
RESEARCH Open Access

The multi-omic landscape of transcription
factor inactivation in cancer
Andrew E. Teschendorff1,2,3*, Shijie C. Zheng1, Andy Feber4, Zhen Yang1, Stephan Beck4

and Martin Widschwendter3

Abstract

Background: Hypermethylation of transcription factor promoters bivalently marked in stem cells is a cancer
hallmark. However, the biological significance of this observation for carcinogenesis is unclear given that most of
these transcription factors are not expressed in any given normal tissue.

Methods: We analysed the dynamics of gene expression between human embryonic stem cells, fetal and adult
normal tissue, as well as six different matching cancer types. In addition, we performed an integrative multi-omic
analysis of matched DNA methylation, copy number, mutational and transcriptomic data for these six cancer types.

Results: We here demonstrate that bivalently and PRC2 marked transcription factors highly expressed in a normal
tissue are more likely to be silenced in the corresponding tumour type compared with non-housekeeping genes
that are also highly expressed in the same normal tissue. Integrative multi-omic analysis of matched DNA
methylation, copy number, mutational and transcriptomic data for six different matching cancer types reveals that
in-cis promoter hypermethylation, and not in-cis genomic loss or genetic mutation, emerges as the predominant
mechanism associated with silencing of these transcription factors in cancer. However, we also observe that some
silenced bivalently/PRC2 marked transcription factors are more prone to copy number loss than promoter
hypermethylation, pointing towards distinct, mutually exclusive inactivation patterns.

Conclusions: These data provide statistical evidence that inactivation of cell fate-specifying transcription factors in
cancer is an important step in carcinogenesis and that it occurs predominantly through a mechanism associated
with promoter hypermethylation.

Abbreviations: BLCA, Bladder carcinoma; CNV, Copy number variation; COAD, Colon adenoma carcinoma;
DNAm, DNA methylation; hESC, Human embryonic stem cell; KIRC, Kidney renal cell carcinoma; KIRP, Kidney renal
papillary carcinoma; LSCC, Lung squamous cell carcinoma; LUAD, Lung adenoma carcinoma; miRNA, MicroRNA;
PRC2, Polycomb repressive complex 2; SCM2, Stem Cell Matrix-2; STAD, Stomach adenocarcinoma; TCGA, The
Cancer Genome Atlas; TF, Transcription factor

Background
Transcription factors (TFs) play a central role in develop-
ment, specifying differentiation and cell fate [1], as well as
in reprogramming [2]. Inactivation of TFs that are import-
ant for the specification of a tissue type has been proposed
as a key mechanism underlying neoplastic transformation

of that tissue [3–7]. Biological evidence for this model has
recently come from studies showing how genetic muta-
tions in epigenetic regulators such as isocitrate dehydroge-
nases can result in the inactivation of key transcription
factors, promoting cancer [8, 9].
Surprisingly, however, there is a lack of statistical evi-

dence supporting a model in which silencing of transcrip-
tion factors constitutes a general process underpinning
cancer. Arguably, the strongest statistical evidence so far
derives from the long-standing observation that bivalently
or polycomb repressive complex 2 (PRC2)-marked pro-
moters in human embryonic stem cells (hESCs), which
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often mark transcription factors that are needed for devel-
opment and differentiation [10, 11], are significantly more
likely to be hypermethylated in cancer [4, 5, 12] and aged
normal tissue [13–15] compared with random gene sets.
However, even though increased promoter methylation is
usually associated with gene silencing, the significance of
the observed hypermethylation in cancer is unclear because
a large proportion of these bivalently or PRC2-marked TFs
are not expressed in the corresponding normal tissue type
[16, 17]. Moreover, inactivation of key transcription factors
has been associated with other epigenetic alterations such
as histone remodelling [8, 9], raising further questions as to
the role of the observed DNA hypermethylation in cancer.
For instance, epigenetic silencing of HNF4A (a key liver-
specifying TF) in liver cancer has been linked to loss of
promoter H3K4me3 without changes in promoter methyla-
tion [8]. Given the large-scale availability of mutational,
copy number variation (CNV) and DNA methylation data
in primary cancer material, no study has yet systematically
explored which mechanism, i.e. mutation, CNV loss, or
promoter hypermethylation, is predominantly associated
with in-cis silencing of transcription factors in cancer.
The purpose of this study, therefore, is to conduct a de-

tailed exploration of the molecular multi-omic landscape of
transcription factor inactivation in cancer. We focus our
analysis on a subset of bivalently/PRC2-marked transcrip-
tion factors expressed in a given normal tissue and which
are preferentially silenced in the corresponding cancer type.
We point out that this is very different from previous
studies, which have largely only reported molecular alter-
ation enrichment patterns (mainly DNA methylation) at ei-
ther the full repertoire of approximately 1500 TFs or the
thousands of genes that are bivalently/PRC2-marked in
hESCs [4, 5, 12]. The identification of key bivalently/PRC2-
marked TFs is achieved by comparing mRNA expression
data from hESCs and normal fetal and adult tissues and
their corresponding cancer types and studying their pat-
terns of gene expression change across these four pheno-
typic states. The importance of using normal fetal samples
in these types of analyses has recently been highlighted
[18], as it allows the confounding effect of age, a major can-
cer risk factor, to be removed. Having identified the key
deregulated TFs in each cancer type, we then perform an
integrative multi-omic analysis, encompassing genome-
wide mRNA expression, DNA methylation, CNV and som-
atic mutations for six cancer types, revealing that promoter
hypermethylation, and not in-cis genomic loss or genetic
mutation, is the mechanism that most strongly associates
with silencing of these transcription factors in cancer.

Methods
Definition of initial TF list
We constructed an initial TF gene list as follows. We
first used the definition of human TFs, as defined by the

Molecular Signatures Database from the Broad Institute
(http://software.broadinstitute.org/gsea/msigdb/
index.jsp), consisting of a total of 1385 TFs. The most
relevant subset of TFs for development and differenti-
ation processes are those which are bivalently or PRC2
marked in hESCs [10, 11]. This resulted in a list of 458
bivalent/PRC2-marked TFs, of which 403 were also
present in the Stem Cell Matrix-2 (SCM2) compendium
mRNA expression data set.

The SCM2 compendium data set and identification of TFs
expressed in normal tissues
We downloaded the Illumina mRNA expression data of
the SCM2 compendium [19, 20]. Expression data were
quantile normalized and probes mapping to the same
Entrez gene IDs were averaged. This resulted in an expres-
sion data set of 17,967 uniquely annotated Entrez gene
IDs and 239 samples, including 107 hESC lines, 52 in-
duced pluripotent stem cells and 32 somatic differentiated
tissue samples, with the rest of the samples representing
human cell lines. Among the 32 somatic differentiated tis-
sue samples, we selected those epithelial tissues for which
there were at least two samples and for which we could
identify corresponding cancer data sets from The Cancer
Genome Atlas (TCGA). In cases where fetal and adult
samples were available, we used fetal samples since these
are of age zero, thus eliminating age as a potential
confounder [18]. These epithelial tissues included bladder
(two adult samples), lung (two fetal samples), kidney (two
fetal samples), colon (one fetal and one adult sample) and
stomach (three fetal samples). However, the stomach sam-
ples were not considered further because the top principal
component of variation in the corresponding stomach
adenocarcinoma (STAD) TCGA data set correlated with
an unknown confounding factor, most likely representing
cellular heterogeneity. Thus, for each of the four cell types
(lung, kidney, colon and bladder), we derived statistics of
differential expression for all 17,967 genes compared with
the 107 hESC lines using an Bayes model [21] as imple-
mented in the limma Bioconductor package [22].

TCGA data
We downloaded TCGA data (as provided by TCGA web-
site), including all level 3 CNV, RNA-Seq (V2) and Illu-
mina 450k DNA methylation data, in addition to somatic
mutational information, for a total of six cancer types,
including lung adenoma carcinoma (LUAD) [23], lung
squamous cell carcinoma (LSCC) [24], kidney renal cell
carcinoma (KIRC) [25], kidney renal papillary carcinoma
(KIRP) [26], bladder carcinoma (BLCA) [27], colon aden-
oma carcinoma (COAD) [28] and stomach adenomacarci-
noma (STAD) [29]. Illumina 450k DNA methylation data
were further processed using BMIQ to adjust for the type
2 bias [30]. In the case of RNA-Seq level 3 data, genes
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with zero read counts in all samples or exhibiting no vari-
ation across samples were removed. RNA-Seq level 3 data
were subsequently regularised using a log2 transform-
ation. Normalized RNA-Seq and DNA methylation data
sets were subjected to an additional quality control pro-
cedure which used a singular value decomposition to as-
sess the nature of the top components of variation [31].
According to this analysis, the STAD TCGA dataset was
not considered further due to the top component of vari-
ation not correlating with normal/cancer status, an indica-
tor of substantial confounding variation [31].
In the case of mutational data, somatic mutations were

classed as inactivating mutations if they were nonsense,
missense or deletions. For a given tumour sample and
gene, multiple inactivating mutations in the same gene
were treated as one. In the case of CNV data, we used
the normalised segment values as provided by the level 3
standard.

Differential expression and differential DNA methylation
analyses
Differential gene expression analysis for the normalized
RNA-Seq data between normal and cancer tissue was
performed using an empirical Bayes model [21] as im-
plemented in the limma Bioconductor package [22]. The
numbers of normal and cancer samples were 58 and 471
for LUAD, 45 and 473 for LSCC, 72 and 515 for KIRC,
32 and 289 for KIRP, 17 and 323 for BLCA and 41 and
270 for COAD.
In the case of Illumina 450k DNA methylation data we

used a recursive model, validated by us previously [32], to
assign a DNA methylation (DNAm) level to each gene.
Specifically, this model first assigns the average DNAm
value of probes mapping to within 200 bp upstream of the
transcription start site. If no 450k probes map to this re-
gion, first exon probes are used instead. If there are no
first exon 450k probes for a given gene, we use the average
over 450k probes mapping to within 1500 bp upstream of
the transcription start site . As shown by us previously,
the average DNAm of 450k probes in these regions pro-
vides the best predictive model of a sample’s gene expres-
sion value [32]. The same empirical Bayes model was then
used to derive statistics of differential DNA methylation
between normal and cancer tissue. The numbers of nor-
mal and cancer samples for the differential DNAm ana-
lysis were 41 and 275 for LSCC, 32 and 399 for LUAD,
160 and 299 for KIRC, 45 and 196 for KIRP, 19 and 204
for BLCA and 38 and 272 for COAD.

Definition of control non-housekeeping gene sets
In order to objectively assess whether TFs overexpressed
in a normal tissue type relative to hESCs exhibit prefer-
ential downregulation in the corresponding cancer type,
a comparison with a control set of non-housekeeping

genes is needed. This control set of genes was con-
structed for each TCGA cancer set separately as we
needed to select genes with similar expression levels to
the TFs in the normal-adjacent samples of TCGA set.
Having identified a matching set, we then removed all
housekeeping genes using the comprehensive list of
3804 housekeeping genes from Eisenberg and Levanon
[33]. Thus, the control set of genes consists of non-
housekeeping genes expressed at the same level in
normal-adjacent tissue as the given TFs.

Integrative matched tumour analyses
In order to identify the tumours where a given tissue-
specific TF is underexpressed, we derived a Z-score for
each tumour and TF by comparing its TF expression
level with the mean and standard deviation of expression
as evaluated over all corresponding normal tissue sam-
ples. Specifically, if t labels the TF and μt and σt label the
mean and standard deviation in expression of this TF
over the normal tissue samples, then the Z-score of TF t
in sample s is defined by Zts = (Xts − μt)/σt. We deemed a
TF to be underexpressed in sample s if the correspond-
ing Z-score was less than −2, corresponding to a P value
of ~0.05. For the tumours exhibiting underexpression of
the TF, we then defined a genomic loss if the segment
value corresponding to the TF locus had a value less
than −0.35 (we estimated a conservative threshold of
one-copy gain/loss to be at around ±0.35). For tumours
exhibiting underexpression of the TF, we also considered
the promoter of the TF to be significantly hypermethy-
lated if the difference in DNA methylation between the
tumour and the average of the normal samples was lar-
ger than 0.3. This estimate is justified from scatterplots
of promoter DNAm versus log2[RNA-Seq counts] for all
genes in normal samples, which shows that promoter
DNAm increases of 0.3 or higher are much more likely
to be associated with gene silencing. In the case of
DNAm, an alternative approach could have been to de-
fine an analogous Z-score of DNAm change in relation
to the normal tissue. However, this could generate large
statistics without necessarily a big change in absolute
DNAm levels; given that the purpose was to see if the
DNAm change could account for the change in gene ex-
pression, we focused on using absolute differences in
DNAm levels.
For the integrative analyses where the matched nature

of the samples was used, analysis was restricted to nor-
mal and cancer samples with matched DNAm, CNV and
mRNA expression data. The numbers of normal and
cancer samples for these matched analyses were 8 and
273 for LSCC, 20 and 390 for LUAD, 24 and 292 for
KIRC, 21 and 195 for KIRP, 13 and 194 for BLCA and
19 and 253 for COAD.
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Results
Identification of transcription factors important for tissue
differentiation
We posited that TFs with important roles in differentiation
and cancer could be identified by analyzing their dynamic
expression changes between four main cellular states: the
hESC state, a partially differentiated normal fetal state, an
adult normal differentiated state and the undifferentiated
cancer state. Indeed, as already shown by others in the con-
text of development [1], focusing on dynamic changes in
gene expression can successfully identify key TFs. Thus, we
initially aimed to identify TFs which become overexpressed
in a number of normal tissue types, relative to the hESC
ground state, using data from the Stem Cell Matrix-2
(SCM2) compendium [19, 20] (“Methods”). An advantage
of using the SCM2 data is the availability of mRNA expres-
sion data generated with the same array platform for both
hESCs and somatic primary cells for a number of different
tissue types, including both fetal and adult states to avoid
confounding by age (“Methods”). We restricted the analysis
to somatic tissue types for which there were at least two in-
dependent samples in the SCM2 compendium and for
which there was corresponding high-quality tissue data
from TCGA. In total, we identified four tissue types for
which matching data in SCM2 and TCGA were available:
this included lung, kidney, bladder and colon. Comparison
of mRNA expression levels between hESCs (a total of 107
hESC samples derived from both male and females and
from a wide range of different passages) and the foetal/adult
normal samples from lung, kidney, bladder and colon were
performed, focusing on a set of 403 bivalently [10] or
H3K27me3 (PRC2) [11] marked TFs in hESCs (“Methods”;
Additional file 1: Table S1), since it is well known that their
poised promoters in the hESC state mark TFs which are
needed for differentiation [10, 11]. We observed that
approximately 200 (i.e. 50 %) of these 403 TFs exhibited
significant differential expression relative to the hESC state,
a result which was largely independent of tissue type
(Fig. 1a). Among the significantly differentially expressed
TFs, around 150 (i.e over 70 %) were overexpressed in the
differentiated tissue, supporting their role in differentiation
(Fig. 1a, b; Additional file 1: Tables S2–S5). We verified that
the overwhelming majority of these significantly over-
expressed TFs exhibited fold changes larger than two
(Fig. 1c), further supporting their significance. In total, 76
overexpressed TFs were common to all four tissue types,
with 19, 25, 24 and 18 being overexpressed in only lung,
kidney, bladder and colon, respectively (Fig. 1d).

Bivalent/PRC2-marked TFs expressed in a tissue type are
preferentially silenced in the corresponding cancer type
We hypothesized that TFs which are important for dif-
ferentiation of a tissue type, and which are, therefore,
expressed in that tissue type, may be under selection

pressure to undergo silencing in the corresponding can-
cer type. To formally test this, we collected RNA-Seq
data from TCGA for two types of lung cancer (LSCC
and LUAD), two types of kidney cancer (KIRC and
KIRP), BLCA and COAD. In order to draw a statistically
valid conclusion in each normal–cancer TCGA dataset,
we need to compare the statistics of differential ex-
pression of mutually exclusive sets of TFs. Hence, we
first focused on the previously identified 19 lung-, 25
kidney-, 24 bladder- and 18 colon-specific TFs, most of
which (18, 21, 19 and 14, respectively) were also highly
expressed in the respective normal tissue samples from
TCGA. In order to assess the biological and statistical
significance, the comparison of these sets of TFs was
made to a common control set of genes (CTL) expressed
at the same level in the normal tissue as the given TFs
and which excluded any of 3804 well-established house-
keeping genes [33] (Additional file 1: Figure S1). We ob-
served that the great majority of the identified TFs were
significantly downregulated in the corresponding cancer
type, with the identified TFs more likely to be down-
regulated in the corresponding cancer type compared
with the control set of genes (Fig. 2a; Additional file 1:
Tables S6–S9). Thus, the silencing of these TFs in can-
cer is not merely determined by their relatively high
expression levels in the normal tissue since a control
set of non-housekeeping genes expressed at the same
level in normal tissue (Additional file 1: Figure S1) did
not show the same level of downregulation in cancer
(Fig. 2a). As expected, the promoters of the silenced
TFs were significantly more likely to map to a CpG
island owing to the fact that we initially restricted
the analysis to bivalently and PRC2-marked TFs
(Additional file 1: Table S10).
Next, we decided to relax the definition of tissue-

specific TFs to allow any TF expressed in a given normal
tissue regardless of its expression level in other normal
tissue types. This more inclusive definition recognizes
that cell and tissue types are arranged in a hierarchical
developmental tree, as it is well known that TFs import-
ant for specification of one tissue type are also important
for specification of other tissues. As a concrete example,
FOXA1 (HNF4A) is a transcription factor important for
the specification of the intestine and stomach [34, 35] as
well as liver [36] and silencing of HNF4A leads to liver
cancer [8]. Similarly, GATA factors such as GATA4 play
key roles in the development of the gastrointestinal tract
[37–39] as well as in the development of the heart [40],
pancreas [41] and liver [42], and so these factors could
play tumour-suppressor roles in many different cancer
types [39, 43]. Hence, TFs expressed in multiple normal
tissue types can be as important to the development of a
specific cancer type than TFs which are expressed only
in the corresponding normal tissue type. Thus, on
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biological grounds, we re-assessed the previous result,
now considering all TFs expressed in a normal tissue re-
gardless of their expression levels in the other normal
tissues types. In spite of the fact that these TF sets are
largely overlapping, we still observed that the strongest
underexpression was in the corresponding cancer type
and that it was highly significant when compared with a
control set of non-housekeeping genes expressed at a
similar level in the same normal tissue (Additional file 1:
Figures S3 and S4).
Among the silenced TFs were many well known dif-

ferentiation factors (Fig. 2b). For instance, in lung we
found FOXA2 [44], TBX4 [45] and BMP4 [46], and al-
though the role of LHX6 in lung development is less
well defined, it has previously been implicated as a
tumour suppressor in lung cancer [47]. Similarly, in
kidney we observed many TFs implicated in kidney

development, including HOX family genes [48],
ESRRB/ESRRG [49], PAX2 and LHX1 [50, 51]. In the
case of bladder cancer, TFs which have been previ-
ously implicated in urothelial cell differentiation, such
as RARA and KLF4 [52], were observed to be up-
regulated in bladder tissue compared with hESCs
(Additional file 1: Table S4) and also subsequently si-
lenced in bladder cancer (Additional file 1: Figure S2),
although they were also observed to be upregulated in
kidney or lung tissue (Additional file 1: Tables S2 and
S3). In the case of colon cancer, silenced TFs included
well known intestinal differentiation factors such as
CDX1 [53, 54], CDX2 [55, 56] and NEUROD1 [57, 58].
Thus, our approach successfully identifies TFs si-
lenced in cancer and which have been previously im-
plicated in the differentiation of the corresponding
tissue types.

Lung Kidney Bladder Colon

Comparison to hESC

#(
S

ig
.T

F
)

0
50

10
0

15
0

UP
DN

Comparison to hESC

F
ra

ct
io

n(
%

)

0.
0

0 .
2

0 .
4

0.
6

0.
8

1.
0

UP
DN

Lung Kidn Blad ColonRND RND RND RND

P=3e-13
P=3e-17 P=2e-16 P=2e-17

Lung Kidney Bladder Colon

0
1

2
3

4
5

6
7

lo
g2

(F
C

)

Lung

Bladder Colon

Kidney

a b

c d

Fig. 1 Identification of transcription factors that are important for differentiation. a Relative numbers of significantly upregulated (UP) and
downregulated (DN) transcription factors (TF) in specific normal tissues relative to human embryonic stem cells (hESC). In the case of lung, kidney
and colon, fetal tissue was used to ensure that the comparison is not confounded by age effects. b As a but now expressing the relative
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Promoter hypermethylation, and not CNV loss or
mutation, associates most strongly with silencing of
bivalent/PRC2-marked TFs in cancer
We next asked which type of molecular alteration asso-
ciates most strongly with silencing of bivalently/PRC2-
marked TFs in cancer. For this analysis, we considered
all TFs overexpressed in a given normal tissue type
(compared with hESCs) and underexpressed in cancer
(compared with its respective normal tissue), without
the requirement that they be overexpressed in only one
normal tissue type. We obtained CNV, somatic mutation
as well as DNAm data for all genes and for all cancer
types considered previously (“Methods”). Depicting the
copy number and DNAm changes of these silenced TFs
between cancers and their corresponding normal sam-
ples revealed a striking difference between DNAm and
CNV (Fig. 3; Additional file 1: Figures S5–S10). Whereas
at the genomic copy number level we did not observe a
preference for these TFs to undergo copy number loss,
at the level of DNA methylation there was a clear skew
towards increased promoter DNAm (Fig. 3; Additional
file 1: Figures S5–S10).
In order to assess the statistical and biological signifi-

cance of these observations, we next compared the de-
gree of molecular alteration of the silenced TFs with
that of all genes underexpressed in the given cancer
type, as well as to a randomly chosen set of genes, a
procedure which adjusts for the differential sensitivity
of the different molecular assays. We observed that
average genomic loss levels of the silenced TFs were
generally not significantly higher than that of underex-
pressed genes or that of a randomly chosen set of genes
(Fig. 4; Additional file 1: Figure S11). Likewise, the
average frequency of inactivating mutations of these
TFs across cancers was generally not higher compared
with underexpressed genes or randomly selected genes
(Fig. 4; Additional file 1: Figure S11). In contrast,

differential promoter methylation statistics of the silenced
TFs were generally significantly higher compared with
those of underexpressed or randomly chosen genes (Fig. 4;
Additional file 1: Figure S11). In general, for each cancer
type there were more TFs and tumours with significant
positive differential methylation statistics than the corre-
sponding expected number had the genes been drawn
from the set of all cancer underexpressed genes (Additional
file 1: Figure S12). This result was also evident if signifi-
cance in a tumour is defined by a TF exhibiting a promoter
DNAm increase of at least 30 % compared with the average
over normal samples (Additional file 1: Figure S13). Using
a meta-analysis over all cancer types, it was only for the
case of promoter hypermethylation that we observed a
significantly higher level of alteration at the silenced TFs
compared with all underexpressed genes (Table 1; P < 10−8

for promoter hypermethylation, P = 0.98 for CNV loss and
P = 0.47 for mutation, combined Fisher test). We note that
if we compared all underexpressed genes in a given cancer
type to a randomly selected set of genes, then all molecular
categories were significant, consistent with the view that all
molecular events, be it promoter hypermethylation, CNV
loss or inactivating mutation, are associated with underex-
pression in cancer (Additional file 1: Figure S14). In sum-
mary, the data shown in Fig. 4 and Table 1 suggest that
promoter hypermethylation is the more likely mechanism
associated with in-cis TF silencing in cancer.
Next, we decided to extend the previous analysis to

the single-sample level in order to investigate the de-
tailed pattern of promoter methylation and CNV within
individual tumours. We first considered for each TF in
each cancer type those tumours which exhibited signifi-
cant underexpression relative to the respective normal
tissue (“Methods”). For each TF and across all tumours
exhibiting underexpression of this TF, we then counted
the fraction of tumours exhibiting genomic loss of the
TF, as well as the fraction of tumours exhibiting

(See figure on previous page.)
Fig. 2 Transcription factors expressed in normal tissue are preferentially silenced in the corresponding cancer type. a Boxplots of t-statistics of
differential mRNA expression between cancer and normal tissue (y-axis, t(C − N)) for four sets of “tissue-specific” TFs and a control set of genes
(CTL) across six different cancer types, as indicated. LSCC lung squamous cell carcinoma, LUAD lung adenoma carcinoma, KIRC kidney renal clear
cell carcinoma, KIRP kidney renal papillary carcinoma, BLCA bladder carcinoma, COAD colon adenoma carcinoma. The five sets of genes being
compared are the TFs expressed in the relevant normal tissue (red box), the TFs expressed in other normal tissue types (white boxes) and a set of
control (CTL, grey box) non-housekeeping genes which are expressed at a similar level to the TFs expressed in that same normal tissue. P values
are from a one-tailed Wilcoxon-rank sum test comparing the t-statistics of each group of TFs with the control (CTL) gene set. We note that negative
t-statistics means lower expression in cancer compared with normal. b Heatmaps depicting the dynamics of gene expression changes of the tissue-
specific TFs expressed in the normal tissue. t-statistics of differential expression (t(DEG)), are shown between hESCs and normal tissue (the left-most
colour heatmap in each panel) and between normal tissue and various cancer types (the right heatmap in each panel), as indicated. We note that the
heatmap to the very left in each panel is always red, indicating the overexpression of these TFs in foetal/adult normal tissue compared with hESCs. The
heatmap representing the t-statistics of differential expression between normal tissue and the corresponding cancer types are shown to the left of the
vertical black line, whereas those for the other unrelated cancer types are shown to the right. There is generally more green (i.e. underexpression) in the
cancer types matching the tissue types compared with the other cancer types, in agreement with the data shown in a
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hypermethylation of the TF’s promoter (“Methods”). In
general, this revealed that promoter hypermethylation
events could account for a higher fraction of cancers
exhibiting underexpression of the corresponding TF
compared with genomic loss (Fig. 5a). For instance, in
LSCC we observed four TFs (HOXA4, HOXA5, TAL1,
ZNF132) undergoing promoter hypermethylation in at
least 50 % of the LSCC tumour samples where these TFs
were underexpressed. In contrast, no TF was observed to

undergo CNV loss at a frequency of over 50 % in the same
cancers (Fig. 5a). A similar observation was evident for
LUAD (Fig. 5a). In the case of KIRP we observed six TFs
exhibiting promoter hypermethylation at over 20 % of the
tumours with underexpression of the TF, in contrast to no
TF exhibiting CNV loss at that frequency or higher
(Fig. 5a). This pattern of more frequent promoter hyper-
methylation than CNV loss was also evident for BLCA
and COAD (Fig. 5a).

Fig. 3 Landscape of CNV and promoter methylation of TFs that are silenced in cancer. Heatmaps of copy number and promoter methylation
changes in six different cancer types: LSCC, LUAD, KIRC, KIRP, BLCA and COAD. In each case TFs highly expressed in the corresponding normal
tissue type and which are underexpressed in cancer have been arranged along rows, using the same order for DNAm and CNV. Each column in
the heatmap labels a tumour sample. For all CNV heatmaps, the colours represent the segment values assigned to the corresponding genes, as
indicated. In the case of DNAm, the colours indicate the difference in beta (DNAm) value at the promoter between the cancer sample and the
average of all normal tissue samples
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Fig. 4 (See legend on next page.)
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Some silenced bivalent/PRC2-marked TFs exhibit patterns
of mutual exclusivity between promoter
hypermethylation and CNV loss
Interestingly, we observed that many TFs exhibiting a
higher frequency of CNV loss in cancer did not show ap-
preciable promoter DNAm increases in any of the tumour
samples, suggesting that some TFs are more intrinsically
prone to genomic loss (Fig. 5a). Indeed, broadly speaking,
there were three types of silenced TFs in each cancer type
(Fig. 5b): those predominantly exhibiting promoter hy-
permethylation but with relatively few CNV losses (e.g.
FOXF1 in LUAD, HAND2 in COAD), those exhibiting
frequent CNV loss but not many DNAm changes (e.g.
NR2F1 in LSCC, FOXO3 in LUAD, SETBP1 in COAD)
and a third class of TFs which exhibited both CNV loss
and promoter hypermethylation (e.g. ZNF132 in LUAD,
HIC1 in COAD).
To investigate if there is any evidence for mutual exclu-

sivity between promoter hypermethylation and CNV loss,
we next compared the frequency of TF promoter hyperme-
thylation between the top and lowest tertiles of TFs ranked
by CNV loss frequency. This revealed a higher frequency of
hypermethylation for those TFs undergoing the least CNV

losses (Additional file 1: Figure S15a; combined Fisher test
P = 0.002), consistent with the observed “L” type shapes of
the scatterplots (Fig. 5a). The reverse analysis, comparing
the frequency of CNV loss between the top and lowest
tertiles defined according to the frequency of hypermethy-
lation, also revealed a consistent pattern of mutual ex-
clusivity (Additional file 1: Figure S15b; combined Fisher
test P = 0.004).
Focusing on TFs undergoing both CNV loss and pro-

moter hypermethylation (at least 1 % frequency for both
types of alteration) revealed only a few (EBF1 in LSCC,
LYL1 in LUAD, ZNF287 in BLCA and HIC1 in COAD)
which did so in a mutually exclusive fashion, in the
sense of exhibiting higher levels of hypermethylation in
tumours with no CNV loss of the given TF, compared
with tumours with CNV loss, although this was only evi-
dent if the previous threshold for calling significant pro-
moter hypermethylation (i.e. 0.3) was relaxed to a value
of 0.1 (Additional file 1: Figure S16).

Bivalent/PRC2-marked TFs silenced in multiple cancer
types are more likely to share aberrant promoter
hypermethylation
Next, we asked if the mechanism associated with si-
lenced TFs is similar between cancer types. For this ana-
lysis, we focused on TFs that were commonly silenced
across cancer types. As expected, LSCC and LUAD
shared a strong overlap of 80 TFs (~88 %) silenced in
both cancer types, whilst the smallest overlap was be-
tween BLCA and KIRC (18 TFs). Frequencies of pro-
moter hypermethylation of commonly silenced TFs were
highly correlated between every pair of cancer types
(average R2 value was 0.39; Additional file 1: Figure S17).
In contrast, correlations were significantly lower in the
case of CNV loss (average R2 value was 0.23, Wilcoxon
rank sum paired test P = 0.005; Additional file 1: Figure
S18). This suggests that TFs silenced in multiple cancer
types are more likely to be associated with promoter
DNA hypermethylation than with in-cis CNV loss.

Discussion
Although impairment of differentiation is a well known
cancer hallmark, only a few concrete examples of TF inacti-
vation have been shown to block differentiation and predis-
pose to epithelial cancer [8, 9]. Since the experimental

(See figure on previous page.)
Fig. 4 Transcription factors expressed in normal tissue and silenced in cancer predominantly exhibit promoter hypermethylation and not genomic
loss or inactivating mutation. Left panels: density plots of t-statistics of differential DNAm between cancer and normal tissue (x-axis, t(C− N)) of the
tissue-specific cancer-silenced TFs (magenta lines) compared with the corresponding density distribution of all genes underexpressed in cancer (green
lines). Density plots are shown for six cancer types: LSCC, LUAD, KIRC, KIRP, BLCA and COAD. P values are from a Wilcoxon rank sum test. The vertical
magenta and green lines denote the average levels. The grey vertical lines in the DNAm plot indicate P = 0.05. Middle panels: as above but for the
average CNV segment values of the TFs (magenta lines) and all underexpressed genes (green lines). Right panels: as above but for the frequency
of inactivating mutation of the TFs (magenta lines) and all underexpressed genes (green lines)

Table 1 Silenced TFs in cancer undergo preferential promoter
hypermethylation in comparison with all cancer underexpressed
genes

nTF nU P(DNAm) P(CNV) P(Mutation)

LSCC 95 7697 0.0005 0.888 0.898

LUAD 94 6673 0.00004 0.926 0.032

KIRC 68 7814 0.055 0.887 0.227

KIRP 82 7465 0.039 0.998 0.555

BLCA 81 5097 0.098 0.191 0.915

COAD 98 7934 0.004 0.987 0.876

Combined Fisher test <1e-8 0.984 0.471

The first six rows label the TCGA cancer type. Columns label the number of
TFs expressed in the normal tissue and underexpressed in cancer (nTF), the
number of all genes underexpressed in cancer (nU), the P value from a
Wilcoxon rank sum test assessing whether promoter hypermethylation at the
TFs is more frequent than for all underexpressed genes with DNAm
information (DNAm), the P value from a Wilcoxon rank sum test assessing
whether CNV loss of the TFs is more frequent than for all underexpressed
genes with CNV information (CNV) and the P value from a Wilcoxon rank sum
test assessing whether inactivating mutation of the TFs is more frequent than
for all underexpressed genes with mutational information (Mutation). The last
row lists P values of a meta-analysis over all cancer types using a combined
Fisher test
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identification of TFs necessary for tissue specification is
cumbersome, we here took an in silico approach, com-
paring mRNA expression levels of a relevant subset of
TFs (bivalently and PRC2-marked) between hESCs and
normal foetal/adult tissue in order to identify TFs
which become strongly overexpressed upon differenti-
ation. We hypothesized that if blocks in differentiation
constitute a key process contributing to carcinogenesis,
these highly expressed TFs would be frequently silenced
in cancer and they would do so preferentially in com-
parison with other non-housekeeping genes which are
highly expressed in the same tissue. Using six different
cancer types, we were able to confirm that TFs overex-
pressed in a normal tissue type relative to a hESC ground
state are preferentially silenced in the corresponding
tumour type. These TFs likely represent tumour suppres-
sors. Our second main contribution is the demonstration
that silencing of these TFs is associated mainly with pro-
moter hypermethylation and not with in-cis genomic loss
or mutation. Importantly, for many TFs, promoter hyper-
methylation could account for the largest fractions of
tumours exhibiting underexpression of that TF. Indeed,
whereas CNV loss and inactivation mutations are known
to affect tumour suppressors, the frequencies of these
events across tumours of a given cancer type are generally
quite low, making it difficult to identify novel cancer
driver genes [59]. In contrast, promoter hypermethylation
at specific TFs is a much more frequent event, supporting
a role for epigenetic-mediated silencing in the suppression
of key tumour suppressors [60]. However, we also ob-
served silenced TFs which were only prone to CNV loss
with no observed promoter hypermethylation across tu-
mours. In addition, we also identified a few examples of si-
lenced TFs exhibiting both CNV loss and promoter
hypermethylation in a mutually exclusive fashion.
While these novel insights support the view that pro-

moter hypermethylation of lineage-specifying TFs could
be a key step in carcinogenesis, it is equally important to
point out limitations in our analysis. First of all, it is im-
portant to stress that the observed correlations between
promoter DNAm and underexpression are only associa-
tive. Demonstrating that the observed promoter hyper-
methylation causes TF underexpression is beyond the
scope of this study. Moreover, we can’t exclude the

possibility that inactivation of an upstream TF, through
genomic loss or mutation, underlies the loss of binding
and hence increased DNAm at the promoters of the ob-
served TFs. Indeed, several studies have shown how
hypermethylation at both promoters and distal regula-
tory elements such as enhancers can result from deletion
of specific TFs [61]. Also, the important role of DNAm
alterations at super-enhancers and associated DNAm
and mRNA expression changes at linked gene promoters
in cancer has recently been noted [62]. Thus, our data
can’t distinguish between a causative model, in which
promoter hypermethylation causes the observed under-
expression of the TFs, from an effects model, in which
the observed hypermethylation and silencing is the con-
sequence of an upstream TF inactivation event, be this a
CNV loss, inactivating mutation, promoter methylation
or increased methylation at an enhancer. The associative
statistical analysis presented here suggests, however,
that, probabilistically, promoter hypermethylation of a
TF is a more likely mechanism than CNV loss or an in-
activating mutation.
A second limitation of our analysis is that we did not

consider the role of non-coding RNAs, in particular that
of microRNAs (miRNAs). In common with TFs, miR-
NAs play an important role in development and cellular
differentiation, with many playing a tumour-suppressive
role in cancer [63, 64]. Moreover, it has recently been
noted that bivalently marked miRNA promoters are also
frequently hypermethylated in cancer, with many of
these also exhibiting underexpression [65]. It will be inter-
esting, therefore, to explore if miRNAs highly expressed in
a given tissue type also exhibit preferential downregulation
in the corresponding cancer type and whether, for this
particular subset of downregulated miRNAs, promoter
hypermethylation is also the main associative mechanism.
Likewise, in this study we did not consider the important
role of histone modifications, which we know are altered
in cancer and which could also result in epigenetic silen-
cing of key TFs, as observed, for instance, in the case of
HNF4A in liver cancer, where the reduced expression has
been attributed to a loss of H3K4me3 [8, 66]. Unfortu-
nately, histone modification data for the matched TCGA
samples considered here are not available. In future, how-
ever, it will be important to include ChIP-Seq profiles for

(See figure on previous page.)
Fig. 5 Cancer-silenced TFs exhibiting different propensities to undergo promoter DNA methylation or genomic loss in cancer. a Scatterplots of
the frequency of genomic loss (x-axis) against promoter hypermethylation (y-axis) in cancer, as estimated over tumours exhibiting underexpression of
the given TF. Each data point in the scatterplots represents one silenced TF. Some of the TFs exhibiting more propensity to undergo promoter DNAm
than CNV loss are shown in blue, some TFs exhibiting less propensity to undergo promoter DNAm than CNV loss are shown in brown, and in green
we highlight some TFs exhibiting both frequent CNV loss and promoter hypermethylation. b Heatmap representations of mRNA expression change
(z-statistics of mRNA expression change), CNV and DNAm change (difference in beta-value between cancer and all normals) for a number of silenced
TFs exhibiting different propensities for promoter hypermethylation and CNV loss in two different cancer types (LUAD and COAD), as indicated.
Tumour samples are sorted in decreasing order of underexpression in cancer
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all major regulatory histone marks in these comparative
analyses.
A third caveat in our analysis is that the inferred un-

derexpression of TFs in cancer was done by comparison
with a normal reference defined by normal tissue that is
found adjacent to the tumour specimen. This normal-
adjacent tissue may already contain age-associated
epigenetic field defects [67], which may reduce the sensi-
tivity to detect silencing events in cancer. For instance,
GATA4 is a well known differentiation factor for a num-
ber of different tissue types, including colon tissue [39].
Although we did observe GATA4 to be overexpressed in
foetal colon tissue compared with hESCs, its level of
mRNA expression in the normal colon tissue adjacent to
colorectal cancer samples was surprisingly low, which is
why we did not see further underexpression of this TF
in colon cancer. A potential explanation for this is that
GATA4 is already gradually silenced in aged colon tissue
as a result of age-associated promoter hypermethylation
[13], with the aggravated hypermethylation in cancer not
causing any further change in gene expression. Direct
comparison with a purified age-matched sample repre-
senting the cell of origin could overcome some of these
limitations. A related caveat in our analysis is cellular
heterogeneity, as it is possible that the cell of origin of
the cancer is underrepresented in the normal tissue,
confounding the differential expression analysis, al-
though this is less likely to be the case for normal tissue
found adjacent to the cancer.
Another limitation is the restriction to four tissue

types (lung, kidney, bladder and colon). This restriction
merely reflects the availability of mRNA expression data
in the original SCM2 compendium which simultan-
eously profiled hESCs and primary differentiated cells
for a number of different tissue types. Given that study-
specific batch effects are notorious in gene expression
data [68], the requirement that expression profiles from
hESCs and differentiated tissue come from the same
study is critical. Analysis of a more comprehensive com-
pendium of hESC and differentiated primary samples
using RNA-Seq data will be needed to assess whether
the findings reported here generalize to other tissue
types. However, in spite of only analyzing four normal
tissues and six cancer types, our results are highly statis-
tically significant when interpreted in the context of a
meta-analysis (see e.g. Table 1).
Finally, we stress that most of the analyses presented

here were performed on TFs expressed in a normal tis-
sue type, regardless of their expression levels in other
normal tissues. Although this entails a much more lib-
eral definition of “tissue specificity”, it is also the most
biologically meaningful one to consider. For instance, as
remarked earlier, HNF4A is a TF which is needed for
liver specification, silencing of it leading to liver cancer

[8], yet it is also expressed in other tissue types such as
kidney and stomach [35]. Hence, TFs expressed in mul-
tiple normal tissue types can be as important to the de-
velopment of a specific cancer-type than TFs which are
expressed only in the corresponding normal tissue type.
In line with this, we have seen that a considerable number
of TFs are overexpressed in many different tissue types
and also seen to be silenced in common between cancer
types. For instance, between lung, kidney, bladder and
colon tissue, ten TFs (CASZ1, NR3C2, THRA, SETBP1,
SMARCA2, MEIS2, NFIC, PURA, KLF13, TCF21) were
commonly overexpressed in all these tissues compared
with hESCs and also commonly silenced in LSCC, LUAD,
KIRC, KIRP, BLCA and COAD compared with their re-
spective normal tissues. This list includes known tumour
suppressors such as the nuclear receptor NR3C2 [69], the
helix-loop-helix transcription factor TCF21 [70], and
SMARCA2 (also known as BRM), a member of the SNF/
SWI chromatin remodelling complex [71–73]. Interest-
ingly, however, the list also includes SETBP1, a TF which
has been reported to be oncogenic in myeloid neoplasms
[74, 75], highlighting the need to explore a potential
tumour suppressive role of this TF in the context of epi-
thelial cancer.

Conclusions
The data presented here support the view that bivalently
and PRC2-marked TFs expressed in a given normal tissue
are more likely to undergo silencing in the corresponding
cancer type compared with other non-housekeeping genes
that are highly expressed in the same normal tissue. This
suggests that putative differentiation blocks arising as a re-
sult of their inactivation are strongly selected for during
carcinogenesis. Importantly, our data suggest that the si-
lencing of these TFs in cancer is predominantly associated
with promoter hypermethylation.
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