], all coding exons of chromosome 22 (600 kb), and
the GPI panel that contains all genes involved in the GPI-anchor
synthesis (45 kb). The larger the target region, the higher the number of
sequence variants for comparison. This increases the precision of the
estimation of the error rates. With decreasing size of the target region,
the confidence intervals of the reference curve for the standardized
dissimilarity score widen. While the different error rates of sample 1 and
2 can be clearly estimated and visualized for the larger target regions,
gene panels below 1 Mb do not allow this assessment any more due to
the larger confidence intervals. Figure S3: Data visualization techniques.
Comparison of ordination methods for the visualization of the distances
of exome genotypes of two test samples and high quality reference
samples of a matched background population. The mean distance of test
sample 2 with the low genotyping accuracy to the reference samples is
larger compared to sample 1 with the high genotyping accuracy for all
visualization methods. For principal component analysis and metric MDS,
a substructure in the reference samples is visible that is specific to the
sequencing platform. Figure S4: Exomes of different ethnicities (European
(CEU), Yorubian (YRI) and Japanese (JPT)) form distinct clusters based on
their similarity. For a test sample the closest cluster from the 1000
genomes project data is chosen as reference set. Figure S5: The distance
of a test sample of the Yorubian reference set increases for a growing
simulated error rate. Figure S6: Influence of sequencing platform on error
prediction. In contrast to non-metric MDS visualization, principal
component analysis of the similarities of European samples of the 1000
genomes project reveals some information about the sequencing
platform that was used (A). However, the effect of the sequencing
platform for predicting the genotyping accuracy is small. The predicted
error rates of the test samples are comparable if the reference set is
restricted to specific sequencing platforms (B, C). Table S1: Comparison of
different parameters for quality assessment. Short sequence reads of test
sample 1 and 2 and a sample from the 1000 genomes reference set,
NA06986, were sampled to comparable mean coverage over the target
region. The total number of variant calls decreases with a decreasing
coverage indicating an increasing false negative error rate. Also the
mean genotype quality scores decrease with a decreasing coverage

indicating an increasing false positive error rate. The ti/tv ratio and the
ratio of variants that are present in dbSNP vary only very little with
changing coverage. Different priors in the genotyping models of
Samtools and GATK result in different mean genotype quality scores for
the same alignments. Quality score recalibration with GATK
VariantRecalibrator performed on Samtools- and GATK-called variants ads
an adjusted quality score, VQSLOD (log odds ratio of being a true variant
versus being false under a trained gaussian mixture model). This score is
used in GATK ApplyRecalibration to generate a tranche file of highly
confidential calls. The percentage of these calls which passed as high-
confidential shows an irregular behavior with respect to the mean
coverage. The SDS, which is computed for the entire variant call set of a
sample, correlates with its accuracy and allows a sample-to-sample
comparison.
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