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Mutation signatures implicate aristolochic acid in
bladder cancer development
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Abstract

Background: Aristolochic acid (AA) is a natural compound found in many plants of the Aristolochia genus, and
these plants are widely used in traditional medicines for numerous conditions and for weight loss. Previous work
has connected AA-mutagenesis to upper-tract urothelial cell carcinomas and hepatocellular carcinomas. We
hypothesize that AA may also contribute to bladder cancer.

Methods: Here, we investigated the involvement of AA-mutagenesis in bladder cancer by sequencing bladder
tumor genomes from two patients with known exposure to AA. After detecting strong mutational signatures of AA
exposure in these tumors, we exome-sequenced and analyzed an additional 11 bladder tumors and analyzed
publicly available somatic mutation data from a further 336 bladder tumors.

Results: The somatic mutations in the bladder tumors from the two patients with known AA exposure showed
overwhelming AA signatures. We also detected evidence of AA exposure in 1 out of 11 bladder tumors from
Singapore and in 3 out of 99 bladder tumors from China. In addition, 1 out of 194 bladder tumors from North
America showed a pattern of mutations that might have resulted from exposure to an unknown mutagen with
a heretofore undescribed pattern of A > T mutations. Besides the signature of AA exposure, the bladder tumors
also showed the CpG > TpG and activated-APOBEC signatures, which have been previously reported in bladder
cancer.

Conclusions: This study demonstrates the utility of inferring mutagenic exposures from somatic mutation
spectra. Moreover, AA exposure in bladder cancer appears to be more pervasive in the East, where traditional herbal
medicine is more widely used. More broadly, our results suggest that AA exposure is more extensive than previously
thought both in terms of populations at risk and in terms of types of cancers involved. This appears to be an
important public health issue that should be addressed by further investigation and by primary prevention through
regulation and education. In addition to opportunities for primary prevention, knowledge of AA exposure would
provide opportunities for secondary prevention in the form of intensified screening of patients with known or
suspected AA exposure.

* Correspondence: jacobpang@adm.cgmh.org.tw; gmstanp@duke-nus.edu.sg;
teh.bin.tean@singhealth.com.sg; steve.rozen@duke-nus.edu.sg

"Equal contributors

’Division of Urology, Department of Surgery, Chang Gung Memorial Hospital,
Linkou, School of Medicine, Chang Gung University, 5, Fusing Street,
Gueishan Township, Taoyuan County 333, Taiwan

2Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical
School, 8 College Road, Singapore 169857, Singapore

'Laboratory of Cancer Epigenome, Division of Medical Sciences, National
Cancer Centre Singapore, 11 Hospital Drive, Singapore 169610, Singapore
Full list of author information is available at the end of the article

- © 2015 Poon et al, licensee BioMed Central. This is an Open Access article distributed under the terms of the Creative
( B.oMed Central Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain
Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article,
unless otherwise stated.


mailto:jacobpang@adm.cgmh.org.tw
mailto:gmstanp@duke-nus.edu.sg
mailto:teh.bin.tean@singhealth.com.sg
mailto:steve.rozen@duke-nus.edu.sg
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/

Poon et al. Genome Medicine (2015) 7:38

Background

Bladder cancer is a major cause of morbidity and mor-
tality worldwide, causing an estimated 150,000 deaths
per year [1]. In developed countries, approximately 90%
of bladder cancers are urothelial cancers, that is, cancers
of the transitional cells that line the bladder. These can-
cers can be subclassified as muscle-invasive or non-
muscle-invasive. Exposure to environmental carcinogens
has long been known to cause bladder cancers. The
most prominent of these exposures is inhaled tobacco
smoke [2,3]. Additional environmental causes include
arsenic [4,5] and certain occupational exposures, such as
aromatic amines [6-9]. Chlorinated drinking water is
also a possible contributing exposure [10].

An emerging field known as molecular epidemiology
augments classical epidemiological approaches with
exposure-associated molecular biomarkers to better sub-
stantiate causal links. This has significant implications in
both clinical oncology and public health. Indeed, inex-
pensive next-generation sequencing provides a new mo-
lecular epidemiological tool for inferring environmental
exposures and endogenous mutational processes that oc-
curred prior to and during oncogenesis [11-17]. Somatic
mutations can be identified by finding genetic variants
in tumors and subtracting from them the variants found
in non-malignant tissues from the same individual
Different environmental exposures and endogenous mu-
tagenic processes often have characteristic somatic mu-
tation signatures in terms of single nucleotide changes.
These signatures often include preferences for particular
bases 5" and 3’ of the location of the mutation, for
example, a preference for G (guanosine) 3" of C > T mu-
tations, reflecting mutations caused by deamination of
5-methyl cytosine in CpG > TpG contexts. Often tumors
show overlays of multiple mutational exposures and pro-
cesses, which can be deconvolved by approaches based
on non-negative matrix factorization (NMF) or software
that uses related methods [16,18,19].

Recently, the mutation spectra of bladder tumors from
North America and Denmark have been analyzed, and
three major signatures were detected [16,17,20-22]. One
of these is thought to result from activated APOBEC
genes. The second signature corresponds to the afore-
mentioned deamination of 5-methyl cytosines in CpGs.
The final mutation signature, Signature 5 [16], is of
uncertain origin but partially correlates with tobacco
smoking [16].

We and others recently showed that aristolochic acid
(AA), which is present in many plants in the genus
Aristolochia that are used in traditional herbal medicine,
induces highly distinctive mutation signatures in the ge-
nomes of upper urinary tract urothelial cell carcinomas
(UTUC) [14,23-28]. We also found probable AA muta-
tion signatures in hepatocellular carcinomas (HCCs)
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from southern China, where herbal medicine is widely
used, suggesting that AA is a contributory factor in
HCC development in this region [14]. Subsequently, AA
mutation signatures were detected in renal cell carcin-
omas (RCCs) from Romania and Croatia [29,30]. The
AA signatures were found both in patients from areas
where AA exposure was known to be prevalent, but also,
importantly, in patients from other areas. These findings
in HCCs and RCCs exemplified the utility of mutation
signatures for the detection of previously unexpected
carcinogenic exposures.

In the study reported here, we investigated whether
bladder cancer might also be caused by AA exposure.
There is anecdotal evidence that patients with AA-
induced kidney failure may have elevated risk of bladder
cancer [31-33], and AA-DNA adducts occur in the
bladders of AA-fed mice [34,35]. To our knowledge,
however, there have been no population-based epi-
demiological or molecular epidemiological investigations
of possible AA exposure in the development of bladder
tumors. In the current study, we scrutinized the somatic
mutation spectra of 349 bladder cancer exomes to deter-
mine if they reveal evidence of AA exposure, starting
with tumors from patients with known exposure and
then extending the study to tumors from patients with
unknown exposure.

Methods

Clinical samples and information

Tissue samples and clinical information on two patients
with bladder cancer and known AA exposure (130T and
136T) were obtained from the Chang Gung Memorial
Hospital in Taiwan. Eleven additional bladder cancers
were obtained from Singapore General Hospital in
Singapore. Written informed consent was obtained from
each subject, the research protocol was approved by the
Human Research Ethics Committee of the Chang Gung
Memorial Hospital and SingHealth Institutional Review
Board, and the research conformed to the Helsinki
Declaration. See Table S1 in Additional file 1 for details
of the patients treated in Taiwan and Singapore. The
somatic mutation data from the 99 bladder cancers
treated in China was reported previously [36]. The som-
atic mutation data from 237 urothelial bladder tumors
from The Cancer Genome Atlas (TCGA) [37] were
downloaded from TCGA data portal [38] on 8 May
2014. For 130 out of these 237 tumors, somatic data
were published previously [39]. Out of the 237 tumors
represented in TCGA data, 194 were from patients
treated in North America. The treatment locations of
the other 43 patients are not clear, as the samples came
from biobank organizations. The ethnicities of the 237
TCGA patients were: 'white', 172; 'Asian’, 26; 'black or
African American’, 12; 'unknown', 27. We also analyzed
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previously reported data on 11 HCCs [40], 24 UTUCs
and two AA-exposed cell lines [14]. The total number of
tumors analyzed was 386.

Sequencing and identification of somatic mutations

The genomes of the two AA-associated bladder cancers
from Taiwan, the 11 bladder cancers from Singapore,
and the respective matched nonmalignant tissue samples
were sequenced on an Illumina HiSeq 2000 as paired-
end 76-bp reads. Read pairs were aligned to the refer-
ence human genome (hgl9) using Burrows-Wheeler
Aligner [41]. Somatic single nucleotide mutations
were identified according to their presence in the
tumor genome and absence from the corresponding
normal genome using a discovery pipeline based on
the Genome Analyzer Toolkit. The sequencing reads
for the tumors that were sequenced for this study
(Table S2 in Additional file 1) have been deposited at
the European Genome-phenome Archive [42] under
accession EGAS00001000975.

Identifying mutation signatures with EMu and non-negative
matrix factorization

EMu version 1.5.2 [19] (downloaded from [43]) was used
to infer the number of elementary mutational processes
and their signatures from the catalogs of somatic muta-
tions in bladder cancer [36,39], UTUC [14], HCC [40],
and AA-treated cell line genomes [14]. We ran EMu
with default parameters and an 'opportunity file' based
on the human exome. We independently confirmed the
EMu analysis with the NMF implementation used previ-
ously [16] (Figures S8 to 10 in Additional file 1). We ran
NMF with the arguments iterationsPerCore = 10, min-
NumberOfSignature = 2, and maxNumberOfSignature = 8.

Statistical and computational analysis

Statistical analysis was carried out in R [44]. We
used the binom.test function to test for an excess of
A:T > T:A mutations and to test for an excess of A > T
mutations on the non-transcribed strand (that is, for
strand bias). False discovery rates (FDRs) were calculated
using the p.adjust function with the fdr method. We used
the cosine function in the R package Isa [45] to calculate
cosine similarity.

Results

Aristolochic acid induces its distinctive mutation
signature in bladder cancer

As an initial investigation into whether AA contributes
to somatic mutations in bladder cancer, we performed
whole-genome sequencing on two tumors from patients
with histories of consuming AA-containing herbal remed-
ies. Neither patient had end-stage renal disease (a common
consequence of AA-induced nephrotoxicity) nor a history
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of UTUC or HCC at their first diagnosis of bladder cancer.
We focused on the analysis of the exonic portions of
these genomes, which harbored 2,054 somatic single
nucleotide substitutions - a total of 1,721 different
genes were affected by non-silent mutations. These
AA-associated bladder cancers had mutation spectra
that were similar to those of previously reported AA-
associated UTUCs [14] (Figure 1B). The bladder tumors
also showed a predominance of A > T transversions
that was not seen in previous pan-cancer analyses
[17,18] but that is characteristic of AA mutagenesis
[16,17]. This predominance of A > T mutations was
coupled with a preference for CAG and TAG contexts
(that is, CAG > CTG, TAG > TTG; Figure 1A,B), and
the overall pattern of A:T > T:A mutations had cosine
similarities ranging from 0.977 to 0.992. In addition,
both bladder tumors had many fewer A > T mutations
on the transcribed compared with the non-transcribed
strands: over 70% of the A > T mutations were on the
non-transcribed strand (Table 1). Figure 1C shows the
number of mutations on the transcribed and non-
transcribed strands of the two bladder tumors and the
associated P-values for strand bias. For comparison,
Figure 1D shows that the strand bias and P-values for
two AA-UTUCs are similar, with > 75% of the A > T
mutations on the non-transcribed strand (Table 1).

Aristolochic acid exposure in bladder cancers from other
populations

Having established that AA can contribute to somatic
mutations in bladder cancer, we next examined the som-
atic mutation catalogs from a larger set of 347 bladder
cancers for evidence of AA-induced mutations. This set
consisted of 11 tumors from Singapore that we se-
quenced for this study, as well as 336 publicly available
whole-exome or whole-genome sequenced tumors. Of
these, 99 were non-muscle-invasive tumors from pa-
tients treated in China [36], and the remaining 237 were
muscle-invasive tumors from patients treated either in
North America (194 patients) or at unknown locations
(43 patients) [39]. Examination of the somatic mutation
spectra of these tumors revealed some with the charac-
teristics of AA exposure in the form of elevated propor-
tions of A > T mutations with a marked bias against
mutations on the transcribed strand (Figure 2A-E;
Figures S2 to S7 in Additional file 1).

To systematically explore this observation, we used
EMu [19] to extract mutation signatures from the
exomes of all 349 cases (including the two from Taiwan),
plus exomes from previously published AA-exposed and
non-exposed UTUCs, HCCs, and cell lines (a total of
37 additional exomes). EMu distinguished three mu-
tation signatures in these tumors (Figure 3A). Each
signature was characterized by a different pattern of
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Figure 1 Mutation spectra of AA-bladder cancers and AA-UTUCs. (A,B) Somatic mutation proportions in trinucleotide contexts for bladder cancers
(130T and 136T) from Taiwan with known AA exposure (A) and AA-UTUCs (9T and 20T) (B). The height of each bar (the y axis) represents the
proportion of somatic mutations that fall into a particular trinucleotide mutational class, adjusted for the frequency of the trinucleotide in the
exome (Table S3 in Additional file 1). Along the x axis the mutations are organized first by the nucleotide mutation itself: C > A (turquoise bars), C > G
(orange bars), C > T (blue bars), AT > TA (red bars), T > C (green bars), T > G (brown bars). For each mutation, the 16 trinucleotide contexts are ordered
by the flanking 5’ then 3’ nucleotides. Numbers in parentheses indicate counts of mutations for each single nucleotide substitution (for example,
C > A C> Q). Cosine similarities for AT > T:A mutations were as follows: between 9T and 20T (two UTUCs), 0.989; between 20T and 130T (a UTUC
and a bladder cancer), 0.992; between 20T and 136T (a UTUC and a bladder cancer), 0.982. (C,D) Strand bias showing counts of A> T mutations
(v axis) on the transcribed (T) and non-transcribed (N) strands. Many fewer somatic A > T mutations were observed on the transcribed than on
the non-transcribed strand in both AA-bladder cancers and AA-UTUCs. P-values were computed by one-sided binomial tests compared with the
null hypotheses of equal proportions of mutations on the transcribed and non-transcribed strands.

the 96 potential mutations in a trinucleotide context,
and each signature contributed to a different proportion
of the mutations in each of the tumors (Figure 3B). Not-
ably, EMu discerned a signature almost identical to the
mutation spectra observed in UTUCs strongly mutagen-
ized by AA, as can be seen by comparing the EMu AA
signature in Figure 3A with the spectra in Figure 1B
(cosine similarities for A:T > T:A mutations >0.987). To
our knowledge, this signature has not previously been re-
ported in bladder cancers [16,17,20]. In addition to
the AA signature, EMu discerned the previously re-
ported signatures of CpG > TpG mutations and of
activated APOBECs (C > T and C > G mutations in

TCW trinucleotide contexts, where W denotes A or T;
Figure 3A) [16,17,20]. To further confirm the EMu ana-
lysis, we also analyzed the same set of tumors with NMF
[16,17] and found nearly identical signatures (cosine
similarity 0.9988 between the EMu and NMF AA
signatures) and similar estimates of the AA signature’s
contributions for these tumors (Figures S8 to S10 in
Additional file 1).

As part of their analyses, EMu and NMF estimate the
contribution of each mutation signature to the somatic
mutations of each tumor (Table 1). However, neither
EMu nor NMF provides a statistical hypothesis test of
the presence or absence of a particular signature in a



Table 1 Tumors with high proportions of A:T > T:A mutations

Mutations attributed Mutation count

A:T > T:A proportion A > T Count

Non-transcribed/ Strand bias

A:T > T:A cosine

to AA @lA>T) similarity with

Sample Cancer type Proportion Total AT>TA P FDR Non-transcribed Transcribed P FDR AA signature
9T uTuC 0.97 2386 2008 0 0 1505 503 0.75 8E-116 3E-113 0987
20T uUTuC 0.96 1933 1641 0 0 1265 376 0.77 1E-112 2E-110 0995
K100T uTuC 097 2342 1982 0 0 1435 547 0.72 9E-92 1E-89 0992
6T ytuc 0.95 1552 1302 0 0 994 308 0.76 1E-84  9E-83 0995
K80T uTuC 0.98 1713 1480 0 0 1100 380 0.74 1E-81  1E-79 0988
13T Jtuc 0.99 1409 1222 0 0 924 298 0.76 3E-75  2E-73  099%
K79T ytuc 0.99 1573 1374 0 0 1015 359 0.74 5E-73  3E-71 0992
130T Bladder 0.82 1366 980 0 0 708 272 0.72 1E-45  5E-44 0992
HK41T HCC 0.95 781 630 0 0 441 189 0.70 2E-24  7E-23 0988
3T ytuc 091 666 524 0 0 369 155 0.70 2E-21  6E-20 0959
136T Bladder 0.73 688 450 1E-229 4E-228 339 m 0.75 3E-28  1E-26 0987
10T Utuc 0.73 545 351 3E-176 9E-175 263 88 0.75 1E-21  4E-20 0972
HK2B_8d2 AA-treated cell line 0.73 413 264 7E-132 2E-130 178 86 0.67 8E-09 2E-07 0972
GZ75T HCC 0.71 404 250 4E-120 1E-118 167 83 067 6E-08 2E-06 0975
HK2_AA AA-treated cell line 0.66 261 152 2E-68 4E-67 107 45 0.70 3E-07 6E-06  0.905
333241977 Bladder 042 182 67 5E-17 1E-15 46 21 0.69 2E-03  3E-02 0942
B23 Bladder 036 241 76 9E-15 2E-13 56 20 0.74 2E-05 4E-04 0949
HK174T HCC 048 109 46 1E-14 2E-13 24 22 0.52 044 0.85 0.886
HK65T HCC 047 119 48 2E-14 5E-13 41 7 0.85 3E-07 7E-06  0.889
B77 Bladder 045 106 42 2E-12 4E-11 38 4 0.90 3E-08 8E-07 0927
HK81T HCC 045 101 39 3E-11 5E-10 26 13 067 3802 026 0.893
GZ119T HCC 046 59 25 1E-08 2E-07 17 8 0.68 5E-02 040 0.736
Bg9-12 Bladder 03 238 62 1E-08 2E-07 48 14 0.77 9E-06 2E-04 0950
HK267T HCC 043 61 23 5E-07 8E-06 18 5 0.78 5E-03  7E-02 0833
HK75T HCC 041 67 24 9E-07 1E-05 12 12 0.50 0.58 1 0.871
21T Utuc 0.34 76 24 1E-05 2E-04 17 7 0.71 3802 027 0.860
TCGA-K4-A6FZ-01A-  Bladder 0.18 461 83 4E-04 6E-03 52 31 0.63 1E-02  0.15 0.525
11D-A31L-08

T uTuC 027 70 18 2E-03 3E-02 17 1 094 7E-05 1E-03 0777

HCC, hepatocellular carcinoma; NA, not applicable; UTUC, upper urinary tract urothelial cell carcinoma.
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bladder cancer (TCGA-FD-A6TE-01A-12D-A339-08) without evidence of AA exposure. Plotting conventions are as for Figure 1. In total, 6 of 349 bladder
cancers showed evidence of AA exposure (Figure S1 in Additional file 1).
A\

given tumor. Indeed, both EMu and NMF often attribute ~ A:T > T:A mutations caused by AA and the fact that,

at least a small number of mutations to every available
signature, which for many exposures does not corres-
pond to a biologically plausible level of exposure. There-
fore, we developed statistical tests for likely AA
exposure based on two characteristics of AA mutagen-
esis. One was the high proportion of A:T > T:A muta-
tions (Figure 3A), which are rare among other known
mutation signatures [16,17]. The other characteristic was
the bias against the presence of A > T mutations on the
transcribed (antisense) strand, which is presumed to
result from transcription-coupled repair of AA-derived
adenine adducts on this strand. To statistically test for
AA exposure, we made use of the high proportion of

among previously reported signatures in bladder cancer,
Signature 5 has the highest proportion of A:T > T:A mu-
tations (Figure S7 in Additional file 1; Figure S31 in ref-
erence [16]). Specifically, we adopted the null hypothesis
that the A:T > T:A mutations in a given tumor were de-
rived only from Signature 5 and calculated as a P-value
the probability that Signature 5 alone, with no contribu-
tion from AA mutagenesis, was responsible for the
observed proportion of A:T > T:A mutations. The pro-
portion of A:T > T:A mutations in Signature 5 is 12.5%
[16]. This null hypothesis was conservative in that the
other signatures previously observed in bladder tumors
have far lower proportions of A:T > T:A mutations than
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Signature 5. We calculated FDRs across the P-values of
all tumors, adopting a threshold of 0.05 as indicating
possible AA exposure. Seven bladder cancers (including
the two from patients in Taiwan) met this threshold,
with the highest FDR being 0.006 (Table 1). In
addition to the two tumors from Taiwan, the bladder
cancers with possible AA signatures comprised one
out of the 11 tumors treated in Singapore (Figure 2A;
Figures S1 and S2 in Additional file 1), three of the
99 tumors treated in China (Figure 2B, Additional
file 1: Figures S1, S3) and one of the 194 tumors
treated in North America (Figure 2C; Figures S1 and S4

in Additional file 1; Table 1). The mutation spectra of
these seven tumors, together with AA-exposed UTUCs
and HCCs for comparison, are shown in Figures 1A and
2A-C and Figures S1, S5 and S6 in Additional file 1.
These tumors included three muscle-invasive tumors
(two from Taiwan and one from the United States) and
four non-muscle-invasive tumors (one from Singapore
and three from China).

We then confirmed this analysis using the second
characteristic of AA mutagenesis: bias against A > T
mutations on the transcribed strand. We calculated
P-values based on the observed proportions of A > T
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mutations on the transcribed and non-transcribed
strands and the null hypothesis of an equal number
of A > T mutations on both strands. All seven bladder
tumors had raw P-values <0.0004 and FDRs <0.017
(one-sided binomial tests; Table 1).

All but one of the bladder cancers that were identified
as due to, or as possibly due to, AA exposure, based on
the criteria above, had patterns of trinucleotide contexts
for A:T > T:A mutations that were very similar to the
EMu-extracted AA signature (Figure 3A). This was indi-
cated by A:T > T:A cosine similarities >0.92 for all the
bladder cancers in Table 1 except one. The exception
was a tumor of a white, 86-year-old patient who was
treated in the United States (TCGA-K4-A6FZ-01A-11D-
A31L-08). This tumor showed relatively higher rates
of 5'-TC-3" to 5'-AC-3" (equivalently, 5'-GA-3" to
5'-GT-3") mutations (Figure 1C). This was a pattern not
seen in the EMu-extracted AA signature (Figure 3A) or
in tumors with predominant AA mutations (Figure 1).
This dissimilarity was reflected by a cosine similarity of
only 0.53 between this tumor and the EMu-extracted
A:T > T:A AA signature. Clinical history that would indi-
cate whether this patient used herbal remedies was
unavailable. However, this patient was a lifelong non-
smoker, suggesting that tobacco smoke would not have
been a source of the A > T mutations in this tumor.
Thus, the statistically significant over-representation of
AT > T:A mutations and the strand bias in this tumor
may be due not to AA but to another, unknown mutagen.

Discussion
We have presented evidence of AA mutagenesis in the
genomes of bladder cancers in patients known to have
been exposed to AA, as well as evidence of AA exposure
in a subset of bladder cancers from three patient popula-
tions. First, we found evidence of AA exposure in 3 of
99 bladder cancers treated in China. This is consistent
with the fact that plants containing AA are components
of traditional Chinese medicine [46]. Indeed, AA-
containing herbal remedies are still readily available in
China [47]. We also observed one likely AA-exposed
case of bladder cancer from Singapore where traditional
Chinese medicine is also widely used. Because the pa-
tient was 80 years old, he may have been exposed to AA
before its use was prohibited in Singapore. Although
HCCs were not the focus of this study, consistent with
our previous report [14], the analysis here showed that
many HCCs have A:T > T:A mutation patterns very
similar to that of the AA signature (Figure 3A). HK41T
had a cosine similarity with the EMu-extracted A:T > T:A
signature of 0.99 (Figure 1D, Table 1) and GZ75T had a
similarity of 0.975 (Table 1).

Our data demonstrating a molecular link between AA
and bladder cancer are consistent with previous work
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showing the presence of AA adducts in the bladders of
AA-exposed mice [34,35], with the role of AA in UTUCs
[14,23,24], and with previously reported elevated risk of
bladder cancer in patients with AA-induced kidney fail-
ure [31-33]. However, to our knowledge, the present
research is the first to connect AA mutagenesis with
bladder cancer in patients from the general population
without a history of AA-induced kidney failure.

Although one bladder tumor from Singapore and
three bladder tumors from China showed patterns of
A:T > T:A mutations that were very similar to those
in tumors with known AA exposure (Table 1; Figure S1
in Additional file 1), it remains a formal possibility that
these mutations arose from exposure to an unknown
mutagen with effects very similar to those of AA. At
present, no such mutagen is known, but the mutation
signatures of most mutagens remain unstudied. Never-
theless, the reasonable prior possibility of AA exposure
through herbal remedies in the tumors from Singapore
and China would argue that the mutagen in these tumors
was in fact AA.

Associations between exposures and disease are often
difficult to establish based on epidemiological data alone
[48,49]. Various 'omics' approaches, such as transcripto-
mics, metabolomics, proteomics, and genomics, are now
being evaluated as tools for assessing environmental
exposures and cancer risk [50]. Here, we provide an ex-
ample of using recent advances in sequencing technolo-
gies to detect a new likely link between AA mutagenesis
and bladder cancers, in addition to its links with UTUC,
HCC, and RCC. This was possible because the AA sig-
nature has been established in cell culture [14,25] and
because previous epidemiological data have linked AA
to UTUCs [24,28,51].

The medicinal use of AA-containing plants has a long
and geographically diverse history and likely remains
widespread despite efforts at regulation in some coun-
tries [51-54]. This is probably especially true in highly
populous countries in Asia: China and India alone have
a combined population of >2.6 billion, and although use
of AA-containing plants in Chinese herbal medicine has
received much attention, AA-containing plants are prob-
ably also widely used in the Indian subcontinent [53,54].
In addition, there is evidence that AA-containing plants
are also used in Central and South America [53]. Al-
though use of these plants does not appear to be wide-
spread in the US, their sale or use as botanical products
without claims of health benefits are not restricted there.
Under the Dietary Supplement Health and Education
Act of 1994, the US Food and Drug Administration has
little ability to regulate botanical products, although it
has urged manufacturers and distributors to ensure that
botanical products are free of AA and advised consumers
to not use products that might contain AA [55-57].
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Conclusions

Large populations are using traditional herbal medicines
that prescribe AA-containing plants, and there is new,
rapidly emerging molecular epidemiological evidence of
AA exposure in several types of cancer, including blad-
der cancer, not previously linked to AA. There is also
additional exposure to AA due to unintended contamin-
ation of food with AA-containing plants. Thus, multiple
lines of evidence point to AA exposure as a worldwide
public health issue that should be addressed by further
investigation and by primary prevention through regula-
tion and public education. In addition to opportunities
for primary prevention, knowledge of AA exposure
would provide opportunities for secondary prevention in
the form of intensified screening of patients with known
or suspected AA exposure.
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