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Abstract

freely available from https://bitbucket.org/srp33/gsoa.

Although in some cases individual genomic aberrations may drive disease development in isolation, a complex
interplay among multiple aberrations is common. Accordingly, we developed Gene Set Omic Analysis (GSOA), a
bioinformatics tool that can evaluate multiple types and combinations of omic data at the pathway level. GSOA
uses machine learning to identify dysregulated pathways and improves upon other methods because of its ability
to decipher complex, multigene patterns. We compare GSOA to alternative methods and demonstrate its ability to
identify pathways known to play a role in various cancer phenotypes. Software implementing the GSOA method is

Background

A pressing goal within the research community is to fur-
ther elucidate cellular processes affected by molecular
aberrations by better utilizing the wealth of genomic
data available. Genomic aberrations that occur within
tumors are notoriously heterogeneous - even within a
given cancer type, aberrations occur in a wide variety of
genes due to different mechanisms, including aberrant
gene expression, somatic mutations, epigenetic changes,
and DNA copy-number alterations [1]. However, even
though the genomic landscapes of individual tumors
vary, the same biological pathways are often affected
across many tumors of the same type. For example,
Wood et al. showed that p110a, the active component
of PI3K, was mutated in 11.9 % of breast tumors; how-
ever, when other genes in the same biological pathway
were considered, 33.3 % of tumors contained a mutation
in the PI3K network and thus had potential to increase
proliferation and suppress apoptosis [2]. Pathway-level
aggregation can place such observations in biological
context [2, 3]. In addition, pathway-based, targeted
cancer therapies are more specific and can be less toxic
than conventional chemotherapies [4]. Therefore, under-
standing the pathway activity that underlies specific
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cancers may lead to better treatments. Because one type
of data alone may provide an incomplete view of path-
way activity - and due to the availability of multi-omic
data from projects such as The Cancer Genome Atlas
(TCGA) [5] - there is a need to develop methods capable
of analyzing multiple types of omic data and thus to
provide a more comprehensive view of cancer at the
pathway level.

Gene set analysis (GSA) methods are widely used to
analyze biological data at the pathway level [6—10]. Gene
Set Enrichment Analysis (GSEA) [3] is the most popular
such method, and it has been extended and improved by
many [11-13]. GSA methods differ in the ways they
calculate gene-level statistics, derive null hypotheses,
compute gene set statistics, and assess significance [9].
However, the primary goal of each of these methods is
to map omic measurements to gene sets that represent
logical groupings of genes, including biological pro-
cesses, molecular functions, and cellular components.
The primary output of these methods is a ranked list
that indicates which gene sets are considered to be
most significantly dysregulated between two condi-
tions. This list may then be used to inform computa-
tional and/or bench research, which can then help to
uncover the precise mechanisms underlying the bio-
logical phenomenon. These methods have been in-
strumental to important biological discoveries, such
as the identification of genes involved in oxidative
phosphorylation whose expression is correlated with
diabetes [3], establishment of molecular subtypes in
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prostate cancer [14], and identification of pathways
involved in glioblastoma survival [15].

Existing GSA methods have proven useful in analyzing
gene expression data but suffer from various limitations.
Most methods are designed to evaluate only one type of
omic data at a time. Although many GSA methods are
designed to analyze microarray data [3, 11, 16-19],
relatively few methods are capable of analyzing RNA-
Sequencing data [20-23], and even fewer handle single-
nucleotide variant data [19, 24, 25] or DNA methylation
data [26]. Second, few existing methods account for
intervariable dependencies. Taking into account such
dependencies is critical because molecular-level interac-
tions occur ubiquitously within cells. In addition, many
methods do not consider the directionality of gene
changes, even though pathway dysregulation may result
from up- and downregulation of genes.

To address these issues, we have developed a novel
approach, Gene Set Omic Analysis (GSOA). Under the
assumption that aberrant biological activity is reflected
in omic measurements from multiple data types, GSOA
seeks to identify multi-gene patterns that differ between
biological samples representing two conditions. This ap-
proach is based on the premise that a given gene typic-
ally influences a biological process in conjunction with
other gene(s) and that genes affecting the process may
differ considerably from sample to sample. Accordingly,
individual genes may show no statistical significance in
isolation; however, multi-gene patterns may reflect these
dynamics. The GSOA method employs the Support
Vector Machines algorithm [27], which is designed to
account for complex dependencies among variables (in
this case, genes). When such patterns can be identified
consistently for a given gene set, that gene set is hypoth-
esized to play a role in the condition of interest. GSOA
can be applied to any type of omic data for which gene
set annotations exist; this includes (but is not limited to)
gene-expression microarray data, RNA-Sequencing
data, single-nucleotide variant data (SNV), DNA copy-
number variation data (CNV), and epigenetic data.

We have validated GSOA using simulated data, gene-
expression microarray data, RNA-sequencing data, CNV
data, somatic SNV data, and combinations of these data
types. Using data from hundreds of tumors in TCGA,
we have identified pathways that show patterns of dys-
regulation between HER2-positive and HER2-negative
breast tumors and pathways whose expression differs be-
tween individuals who carry a somatic mutation in the
RAS subfamily and those who do not. Additionally, we
have compared uterine serous carcinomas (USC) against
uterine endometrioid carcinomas (UEC) and have identi-
fied pathways that may play a role in USC treatment re-
sistance. GSOA suggests that the MYC pathway plays an
important role in USC tumors. Further analysis of gene
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expression levels and somatic mutations in these tumors
suggests that key proteins in the MYC pathway are up-
regulated in USC tumors; this finding has clinical impli-
cations and provides motivation for more in-depth
biological examination into this mechanism. Our ap-
proach serves as a way to extract biologically relevant
patterns from large, heterogeneous, omic datasets in
support of subsequent, hypothesis-driven experimental
studies.

Methods

Software implementation

The GSOA code implementation is freely available at
[28]. A schematic overview of the GSOA method is
shown in Fig. 1. Required inputs are: (1) a data file con-
taining omic measurements for each sample; (2) a data
file indicating the condition or phenotype status for each
sample; and (3) a file that indicates which genes map to
which gene sets. Data file #1 uses a simple matrix format
in which samples represent columns and rows represent
genomic features. This file also should contain a header
row with an identifier for each sample. Each row should
start with a value that indicates the gene name. Multiple
rows per gene may be listed - for example, when an
omic-profiling technology produces multiple data values
per gene. When multiple types of omic data are available
for the same samples, multiple data files can be specified
using wildcards. Data file #2 contains two columns; the
first value in each row should be a sample identifier (and
should correspond exactly with the identifiers in data
file #1), and the second value should indicate which
class (for example, condition or phenotype status)
the sample represents. Data file #3 should be in Gene
Matrix Transposed (GMT) format as used in the
Molecular Signatures Database [29]. The first value in
each row is the gene set name, the second value is a de-
scriptor, and the remaining, tab-separated values are the
genes associated with that gene set. Data files #2 and #3
should contain no header row, and all files should use tab
characters as delimiters. Our software implementation of
GSOA provides examples of each of these file types.

Algorithm

For each gene set, the GSOA algorithm performs the
following steps in sequence: (1) the omic data are fil-
tered to include only the genes that belong to that gene
set; (2) a classification algorithm predicts the class of
each sample via k-fold cross validation; and (3) the area
under the receiver operating characteristic curve (AUC)
is calculated as a measure of prediction accuracy. Prior
to classification, we mean center the data and scale it to
unit variance; however, we recommend that omic data also
be preprocessed (for example, background corrected) using
methodologies appropriate for a given omic-profiling
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Gene Set AUC | p-val | FDR
KEGG Glioma 0.99 | 0.01 | 0.10
PID IL6 Pathway 0.96 | 0.02 | 0.20
Biocarta G1 Pathway | 0.86 | 0.05 | 0.30
Reactome p53 Pathway| 0.50 | 0.10 | 0.90

most likely to play a role in the biological question of interest

Fig. 1 High-level description of the GSOA methodology. After mapping input data to gene sets, GSOA uses the SVM algorithm to assess how
accurately samples from the two classes can be classified. Gene sets for which relatively high classification accuracy is attained are considered

technology. For step #2, we use five cross-validation folds
by default; the user can specify alternate values for k. Any
classification algorithm could be used for step #2; however,
we use the Support Vector Machines (SVM) algorithm
because it is designed to account for complex depend-
encies in high-dimensional data and has been shown to
perform consistently well compared to other classifica-
tion algorithms [30]. We use the radial basis function
SVM kernel with default parameters as implemented in
the scikit-learn framework [31], which uses LibSVM
[32]; it is also possible to specify alternate values for
the cost and gamma parameters. In addition, we pro-
vide an option for users to auto-tune the SVM parame-
ters via nested cross validation.

When multiple types of omic data are used as input,
GSOA merges the data, and the classification algorithm
builds a single SVM model that integrates data across
the omic types. In deriving these integrated models,
GSOA includes whichever genes map to a given pathway
for each omic type, even though different omic technolo-
gies may profile different genes. However, GSOA only con-
siders samples that contain data for all omic types.

For a given gene set, a relatively high AUC score
(maximum of 1.0) indicates that the algorithm accurately
predicted the group to which each sample belongs. An
AUC value near 0.5 indicates that the predictions per-
formed no better than would be expected if the samples
were assigned randomly to either group.

To remove any correlation between gene-set size and
AUC values, we incorporated a step into our algorithm
that repeats cross-validation for randomly selected gene
sets. The number of genes in each random gene set cor-
responds to the sizes of the actual gene sets; however, to
reduce computational burden, we use random gene sets
of pre-specified sizes (1, 5, 10, 25, 50, 75, 100, 125, 150,
200, 250, 300, 400, 500+) that correspond to the
(rounded up) sizes of the actual gene sets. For example,
if the actual gene sets had 8, 47, 99, 232, and 245 genes,
respectively, the random gene sets would contain 10, 50,
100, and 250 genes. After performing cross-validation
repeatedly (100 times by default) for each random gene
set size, the resulting AUC values represent a null distri-
bution. For each actual gene set, we calculate an empir-
ical P value as the fraction of AUC values from the
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corresponding null distribution that exceed the actual
AUC value. This approach generates a P value that is in-
dependent of pathway size (see Results). GSOA produces
a rank-ordered list that indicates the AUC, P value, and
Benjamini-Hochberg false discovery rate (FDR) for each
gene set [33].

Results

Researchers often desire to characterize the signaling
pathways that play important roles in a particular
phenotype. A common approach is to profile biological
samples using one or more omic technologies and then
to search for differences in measurements between the
sample groups. Often these investigations are conducted
at the individual gene level; however, such approaches
may fail to account for cooperation among genes. We
have developed the GSOA method, which seeks to iden-
tify multi-gene patterns that differ between biological
samples from either of two groups. When such patterns
can be identified for a particular gene set - for example,
genes that participate in a given biological process - we
assume that the genes play a coordinate role in the bio-
medical phenomenon of interest. We prioritize the gene
sets according to how accurately biological samples from
the two groups can be distinguished from each other,
using only omic data for a given gene set. Unlike many
existing approaches that identify gene sets that are either
up- or downregulated as a whole, our method assumes
that some genes will be upregulated and some will be
downregulated and that these responses may vary across
the samples. We use a machine-learning algorithm to
identify complex, multidirectional patterns that differ be-
tween the two conditions. Table 1 lists the various data-
sets we used in our analyses.

In a demonstrative example comparing breast-cancer
subtypes, we observed that gene sets containing a
relatively large number of genes resulted in higher
overall AUC values (Additional file 1: Fig. SIA,
Spearman correlation coefficient = 0.764). However
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our random-selection procedure for generating P values
accurately corrects the P values for this bias (see Software
implementation). Additional file 1: Fig. S1B shows that the
resulting empirical P values - which indicate how likely
one would observe a particular AUC value relative to ran-
domly selected gene sets of similar size - show no bias to-
ward larger gene sets.

Validation using simulated data

We generated simulated data for 100 samples and
20,000 genes (see Additional file 1); in an initial evalu-
ation, the samples were split evenly between two classes.
We applied GSOA, GSEA [3], GAGE [20], and GSAA
[19] to the simulated data and assessed how well each
method predicted as significant the gene sets that con-
tained signal genes (using FDR values as a metric). We
compared GSOA against GSEA, GAGE, and GSAA be-
cause they are also supervised methods and are com-
monly used in the bioinformatics community. Like
GSOA, GAGE and GSAA can be applied to multiple
types of gene-expression data. In addition, GAGE can
account for gene directionality. For gene sets containing
a minimum of 10 signal genes, GSOA consistently pro-
duced FDR values below 0.20. In contrast, GSEA,
GAGE, and GSAA produced FDR values below 0.20
for gene sets containing at least 15-25 signal genes
(Additional file 1: Fig. S2). Accordingly, GSOA was
more sensitive at identifying relatively subtle patterns
within the data.

Using the simulated data, we evaluated the balance be-
tween sensitivity and specificity for each method. In this
context, sensitivity refers to an algorithm’s ability to
identify as significant the gene sets that contained signal
genes. Specificity refers to the algorithm’s ability to
correctly classify (as insignificant) any gene set that
contained no signal gene. We used the Matthews
Correlation Coefficient (MCC) to quantify the balance
between sensitivity and specificity [34]. For each gene set,
the predictor was the FDR value that had been assigned

Table 1 Number of samples contributing to each class and omic type for each dataset

Analysis Class 1 Class 2 Somatic mutation RNA-Seq CNV Microarray

p53 mutation status 17 33 - - - 50
Wild-type p53-mutated

Gender 15 17 - - - 32
Male Female

RAS mutation status (TCGA LUAD) 66 161 - 169 - -
Wild-type RAS-mutated

HER2 analysis (TCGA breast) 58 489 506 508 308 519
HER2 + Other breast

USC analysis (TCGA endometrial) 53 USC 307 UEC 244 323 353 -

LUAD, lung adenocarcinoma; UCS, uterine serous carcinoma; UES, uterine endometrioid carcinoma



MacNeil et al. Genome Medicine (2015) 7:61

to the gene set by each algorithm. Across all of the FDR
thresholds that we tested, GSOA attained considerably
higher MCC values than the competing methods (Fig. 2a).
In particular, at relatively stringent FDR thresholds, as
would be used in analyzing omic data, GSOA was much
more sensitive than the other methods (Fig. 2b) and
attained similar levels of specificity (Fig. 2c). For example,
at an FDR threshold of 0.05, GSOA produced 243 (26 %)
more true positives than GSAA, the best competing
method (Additional file 1: Table S1A). GSOA produced
11 false positives (1 % of all signal gene sets), which was
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only three more than GSAA. At an FDR threshold of
0.20, GSOA and GAGE attained the same MCC value;
GSOA produced 150 more true positives than GAGE,
whereas GAGE produced 123 fewer false positives
(Additional file 1: Table S1B).

As a follow-up analysis, we simulated a dataset in
which 90 samples belonged to one class and 10 samples
belonged to the other class, mimicking class imbalances
that are common in omic studies. GSOA continued
to perform best out of the methods, although the
performance of all methods declined relative to the

50/50 sample split 90/10 sample split
A D
Q e
- — GSOA - — GSOA
% o — GSEA % o — GSEA
> | oecee0000000,,, — GSAA ] — GSAA
%% o 1-® osga:noosno — GAGE ﬂ§ ° — GAGE
2 0980 o 2
Matthews (j)ﬁ 37 a,goﬂ U)ﬁ g— 00000000
Correlation 27 o gooo® 25 00®°°® o8
. . T & |° bo0°°® o ® 00°® ,o085888
Coefficient O 2 o ] G2 s o ,e®%50°
o U 00°® o 8 g2%00°
=] 0 S5 o .8 8 0°°
8 1. 8 S q.ete
< < o
Q Qo
© 1 1 1 1 1 © 1 1 1 1 1
0.01 0.05 0.10 0.15 0.20 0.01 0.05 0.10 0.15 0.20
FDR Threshold FDR Threshold
B E
e o
- — GSOA - — GSOA
— GSEA — GSEA
%-c @ ooocogonu°°°°°°::: —— GSAA %U @© | —— GSAA
ns ° | Leoe0°2%° ool — aAGE ngo © — GAGE
o < 00 go000°° o <
ce o 9%50° € P @ poo0000°
8‘5 e 8,:o° 8E S 00?°
¢ 0o0°° 00°° o0
Sensitivity 3 x| 57 * eee u.,g‘ég°§3
55 °|° 58 °| o7 geriilee
n o go0°’ 7} o | oo 08% 00°
N N VR
o [-° o [¢8°°
© 1 1 1 1 1 © 1 1 1 1 1
0.01 0.05 0.10 0.15 0.20 0.01 0.05 0.10 0.15 0.20
FDR Threshold FDR Threshold
Cc F
O-fnco..| [- -3 o-—ooe.c..ll. o
- es8883888888288| — asoa - 888888888 || — csoa
%) %0, %]
2 oof|| — asea 2 — GSEA
o X — GSAA no X4 — GSAA
oo © — GAGE o9 © — GAGE
CG o© S@ o
8¢ 51 82 o5
Specificity g,E < | g,f < |
38 o g8 o
g 3 g 3
c< J c< 3
R R
o Q
© 1 1 1 1 1 © 1 1 1 1 1
0.01 0.05 0.10 0.15 0.20 0.01 0.05 0.10 0.15 0.20
FDR Threshold FDR Threshold
Fig. 2 Results of cross-algorithm comparisons on simulated data. We compared GSOA against other methods using simulated data that contained
interdependence among variables. For various FDR thresholds, we calculated the proportion of simulated gene sets containing signal that were
considered significant and the proportion of gene sets containing only random data that were considered insignificant. Panels a-c show results for
balanced data (50/50 sample split); Panels d-f show results for unbalanced data (90/10 sample split). See also Additional file 1: Fig. S4




MacNeil et al. Genome Medicine (2015) 7:61

data that used a 50/50 class split (Fig. 2d-f, Additional
file 1: Fig. S2).

We repeated these simulation analyses using P values
rather than FDR values (Additional file 1: Figs. S3
and S4). The results were similar to when FDR values
are used. Because 0.05 is an extremely common P value
threshold, this was the maximum threshold we used in this
part of the analysis.

For these analyses, we considered FDR and P value
thresholds that are used in common research practice.
Although GSOA performs better than (or at least simi-
larly to) competing methods at these thresholds, it may
not perform as well at less-stringent thresholds.

Validation using benchmark microarray datasets

We analyzed GSOA’s ability to provide biologically mean-
ingful results using microarray data from Subramanian
et al. [3]. Again, we compared GSOA against GSEA,
GAGE, and GSAA (see Additional file 1 for specific pa-
rameters). The p53 dataset contains gene expression
values from 50 cancer cell lines that either harbored mu-
tations in the TP53 gene (33 cell lines) or were wild type
(17 cell lines). This dataset has been used as a benchmark
in numerous studies [3, 9, 18, 35]. p53 is a tumor sup-
pressor protein involved in the cell cycle that induces
apoptosis when a cell's DNA becomes damaged [36]. In
performing these comparisons, we used 522 canonical
gene sets that were used in the original GSEA paper [3].
GSOA prioritized gene sets that are clearly related to p53
and cell-cycle function (see Table 2, Additional file 2).
Refer to Additional file 1: Fig. S5 for the GSOA KEGG
p53 pathway ROC curve. The other methods also
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performed well; however GSOA identified more gene sets
that play a role in cell-cycle regulation.

We next tested each method using microarray data
representing female and male lymphoblastoid cells using
522 canonical gene sets and 319 chromosomal gene
sets, both of which were used in the original GSEA
paper [3]. All methods performed well at prioritizing
Y chromosome gene sets, which are likely to be dif-
ferently regulated between male and female cells.
Each method also identified gene sets associated with
the X chromosome and sex-specific tissue; however,
FDR values were highly variable across the methods
(see Table 3, Additional file 2).

Pathway-based comparison of lung adenocarcinoma
samples based on RAS mutation status

Mutations in the RAS protein subfamily (HRAS, NRAS,
KRAS) occur frequently in various types of cancer [37]
and have a relatively high frequency in lung adeno-
carcinomas [38]. Oncogenic RAS mutations cause
widespread changes in gene expression and lead to
downstream activation of the PI3K/AKT and MAPK/
ERK cascades, which increase cell growth and survival
and causes changes in cellular differentiation [37]. RAS-
driven cancers are extremely difficult to treat [37]. Identi-
fying pathways activated by RAS mutations could help in
developing targeted treatments for tumors with RAS mu-
tations [39].

We applied GSOA, GSEA, GAGE, and GSAAseqSP
[23] to RNA-Sequencing data from lung adenocarcin-
oma samples in TCGA (see Additional file 1 for specific
parameters). We compared tumor samples in TCGA

Table 2 Validation and comparison to other methods in a p53 benchmark microarray dataset

GSOA GSEA GAGE GSAA
Canonical gene sets Rank P FDR Rank P FDR Rank P FDR Rank P FDR
P53 pathway 1 0.001 0.037 1 0.000 0.009 26 0.093 0.822 1 0.000 0.566
P53 signaling 15 0.002 0.058 21 0.028 0614 30 0.109 0.822 29 0.048 0.695
P53 hypoxia pathway 1 0.001 0.037 1 0.000 0.009 27 0.103 0.822 5 0.002 0.713
P53 up 1 0.001 0.037 1 0.000 0.065 20 0.083 0.822 1 0.000 0.595
DNA damage signaling 1 0.001 0.037 80 0.223 1 5 0.043 0.822 40 0.061 0.693
Radiation sensitivity 1 0.001 0.037 6 0.002 0.088 18 0.077 0.822 1 0014 0621
Cell cycle regulator 1 0.001 0.037 116 0330 1 4 0.042 0.822 20 0.030 0.571
Cell cycle pathway 1 0.001 0.037 237 0.729 0.949 17 0.075 0.822 55 0.104 0.593
Cell cycle 15 0.002 0.058 172 0531 0.930 7 0.046 0.822 93 0.175 1
Cell cycle arrest 43 0.021 0.255 166 0.509 0.887 41 0.141 0.822 216 0.396 1
Ras pathway 39 0016 0.209 7 0.002 0284 64 0.186 0.822 312 0.565 1
MAPK cascade 50 0.040 0418 16 0.021 0494 57 0.177 0.822 107 0.204 1
# of sig. gene sets 62 32 10 39

Each method identified pathways related to p53 signaling and cell-cycle regulation. The ranks for these pathways were generally lower for GSOA than for the

competing methods
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Table 3 Validation and comparison to other methods in a gender benchmark dataset
C1 cannonical gene sets (MSigDB) GSOA GSEA GAGE GSAA

Rank P FDR Rank P FDR Rank P FDR Rank P FDR
chry 1 0.001 0.079 1 0.000 0.000 1 0.001 0.297 1 0.000 0.105
chrYgll 1 0.001 0.079 1 0.000 0.000 2 0.002 0.335 1 0.000 0.105
chrYp11 1 0.001 0.079 1 0.000 0.002 6 0.052 0.923 1 0.000 0.210
chrxq26 17 0.035 0623 114 0.652 0.961 316 0.979 0.979 284 0.892 0.959
chrXp22 156 0.505 0.985 4 0.002 1.000 3 0.008 0.895 1 0.000 1
# of sig. gene sets 29 7 6 21
C2 cannonical gene sets (MsigDB)
X-inactivation genes 17 0.031 0.770 1 0.000 0.000 2 0.008 0914 1 0.000 0.135
Testis genes 71 0.127 0.885 1 0.000 0.067 3 0.008 0914 1 0.000 0.890
GNF female genes 499 0.943 0.982 3 0.010 0.067 1 0.005 0914 1 0.000 0.520
# of sig. gene sets 34 8 7 23

We used the various methods to compare gene-expression levels between male and female cell lines

that contained a RAS subfamily mutation against sam-
ples that did not [40]. Previously, Bild et al. used experi-
mental methods to identify genes dysregulated when
RAS proteins are in an oncogenic state [41]. We evalu-
ated whether GSOA could identify this gene set as sig-
nificant in these tumor samples. As a control, we
included 3,401 additional gene sets from the Molecular
Signatures Database’s chemical and genetic perturba-
tions collection [29]. GSOA successfully identified the
RAS oncogenic gene set (P = 0.009) and identified fewer
non-RAS related gene sets than the other methods
(Additional file 1: Table S2, Additional file 3). Refer to
Additional file 1: Fig. S6 for the Bild HRAS oncogenic
signature gene set ROC curve). Such an analysis could
also be applied to larger, curated gene set databases to
aid in generating hypotheses about potential pathways to
target in RAS-driven cancers.

Comparison of HER2-positive and HER2-negative breast
cancers using multiple types of omic data

We sought to characterize pathway-level effects resulting
from HER2 amplification in breast tumors from TCGA
[42]. We used GSOA to compare HER2 positive samples
against HER2 negative samples (including normal con-
trols). Using 1,320 canonical pathways [29], we first
tested the robustness of our method to inter-platform
differences by applying GSOA to microarray and RNA-
Sequencing data from the same biological samples (see
Additional file 1 for specific parameters). Although these
technologies both measure RNA abundance, they pro-
duce data with different numerical distributions. The
GSOA results for these two platforms were highly corre-
lated (Spearman correlation coefficient = 0.909 for AUC
values, 0.728 for P values, see Fig. 3). This level of cor-
relation exceeds what we observed at the individual gene
level (average correlation per gene = 0.676). Importantly,

the findings for these two platforms led to similar bio-
logical conclusions. As expected, among the top results
for both platforms were multiple pathways related to
HER2 (ERBB2) signaling (see Additional file 4). Other
top pathways included those related to PI3K signaling -
which has been associated with the HER2 positive
subtype [43].

We next applied GSOA to somatic CNV and SNV
data for the same samples. RNA-Sequencing data yielded
the highest AUC values overall (see Fig. 4). These find-
ings are reasonable because the HER2-positive subtype
is driven by ERBB2 amplification, which leads to in-
creased expression of HER2 and likely other interacting
molecules [44]. We then compared GSOA predictions
from RNA-Sequencing data against predictions for
the other data types. The RNA-Sequencing and CNV
predictions were modestly correlated (Spearman correl-
ation coefficient = 0.294, Additional file 1: Fig. S7A),
while the correlation between RNA-Sequencing and
somatic mutation predictions was not significant (see
Additional file 1: Fig. S7B). These findings suggest that
various types of omic data may provide complementary
evidence regarding the factors that influence pathway
activity.

To test whether combining omic data was informative,
we aggregated multi-omic data using two different
methods. First, we integrated data from all omic types
into a single dataset and allowed the SVM classifier to
account for dependencies among these data types. Sec-
ond, we used GSOA to analyze each data type separately
and then combined the results using a rank-based
P value calculation [45]. Both methods performed well
and identified an equal number of significant gene sets
related to ERBB2/PI3K signaling (see Additional file 1:
Tables S3 and S4, and Additional file 4). The integrative
approach identified more gene sets related to fibroblast



MacNeil et al. Genome Medicine (2015) 7:61

Page 8 of 12

>

AUC Values (rho = 0.909)

Microarray
OO0000000000000000000+
OCO==MNNWWAPLOOIOONNOOOOO
QUIOUI0UIO IO UI00IOUIO0UIO IO 01O

1

rrrrrrrrrerreroerrrorerrrd
0.00 0.15 0.30 0.45 0.60 0.75 0.90
RNA-Sequencing

\

Fig. 3 Correlation between GSOA output for microarray and RNA-Sequencing data. We used GSOA to compared HER2" breast cancer samples
against HER2™ samples from TCGA for either microarrays or RNA-Sequencing data. GSOA output values correlated strongly for a) AUC scores and
b) P values. Spearman correlation coefficients were used to quantify similarity in ranks between the values

w

P Values (rho = 0.728)

1.00 - oo 0p, %% Lo,

0.95 - ® . .... 0" o?‘ :

0001 & "7 o s Wiy

0854 ° T o a .

0809 0% % o« Volewc. & oo

0701 i £ 3oy &

- o g'® D ® °0

0051 oo 3e X8 gare .
§8'gg- ".'.”%" M-S N ;
= 0. - ® o0 & 0" @ %o ° o ° . °
50200 *meneeve Fuo Mt
_§0.45' io".‘o"'.‘ :. .o.. ° = et
= 0.40 1 wo et °8 @ ..ﬁ. ee”e 4% o4

0357+ 8%p 0% o o o a0 .

030 Babeeopeehns 2

. -1 o ° [ e o °

0204 « ':.. 3 o.o.'oo ° ° °

0.157 Po'te o 2°% *o *.° o« ° .

IR X SR »

000 ] WER.S 0 st s :

030 045 060 075 0.90
RNA-Sequencing

growth factor receptor (FGFR) signaling, which is ampli-
fied in many breast cancers [46] and has been linked to
lapatinib resistance in HER2-positive breast cancer cells
[47]. Together, these results show that summarizing
multiple types of omic data at the pathway level can

HER2+ Breast Cancer vs. Non-HER2
o
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Mutation
Fig. 4 AUC scores for each omic type from the HER2 analysis. GSOA
was applied to various types of omic data from TCGA. HER2" breast
cancer samples were compared against HER2™ samples. Predictions
based on RNA-sequencing data attained the highest accuracy

shed light on biological processes that play a role in
specific cancer phenotypes, and that information can
be aggregated usefully across independent profiling
platforms.

Identification of MYC pathway dysregulation in uterine
serous carcinoma
Most molecular studies in endometrial cancer have fo-
cused on the most common form, uterine endometrioid
carcinoma (UEC), which is primarily driven by PTEN
loss and mutations in FGFR2, ARIDIA, CTNNBI,
PIK3CA, PIK2R1, and KRAS [48]. In contrast, uterine
serous carcinomas (USC) are an extremely aggressive
subtype of endometrial cancer with poorly defined mo-
lecular pathway activity. Although USCs comprise only
about 10 % of endometrial cancer cases, they are respon-
sible for almost half of endometrial cancer deaths [49].
USCs are usually metastatic and chemoresistant, with a
50-80 % recurrence rate and an 18-25 % 5-year survival
rate [50, 51]. Limited studies have shown USC to con-
tain mutations in TP53, PI3KCA, FBXW7, and PPP2RIA,
and overexpression of ERBB2 [52-54]. The poorer sur-
vival and therapy response rates in USC highlight the
need for a deeper understanding of the pathways that
influence USC development in order to identify more
effective therapies.

Here we sought to identify pathway level differences
between USC and UEC. We used GSOA to compare 53
USC and 307 UEC tumor samples from the TCGA
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endometrial carcinoma study [55]. We evaluated RNA-
Sequencing, somatic mutation, and CNV data (see
Additional file 1 for specific parameters). GSOA pri-
oritized pathways known to be dysregulated in either
USC or UEC, as well as various pathways associated
with cancer development in general. GSOA identified 87
significant pathways (P <0.05) for RNA-Sequencing, 144
for somatic mutations, 56 for CNV data, and 139 path-
ways when evidence was combined across these data
types (rank-based P value method) (see Additional file 1:
Table S5, Additional file 5). Alternatively, when the omic
data were combined into a single SVM classifier, 67 gene
sets were significant (see Additional file 1: Table S6,
Additional file 5).

Alterations in the PI3K pathway have been shown to
occur in over 80 % of UEC tumors [56] but not as
frequently in USC [55]. The rank-based method consist-
ently prioritized PI3K gene sets; with the KEGG phos-
phatidylinositol signaling system gene set ranking first
along with many additional PI3K/ERBB related gene sets
(Additional file 1: Table S5). Two PTEN gene sets also
obtained significance - PTEN loss leads to PI3K activa-
tion [56]. In addition, four p53 gene sets were signifi-
cant, which is expected because somatic mutations in
TP53 occur in most USCs [57]. Various additional path-
ways that had previously been associated with these can-
cer types were also identified [58].

The ranked-based method prioritized both the PID
MYC pathway (P = 0.008) and the PID MYC active
pathway (P = 0.057). We took interest to this pathway
because literature on MYC pathway dysregulation in
endometrial cancer is limited. MYC is a proto-oncogene,
which can lead to deregulation of many genes, cause cel-
lular proliferation, and result in tumor formation [59].
Upregulation of MYC via FGF signaling has been re-
ported in endometrial cancer cells [60], and MYC ampli-
fications have been associated with earlier disease
recurrence in endometrial adenocarcinoma patients [61].
TCGA also reported MYC amplifications in their high-
copy number cluster, which included some serous-like
tumors [55].

For validation, we asked whether GSOA could
identify MYC pathway dysregulation in an independ-
ent endometrial cancer dataset. We compared 11
USC and 22 UEC patient tumors from Mhawech-
Fauceglia et al. (Gene Expression Omnibus accession
number: GSE24537) [62]. GSOA identified significant
differences in expression for the PID MYC Repres-
sion Pathway (P = 0.008), although the specific path-
ways differed - perhaps due to the smaller size of
this dataset (see Additional file 5).

To better understand why the MYC pathway was pri-
oritized in our GSOA analyses, we investigated individ-
ual genes within this pathway as well as up- and
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downstream pathways. We compared gene expression
levels and somatic mutation data for USC and UEC
tumors and used the Wilcoxon rank test and Fisher’s
exact test, respectively, to look for significant differ-
ences at the individual gene level (Additional file 1:
Table S7). The modes of MYC dysregulation are
highlighted in Fig. 5. Expression of MYC was elevated
in USC (P = 3.3 x 10°®). MYC binding partner TAF9
(P =59 x 10'%) was down, and TRRAP (P = 3.8 x 107"
was up. Downregulation of TAF9 was unexpected, and
may be worth further exploration. The MEK-ERK and
PI3K pathways can induce MYC expression [59], and the
PIK3CA (P = 14 x 107'°) and MAPK3 (P = 5.8 x 107°)
genes were upregulated in USC, which we also saw in our
GSOA analyses. Furthermore, we saw somatic mutations
and downregulation of genes that negatively regulate MYC
in USC, including TP53 [63] (P = 2.5 x 107%) and FBXW7
(P = 3.8 x 107%), which aids in MYC regulation via ubiqui-
tination [64]. FBXW7 mutations are common in USC [54],
and also have been shown to increase MYC signaling in
gastric cancers [65].

MYC is a master regulator of cellular proliferation via
activation of nucleotide metabolism and cell cycle
proteins [66]. We observed upregulation of genes
known to be MYC targets that are involved in nucleotide/
amino acid metabolism CAD (P = 6.9 x 10™°) and ODCI
(P = 1.9 x 107'"). Many genes that promote the cell cycle
and that are known to be regulated by MYC were upregu-
lated in USC; these included CKSIB (P = 9.2 x 10714,
SKP2 (P = 3.0 x 107), CCNEI (P = 2.5 x 107"®), and
CDK2 (P = 2.0 x 107°). We also saw downregulation of
CDKNIA (P = 6.8 x 107>°), a cell cycle inhibitor. Together,
these results suggest that MYC is dysregulated in USC and
highlight the potential importance of MYC targeted ther-
apy for this cancer type.

Discussion

Pathway-based analyses have become popular for pro-
viding insight into difficult-to-interpret omic data [6].
GSOA is a novel bioinformatics tool that can integrate
data from multiple omic platforms at the pathway level
to generate hypotheses about pathways that behave dif-
ferently between biological conditions. Pathway-based
approaches are particularly important for cancer interro-
gation because treatment modalities are moving towards
targeting specific pathways. Therefore, an understanding
of pathway dysregulation is a key step in developing per-
sonalized cancer care.

Our method builds upon a method developed by Pang
et al. [67], which applied machine learning algorithms to
gene-expression data to model dependencies among
genes and ranked the results by prediction accuracy. Un-
like their method, our approach can process multiple
types of omic data, integrate data across multiple omic
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types, account for gene set size, and correct for class
imbalances.

The ability to analyze omic data from various omic-
profiling platforms is important when analyzing cancer
data due to the compound effects of many types of alter-
ation, including gene expression changes, copy-number
variation, and single-nucleotide variants. This approach
can also be applied to DNA methylation data, miRNA
data, and proteomic data, as long as the features can be
mapped to gene sets. Our analysis of HER2 pathway ac-
tivity in HER2-positive breast tumors illustrates how in-
tegration of multi-omic data can identify gene sets that
may be missed if analyzed separately. For example, a
particular gene set may be borderline significant for indi-
vidual types of omic data and thus go unnoticed; how-
ever, when the data are integrated, the gene set may
reach significance.

One alternative approach that has been used com-
monly is over-representation analysis [6]. Such methods

require a list of genes that are differentially expressed
between two conditions and then prioritize gene sets in
which these genes are enriched [68-70]. The simplicity
of this approach could be seen as an advantage. How-
ever, over-representation methods treat each gene
equally and independently, even though the magnitude
of expression may differ considerably among the genes
and dependencies may exist between genes. In contrast,
an advantage of GSOA is that it examines omic data dir-
ectly; thus it can account for (potentially) subtle differ-
ences in omic measurements that may span multiple
genes.

We note that the biological relevance of GSOA results
depends on the validity and relevance of the gene set an-
notations used as input. Although curated gene sets pro-
vide great breadth, they may be less precise than gene
sets based on experimental observation. In addition,
there is considerable overlap among gene sets described in
multiple pathway resources. This redundancy complicates
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interpretation of results; however, when multiple pathways
related to a given biological process are consistently priori-
tized by GSOA, this is an indication that the results are ro-
bust. In this paper, we have focused on pathways that show
consistent significance in our analyses. It is also important
to note that GSOA does not infer whether a given pathway
is up- or downregulated as a whole; rather it assumes that
when a pathway is dysregulated, some genes within the
pathway may be upregulated while others are downregu-
lated. Pathways that GSOA identifies as being dysregulated
may serve as candidates for future mechanistic and func-
tional studies, which can better dissect the contributions of
individual genes.

Conclusion

In summary, we have used our novel computational ap-
proach, GSOA, to identify signaling events with a known
association among tumor subtypes to test the validity of
our method. Results from these analyses highlight the
power of our approach to accurately identify biological sig-
nal within omic data. Importantly, we have also used this
approach to propose alternative pathways that influence
development of specific cancer subtypes. For example, we
propose that dysregulation of the critical master regulator
MYC in uterine serous carcinomas may lead to treatment
resistance. Such approaches are invaluable in our quest to
distill large, heterogeneous, multi-omic data down to a
form that leads to a better understanding of how disease
develops and how it might be treated more effectively.
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