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Abstract

The rise of genomically targeted therapies and immunotherapy has revolutionized the practice of oncology in the
last 10-15 years. At the same time, new technologies and the electronic health record (EHR) in particular have
permeated the oncology clinic. Initially designed as billing and clinical documentation systems, EHR systems have
not anticipated the complexity and variety of genomic information that needs to be reviewed, interpreted, and
acted upon on a daily basis. Improved integration of cancer genomic data with EHR systems will help guide
clinician decision making, support secondary uses, and ultimately improve patient care within oncology clinics.
Some of the key factors relating to the challenge of integrating cancer genomic data into EHRs include: the
bioinformatics pipelines that translate raw genomic data into meaningful, actionable results; the role of human
curation in the interpretation of variant calls; and the need for consistent standards with regard to genomic and
clinical data. Several emerging paradigms for integration are discussed in this review, including: non-standardized
efforts between individual institutions and genomic testing laboratories; “middleware” products that portray
genomic information, albeit outside of the clinical workflow; and application programming interfaces that have the
potential to work within clinical workflow. The critical need for clinical-genomic knowledge bases, which can be
independent or integrated into the aforementioned solutions, is also discussed.

Background

The practice of oncology has increased dramatically in
complexity since the first chemotherapeutic, nitrogen
mustard, was used in 1942. This complexity began with
the introduction of combination chemotherapy in the
late 1960s and increased significantly with the develop-
ment of selective “targeted” therapies designed to impair
mutated proteins. As treatments have evolved, so too
has the understanding of the genetic underpinnings of
cancer, which has led to the burgeoning field of cancer
genomics [1-4]. However, on a fundamental level, gen-
omics does not alter the paradigm of clinical cancer
medicine, of which the cornerstones remain prevention,
diagnosis, prognosis, treatment, monitoring, and re-
treatment. Rather, genomic data offer the opportunity to
refine each of these essential activities of clinical care.
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An aspect of cancer care that cannot be overlooked is
the importance of proper clinical documentation. The
treatment of cancer is a team effort requiring good com-
munication among a diverse team (for example, medical
doctors, radiologists, surgeons, pathologists, nurse prac-
titioners, primary care physicians, and others). Electronic
health records (EHRs) serve as one vital method through
which these team members can coordinate their care.
Cancer patient EHRs are complex, due to inherently
complicated patient histories, important family histories,
detailed social histories, large numbers of testing and
imaging results, extensive treatment histories, and cancer
genomic information. Unfortunately, there is no current
standard for how EHRs should be structured, although
they are heavily influenced by the concept of the problem-
oriented medical record [5]. Similarly, there is no set
method for integrating cancer genomic data into the EHR.
For a more thorough review of EHRs and their role in
clinical documentation, see the position paper by the
Medical Informatics Committee of the American College
of Physicians [6].

Here, we first briefly review the general role that gen-
omics plays in each of the fundamental areas of clinical
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cancer medicine and the current state of cancer genom-
ics through the diverse range of genomic tests that are
available today. We then address the current state of in-
tegrating cancer genomic data into patient EHRs and re-
view emerging efforts to hone this integration.

Genomics in clinical cancer medicine

Prevention

It has been projected that somewhere between 40 % to
50 % of cancers can be prevented if our current research
on risk factors is implemented perfectly as public health
measures [7]. Some of these methods include proper use
of oncogenic virus vaccinations, tobacco exposure con-
trol, use of screening guidelines, and elimination of car-
cinogens from the immediate environment. Clearly,
precision medicine—for example, as envisioned by US
President Obama’s Precision Medicine Initiative (PMI)
[8]—including cancer genomic information, will play a
major role in cancer prevention. Mutation profiles may
be used more regularly to help stratify patients in need
of more rigorous screening protocols [7]. Another inter-
esting area of work involving cancer prevention is the
thorough analysis of tumor microenvironments (TMEs).
There are now known TME epigenetic regulators and
genetic drivers that can be used to elucidate individual-
ized information regarding tumor prevention; there are
ongoing efforts to create the Pre-Cancer Genome Atlas
(PCGA) to better portray such genomic information for
cancer prevention [9]. There is currently no standard
documentation of cancer prevention measures within
a patient’s EHR. As a “pre-cancer genome atlas” is de-
veloped, it will be important to incorporate this infor-
mation into EHRs to help document individualized
preventative measures.

Diagnosis

The cancer diagnosis is usually straightforward and
established on the basis of histology, sometimes with ex-
tremely limited material. However, genomics does have a
role in certain areas of cancer diagnosis. Sarcomas,
which are often de-differentiated, can be subtyped suc-
cessfully through molecular signatures [10, 11]. Cancer
of unknown primary, a wastebasket diagnosis that previ-
ously included up to 10 % of metastatic cancer, may be-
come a relic of the past with tissue-of-origin molecular
profiling [12]. Molecular analogs, such as BRCA-like
ovarian cancer and BCR-ABL1-like acute lymphoblastic
leukemia (ALL), have been elucidated through a com-
bination of gene expression and molecular profiling
techniques [13, 14]. Histological findings are typically
entered into an ancillary laboratory information system
as pathology reports. Depending on the center of care,
these reports are either scanned into the EHR or entered
electronically through an interface. Molecular signatures
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and molecular profiling reports are provided by the
companies that perform them and are usually scanned
in as separate reports (PDF format) within EHR systems
or kept as hard copies in patients’ files. Few institutions
currently have a process by which this information is
imported electronically into the EHR system.

Prognosis

Prognosis depends critically on both cancer biology and
host fitness—i.e., performance status and the presence of
comorbidity. Obviously, measures of somatic gene aber-
ration can only address the former, whereas clinical
judgment remains the determinant of the latter. Staging
also remains chiefly anatomic at this time, although
biomarkers, which are indirect measures of genetic aber-
ration, have been incorporated into the staging of pros-
tate and testicular cancers with the 7th edition of the
American Joint Committee on Cancer (AJCC) Staging
Manual [15]; more biomarkers are expected with the 8th
edition, to be published in late 2016. Despite this para-
digm, some of the earliest correlations between genomic
information and phenotype were in the area of prognosis.
Long before the genes responsible were characterized, it
was recognized that certain karyotypic abnormalities were
associated with relatively good or poor prognosis in acute
myeloid leukemia (AML) [16-18]. More recently, struc-
tural variation and point mutations have been found to
have prognostic value, at times independent from any
other measurable clinical factor, in most cancers (see for
example, [19]). Such information is often entered into a
patient’s EHR as a separate report or addendum. If the in-
formation is relevant to a patient’s prognosis, as in the
case of specific AML subtypes, it is up to the clinician to
seek out this information and include it manually in clin-
ical notes.

Treatment

The recognition that some, if not all, cancers are
oncogene-addicted led to the quest for genomically tar-
geted treatments. Many such treatments were discovered
before the mechanism for their effectiveness was recog-
nized, such as gefitinib and mutated epidermal growth
factor receptor (EGFR) in lung adenocarcinoma [20-22].
The first treatment proactively designed to destroy cells
reliant on an aberrant oncogene was imatinib, targeting
the fusion protein BCR-ABL [23]. Nearly contemporan-
eously, imatinib was shown to be an effective KIT inhibi-
tor and to be useful for the treatment of KIT-mutated
gastrointestinal stromal tumor, as well [24]. This import-
ant recognition that targeted therapies can have multiple
modes of “actionability” has led to a complex and prom-
ising ecosystem of targeted treatments and the guidance
of their selection by molecular profiling panels (see
below). Recently, genomics has also begun to identify
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candidates for immunotherapy, although these approaches
do not yet have clinical application [25]. Treatments are
entered into patient EHRs by several methods. They may
be found as orders that have been placed by the clinician.
Prior and current treatments may also be found within
narrative clinical notes.

Monitoring

With few exceptions characterized by durable responses
(for example, chronic myelogenous leukemia [CML]
treated with imatinib or other tyrosine kinase inhibitors
now carries a life expectancy approaching that of age-
matched controls [26]), most oncogene-driven cancers
recur or progress under the pressure of targeted therapy
[27]. For some that can be observed directly for genomic
evolution, disease status can be monitored through
measurement of the quantity or character of the target
protein. For example, lack of response to tyrosine kinase
inhibition, as measured by log-reduction in BCR-ABLI
transcripts, is now a provisional criterion for accelerated-
phase CML in the 2016 revision to the World Health
Organization classification of myeloid neoplasms and
acute leukemia [28, 29]. For the solid malignancies, radio-
logic monitoring using standard response criteria (for ex-
ample, Response Evaluation Criteria in Solid Tumors
[RECIST]) remains the most common approach [30]. Re-
cently, measurement of the genomes of circulating tumor
DNA as a means of monitoring response has gained great
interest (see below). Some of these monitoring methods
may be entered into a patient’s EHR as laboratory values
within a patient’s clinical note. It is also possible that these
monitoring methods are reported separately in documents
obtained from the testing laboratory.

Re-treatment

For most cancer types, the evidence base for relapsed and
refractory treatment has been both weaker and more dif-
fuse than the evidence base for initial treatment—weaker
because there are far fewer published randomized
controlled trials, and more diffuse in the sense that many
trials in these settings, especially for heavily pretreated pa-
tients, allow patients who have received a diversity of prior
treatments, making cross-patient comparison more diffi-
cult. Some oncogene-addicted cancers will have stereo-
typed genomic escape mechanisms, leading to progression
(for example, ABL kinase domain mutations in CML [31]
and gain of EGFR p.T790M mutation in EGFR-mutated
lung adenocarcinoma [32]). When such mechanisms are
identified, next-generation treatments can be developed,
such as ponatinib for CML with ABL p.T315] mutation
[33] and osimertinib and rociletinib for non-small-cell
lung cancer with EGFR p.T790M mutation [34, 35]. How-
ever, these scenarios are likely to be the exception, not the
rule. For example, Johnson et al. [36] have shown a
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diversity of escape mechanisms in vemurafenib-resistant
BRAF-mutated melanoma. Increasingly, clinical trial
eligibility, such as for the NCI-MATCH trial [37], re-
quires confirmation of the presence or absence of cer-
tain mutations. Thus, treatment selection at the time
of progression will likely require extensive genomic
analysis in most cases.

Current status of genomic and related

information

Integrating genomic information into EHRs may have
many interesting results. Understanding these impacts
necessitates a brief review of the current and emerging
technologies used to represent genomic data clinically.
The scope of genomic and related test information that
could be present in EHRs is large and growing. Most of
these data are currently concatenated and duplicated
within clinical notes, and are produced by a combination
of local and third-party laboratory facilities. Table 1 pro-
vides a contemporary list of technologies used in cancer
care, which are also summarized briefly here:

Immunohistochemistry: Includes hundreds of stains
available mostly to measure (over)-expression, but some
are characteristic of an underlying translocation (for
example, ALK rearrangement [38]). They are expensive,
require dedicated slides, and as such are usually
hand-selected by pathologists, such that there are typ-
ically 5-10 results per case before tissue is exhausted.

Flow cytometry: Measures the expression of cell sur-
face proteins by tagging them with fluorophores. Usually
used to characterize hematologic cancers by looking at
protein co-expression, as well as loss of expression.
Conventional flow is limited by the spectral frequen-
cies of fluorophores such that there are usually four
or eight channels. Interpretation involves comparing
two-dimensional scatterplots of one channel versus
another channel [39].

Fluorescence in situ hybridization: Looks for copy
number variation and rearrangements. Usually a single
test (for example, ERBB2/HER2 amplification testing) or
a limited panel of approximately five tests (for example,
chronic lymphocytic leukemia panel, myeloma panel).
Two related technologies, array comparative genomic
hybridization (aCGH) and molecular inversion probe-
based (MIP) array, may have more utility in the testing
of solid tumors [40, 41].

Polymerase chain reaction: Used to confirm certain
diseases (for example, CML) and also to detect minimal re-
sidual disease to very small scales. Although the turnaround
is relatively fast, PCR can only be scaled to “hotspot” testing
of 40-50 variants, such as the SNaPshot test [42].

Gene expression panels: Used by a limited number of
commercial laboratories, such as Genomic Health’s
Oncotype DX° platform and Agendia’s MammaPrint®
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Table 1 Current status of genomic and related information
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Technologies Applications

Challenges

IHC Measuring gene overexpression

Flow cytometry
co-expression and loss of expression

FISH Copy number and rearrangement detection

Polymerase chain reaction

Gene expression panels

NGS panels Detection of somatic variants using mostly full-exon sequencing.
NGS panels may vary greatly in size (25-500+ genes)
WES/WGS Sequencing of coding/all DNA, respectively

Circulating cell-free tumor DNA
tumors

Washable IHC

Mass cytometry
loss of expression

Methylation panels
hypomethylating agent efficacy

Cell surface protein tagging by fluorophores, detects

Confirmatory test and detection of minimal residual disease

Production of a single score based on gene expression panel

Monitoring solid tumor heterogeneity, surveying difficult-to-reach

Measuring protein expression with limited tissue sampling

Protein tagging by metal ion tags, detects co-expression and

Determines methylation patterns, which correlate with

Expensive

Limited spectral frequencies of fluorophores

Only works on known targets, cannot detect
novel aberrations

May only be scaled to a limited number of
variants

Commercially available products are based
on older datasets

Removing spurious results, identifying VUS,
presenting results to clinicians

High cost, computational complexity, handling
VUS, handling incidental findings

Not yet widely accepted, no consensus on
technical approach, slow turnaround, high cost

Expensive technique, still experimental

Only applicable in cases with known targets,
expensive, still experimental

Slow adoption of these panels

FISH fluorescence in situ hybridization, IHC immunohistochemistry, NGS next-generation sequencing, VUS variants of unknown/uncertain/undetermined significance,

WES whole-exome sequencing, WGS whole-genome sequencing

assay. The commercial vendors typically produce a sin-
gle score from a gene expression panel, and do not make
the individual contributing results available external to
their laboratory. While these tests can be clinically
useful, they are based on older datasets; for example,
MammaPrint’s gene expression panel is based on 14-
year-old data [43, 44].

Next-generation sequencing panels: This testing is
carried out on tumor tissues and, occasionally, on a
comparison of tumor and adjacent normal tissue. Gener-
ally, the panels include full exon sequencing and limited
intronic sequencing of a panel of genes implicated in the
prognosis or treatment prediction of cancers [45]. These
range from focused panels of 25-30 genes for a particular
cancer subtype to upwards of 500 genes for the largest
panels. The three main challenges in next-generation se-
quencing (NGS) are: 1) removing spurious results, such as
those arising from rare germline variants; 2) identifying
variants of unknown significance (VUS) and determining
their pathogenicity; and 3) presenting results to clinicians.
Much of the discussion below will pertain to NGS panels.

There are also several emerging technologies that are
likely to be available for clinical care in the next 3-5 years:

Whole-exome sequencing and whole-genome
sequencing: Whole-exome sequencing (WES) seeks to
characterize the 3 % of coding DNA in a cancer, whereas
whole-genome sequencing (WGS) seeks to sequence all
DNA [46, 47]. WES and WGS will likely be most useful
for determining factors that may indicate response to im-
munotherapy, such as predicted formation of neoantigens

[48]. While these techniques also offer a highly accurate
measure of mutational burden, it has recently been
shown that NGS panels may suffice for this [49, 50].
Tarczy-Hornoch et al. [51] have surveyed potential
methods for properly integrating WES and WGS informa-
tion within EHRs. Such integration would greatly help
with active clinical decision support (CDS).

Circulating cell-free tumor DNA sequencing: One
emerging technology most likely to make inroads into
the clinic soon is the analysis of circulating cell-free
tumor DNA (ctDNA). Early results have shown that the
technology is feasible and reasonably concordant with
tissue-based assays [52]. As such, ctDNA can be used as
a “liquid biopsy” and help survey complicated cases in-
volving metastatic and difficult-to-reach tumors [53].
Given the ease of specimen collection, this will be used
increasingly, especially for solid tumors, as an alternative
or replacement for tumor-based genomic testing. Even
beyond the ease of specimen collection, ctDNA may play
a major role in monitoring solid tumor heterogeneity.
NGS of solid tumor samples is limited by tumor sam-
pling bias. The small portion of the tumor biopsied for
sequencing likely does not capture the true heterogen-
eity of the entire solid tumor. Free of this “solid biopsy”
sampling bias, ctDNA advances can help to better cap-
ture tumor heterogeneity and, therefore, pre-existing or
emergent resistance mechanisms [54].

Washable immunohistochemistry: New methods are
being developed where an immunohistochemistry (IHC)
stain can be applied and then removed, followed by
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another IHC stain on the same slide. This removes the
prior limitation of IHC, which is the availability of stain-
able material (for example, a cell block made from pleural
fluid sampling can support the creation of only five to six
unstained slides; similar limitations exist for fine-needle
aspirations) [55]. It remains to be seen whether costs will
support high-dimensional IHC testing.

Mass cytometry: Mass cytometry is a variation of flow
cytometry in which antibodies are labeled with heavy
metal ion tags, rather than fluorochromes, and has the
potential to replace conventional flow cytometry [56].
Readout is by time-of-flight mass spectrometry. This
technology can measure tens or hundreds of parameters
and is being actively evaluated for subtyping AML and
other leukemias [57].

Methylation panels: There are only two commercially
available hypomethylating agents, decitabine and azacyti-
dine. Their exact mechanism of efficacy is unknown but
is under active investigation. It appears that alterations
in methylation patterns in noncoding DNA are likely re-
sponsible for the observed efficacy, and presumably,
there will be tests developed to predict for the efficacy of
these and other antineoplastic agents, although progress
in this field has been disappointingly slow [58].

Integration of genomic data into the EHR: Current
status

Contemporary to the rise of genomics in most aspects of
clinical cancer care, EHRs have become ubiquitous,
through a combination of “meaningful use” regulations
and the expected diffusion of innovations [59-61]. With
the wealth of genomic data now available to inform vari-
ous aspects of cancer care, the casual observer will be
surprised to discover that only a small minority of this
information is incorporated into the EHR in a format
amenable to electronic search, CDS, or secondary use,
despite some hopeful predictions made a decade ago
[62—-64]. Instead, many genomic tests, especially multi-
plex panels, are reported in PDF format and are either
physically mailed or faxed to the ordering provider. This
practice stems from several factors, including: 1) bio-
informatics pipelines intervening between raw data and
clinical reporting of variants, 2) the role of human cur-
ation in the interpretation of variant calls, and 3) lack of
consistent standards for the transfer of genomic labora-
tory results. Each of these factors is discussed below,
and the reader is also referred to the experience of the
Electronic Medical Records and Genomics Network
(eMERGE), summarized by Kho et al. [65].

Bioinformatics pipelines

No matter the technology to measure somatic gene vari-
ation, an extensive processing pipeline is required to
transform raw data into meaningful information; this
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differentiates genomic testing from the majority of rou-
tine clinical laboratory testing. While a comprehensive
review of such pipelines is beyond the scope of this art-
icle and is provided elsewhere [66, 67], two points are
worth noting, regarding the interrelated concepts of 1)
variant calling and 2) coverage.

The first point is the challenge of variant calling—that
is, distinguishing detected variants from normal germline
variation. This challenge pervades the pipeline process,
from sequence alignment to single-nucleotide variant
(SNV) calls, and is a concern for all areas of genetic test-
ing, not just cancer-specific testing, as illustrated by a re-
cent case study by Manrai et al. [68]. Although some
laboratories undertake tumor-normal testing to identify
and remove germline variants [69], this technique roughly
doubles the cost of the test, and insurers have balked at
covering the increased cost [70]. Given the presence of
somatic genomic variants in “normal” tissue (for example,
benign acquired melanocytic nevi are enriched for BRAF
mutations [71]), this approach also runs the risk of type II
errors (that is, false negatives). Current practices for
tumor-only testing dictate the use of a reference database,
such as 1000 Genomes [72] or ExaC [73], usually aug-
mented by a reference laboratory’s locally hosted propri-
etary knowledge. The concept of a normal reference
human genome is undergoing evolution and will likely
be replaced by the concept of genome graphs, which
does away with the idea of a single reference genome
and replaces it with a diversity of genomes based on
graph theory [74, 75].

The second challenge is in regards to coverage—that
is, the need to obtain a statistically reliable signal. Most
NGS reads will not be identical, because the starting and
ending base pairs are not the same. The majority of
reads will have a single error, but with multiple reads, it
is likely that many will be identical to at least one other
read [45]. For a given sequence, the number of times
that a sequence is read is referred to as the read depth;
across all sequences for a given test, summary statistics,
such as the average (mean) depth of coverage, are crit-
ical quality assurance data for laboratories and are some-
times reported. Read depths are not uniform across the
genome and may not even be parametric; as a result, sta-
tistics, such as the mean, do not appropriately capture
the reliability of the test. Due in part to the fact that this
information is often kept private by laboratories, in July
2016, the US Food and Drug Administration (FDA) pro-
posed draft guidance, entitled “Use of Standards in FDA
Regulatory Oversight of Next-Generation Sequencing
(NGS)-Based In Vitro Diagnostics (IVDs) Used for Diag-
nosing Germline Diseases” [76]. As the title indicates,
this draft guidance is aimed towards germline testing,
not somatic variant testing. However, the suggestions are
still informative. With regard to coverage, the FDA
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proposes the following: “For detecting germline hetero-
zygous variants using a targeted panel, set a threshold of
20x or greater for minimum coverage depth and 300x
for average coverage depth at 100 % of the bases for tar-
geted panels and at least 97 % of the bases for WES.”

To address these challenges, guidelines have been
issued by the US Centers for Disease Prevention and
Control (CDC) [77], the New York State Department of
Health (updated in 2016) [78], and the American College
of Medical Genetics and Genomics (ACMG) [79], but
none of them is likely to have the impact that the FDA
guidance will have on the regulation of NGS bioinfor-
matics pipelines.

Interpretation of results

Transforming raw genomic data into somatic variant
call information is the first step that is necessary for clin-
ical interpretation, but is not in and of itself sufficient.
In order to act on this information, it must be trans-
formed into meaningful clinical knowledge. It has be-
come readily apparent that the majority of cancers have
thousands, if not hundreds of thousands, of discrete mu-
tations, most of which are nonfunctional and related to
background mutations, genomic instability, or defects in
the neoplastic DNA repair machinery [80—82]. Because
of this, the concept of “clinical actionability” has gained
currency, and ad hoc definitions of this phrase have
emerged over time (see Table 2). The main challenge for
incorporating “clinical actionability” into the EHR is
two-fold: 1) explaining actionability, especially when
multiple variants are detected, usually requires lengthy
prose with multiple literature references and 2) action-
ability is subject to change as new information becomes
known. The importance of consistent interpretation of
variant results is illustrated by an ongoing lawsuit
(Williams v Quest/Athena), in which it has been alleged
by the plaintiff that an SCNIA variant was reported as a
VUS but was later determined to be pathogenic [83], and
the results of the Prospective Registry of MultiPlex
Testing (PROMPT) study, which has demonstrated a
large incidence of discordance across genetic testing
laboratories [84].

Lack of consistent standards

Perhaps the greatest challenge to the integration of gen-
omic laboratory results into EHRs has been the lack of
consistent standards for the unambiguous transfer of such
information [85, 86]. While there are well-established no-
menclatures for the representation of genetic variation,
such as HUGO Gene Nomenclature Committee (HGNC)
for gene names [87], Human Genome Variation Society
(HGVS) for SNVs and indels [88], and International Sys-
tem for Human Cytogenetic Nomenclature (ISCN) for
structural variation [89], applying these nomenclatures
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Table 2 An example of an actionability hierarchy for identified
genomic variants

Example scenario®

BRAF p.V600OE mutation
Vemurafenib
Melanoma

BRAF p.V600K mutation
Vemurafenib
Melanoma

BRAF p.V600E mutation
Vemurafenib
Hairy cell leukemia

BRAF p.V600K mutation
Vemurafenib
Lung adenocarcinoma

BRAF p.V600E mutation

Hierarchical level®

1. Variant known to confer sensitivity
to an FDA-approved agent for the
cancer subtype

w N =

2. Variant predicted to confer sensitivity
to an FDA-approved agent for the
cancer subtype

wN =

3. Variant known to confer sensitivity
to an FDA-approved agent for
another cancer subtype

wnN =

4. Variant predicted to confer sensitivity
to an FDA-approved agent for
another cancer subtype

wN =

5. Variant known to confer sensitivity

1.
to an experimental agent for the 2. Binimetinib
cancer subtype 3. Melanoma
6. Variant known to confer sensitivity 1. BRAF p.V60OE mutation
to an experimental agent for 2. Binimetinib
another cancer subtype 3. Hairy cell leukemia

7. Variant predicted to confer sensitivity
to an experimental agent for the cancer
subtype

BRAF p.V600K mutation
Binimetinib
Melanoma

wnN =

8. Variant with known prognostic
significance for the cancer
subtype

. KMT2A rearrangement
t(4;,11)(921;,923) as sole
abnormality

2. B-cell ALL

3. Poor prognosis in adults

1. ABL1T p.M244V mutation
2.CML

9. Variant with predicted prognostic
significance for the cancer

subtype 3. Likely poor prognosis, faster
progression to accelerated
or blast phase

10. VUS 1. BRCA1 p.S645Y mutation

2. Triple-negative breast
cancer

3. No known sensitivity or
prognostic significance

ALL acute lymphoblastic leukemia, CML chronic myeloid leukemia, FDA Food
and Drug Administration, VUS variant of unknown significance

“Hierarchy of actionability of identified genomic variants, ranging from the
situation with the strongest evidence base relating cause and effect (for
example, treatment of the given condition with a given drug will result in an
expected response) (1) to the weakest (10). For each hierarchical level, an
example is provided that meets three criteria: 1) genomic variant, 2)
pharmacologic agent, and 3) disease context. For simplicity, we do not further
delineate disease context by status (for example, untreated, relapsed/
refractory), although pharmaceutical agents are increasingly FDA-approved
only for a given disease context and status

The examples use predicted sensitivity but predicted resistance has the
equivalent hierarchy

with vigor has not yet occurred in the clinical domain. As
a simple example, consider the FDA label for the BRAF
inhibitor vemurafenib: “for the treatment of patients with
unresectable or metastatic melanoma with BRAFV600E
mutation as detected by an FDA-approved test.” The char-
acter string “BRAFV600E” is neither HGNC- nor HGVS-
compliant; yet, this type of result is often seen in the PDF
reports issued by molecular laboratories (personal com-
munication, Mollie Ullman-Cullere, Better Outcomes).
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Instead, “BRAF ¢.1799 T >A (p.Val600Glu)” or simply
“BRAF p.V60OE” would be compliant. Although the dis-
tinction may seem minor, the downstream implications
for integrated CDS, interoperability, and secondary data
use are significant [90]. Beyond the use of appropriate no-
menclature, standard representation of unambiguous
facts, such as “sensitivity to vemurafenib,” is problematic.
The issue is not a paucity of standards but, rather, too
many to choose from (see Table 3 and Additional file 1:
Tables S1 and S2). A decision to bind to a non-widely ac-
cepted or insufficiently granular terminology can have
major downstream effects and hamper interoperability,
especially when clear translations between terminologies
are not readily available. In an attempt to counter this
outcome, the Health Level Seven International (HL7°)
Clinical Genomics work group developed a fully Logical
Observation Identifiers Names Codes (LOINC)-qualified
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genetic variation implementation guide for HL7 Version 2
(V2) messaging, updated in 2013 [91]. However, this ap-
proach has not been widely adopted, in part because V2
does not excel in capturing the richness of a prose docu-
ment, such as that required for the interpretation of the
results. A more contemporary effort, called “V2-lite,” is
currently underway at HL7, and the Fast Healthcare Inter-
operability Resources (FHIR®) approach is increasingly
promising (see below).

Integration of genomic data into the EHR:
Emerging solutions

While the current status quo of faxed reports scanned
into EHRs is mostly acceptable for individual patient
care, it does not allow for CDS or secondary use of data.
Several emerging paradigms illustrate how genomic data
may be more thoroughly integrated into EHRs and

Table 3 Terminology systems that uniquely identify the genomically targeted antineoplastic drug vemurafenib®

Terminology short name  Terminology long name Definition Unique code Website
(if applicable)

ATC Anatomical Therapeutic Chemical vemurafenib LOTXE15 http://www.whocc.no/atc_ddd_index/
classification system

CAS Registry Number Chemical Abstracts Service vemurafenib  918504-65-1 http://ww.cas.org/content/chemical-
Registry Number substances

ChEBI Chemical Entities of Biological vemurafenib  CHEBI:63637 https://www.ebi.ac.uk/chebi/
Interest

ChEMBL vemurafenib  CHEMBL1229517 https://www.ebi.ac.uk/chembl/

ChemSpider vemurafenib 24747352 http://www.chemspider.com

DrugBank vemurafenib ~ DB08881 http://www.drugbank.ca

eMolecules vemurafenib 32176418 https://www.emolecules.com

FDA UNII Code Food and Drug Administration vemurafenib ~ 207SMY3FQT https:/fdasis.nlm.nih.gov/srs/srsjsp
Unique Ingredient Identifier

Guide to Pharmacology IUPHAR/BPS Guide to Pharmacology ~ vemurafenib 5893 http://www.guidetopharmacology.org

InChl IUPAC International Chemical vemurafenib  GPXBXXGIAQBQNI-  https://iupac.org/who-we-are/divisions/

|dentifier

UHFFFAOYSA-N

division-details/inchi/

KEGG DRUG Kyoto Encyclopedia of Genes and vemurafenib ~ D09996 http//www.genome.jp/kegg/drug/
Genomes
MeSH Medical Subject Headings PLX4032 C551177 https://www.ncbi.nlm.nih.gov/mesh
NCI Thesaurus National Cancer Institute Thesaurus vemurafenib  C64768 https://ncit.nci.nih.gov/ncitbrowser/
NCI-GLOSS NCI Dictionary of Cancer Terms PLX4032 CDR0000670004 https://www.cancer.gov/publications/
dictionaries/cancer-terms
PDBe Protein Data Bank in Europe PLX4032 32 http://www.ebi.ac.uk/pdbe/
PDQ Physician Data Query vemurafenib  CDR0000528954 https://www.cancer.gov/publications/pdq
PubChem vemurafenib  CID:42611257 https://pubchem.ncbi.nlm.nih.gov
RxNorm vemurafenib  RxCUI:1147220 https://www.nlm.nih.gov/research/umls/
rxnorm/
SNOMED-CT_US Systematized Nomenclature of Vemurafenib  SCTID:703656005 https://www.nlm.nih.gov/healthit/
Medicine - Clinical Terms, US Realm (product) snomedct/us_edition.html
UMLS Unified Medical Language System vemurafenib ~ C1832009 https://www.nlm.nih.gov/research/umls/
ZINC vemurafenib  ZINC52509366 http://zinc15.docking.org

*While these 21 distinct terminologies may not be exhaustive, they do illustrate the challenge of using terminology bindings in standards. Similar complexity is

observed in terminologies for diseases, genes, proteins, and pathways (see Additional file 1)
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clinical workflows in the near future. We will review
non-standardized integration approaches, “middleware,”
application programming interfaces (APIs), efforts to cre-
ate standardized EHR applications, and emerging know-
ledge bases. Non-standardized integration will allow
integration of genomic information into EHRs with lim-
ited to no interoperability between institutions. “Middle-
ware” creates a platform that is not fully integrated with
an institution’s EHR system; however, it has been shown
to be a useful modality for conveying up-to-date genomic
information to clinicians. APIs have the potential of being
fully integrated within a clinician’s workflow; however,
standardization of genomic concepts is a necessary first
step towards this reality.

Non-standardized integration into EHRs: One solu-
tion is to create a custom interface between a third-
party genomics laboratory and a freestanding EHR
installation. The advantage of this approach is that it can
be implemented relatively quickly. The disadvantage is
that it is not readily extendable to other laboratories or
EHRs. In 2014, Vanderbilt University Medical Center de-
veloped such an interface with Foundation Medicine
Inc., and we at that center can now receive electronic re-
sults of the FoundationOne test on a real-time basis. In
addition to preservation of fidelity in the transmission,
this interface automatically matches results to patients
and notifies providers when the test results are ready
through their existing notification workflow [92]. We did
find errors occurring, mostly attributable to mismatches
in free-text fields, such as medical record number and pa-
tient name; these errors were mostly correctable through
provider education. In addition to incorporation into the
clinical EHR, the results are shared with a research and
operations database, which has enabled secondary use
for clinical trial feasibility and cohort identification
needs [93]. Non-standardized integration therefore al-
lows genomic information to be viewed within a clinician’s
existing workflow while simultaneously facilitating re-
search endeavors.

Middleware

Recognizing that the user’s needs were not being met,
several products have emerged that can be loosely
termed “middleware,” comprising standalone web portals
or platforms for displaying patient cancer genomic data.
The most common of these products are web portals
provided by third-party laboratories. Examples of such
products would be Foundation Medicine’s ICE portal
[94] and Caris Life Science’s MI Portal [95]. These prod-
ucts have two main disadvantages: 1) they are not within
clinician workflow and typically require a separate login,
and 2) they have limited ability to merge clinical data
with genomic data, without further data entry on the
part of the ordering clinician. On the other hand, they
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will contain high-fidelity results, which can be updated
as new knowledge accumulates, and often contain links
to primary literature and clinical trials resources. Another
class of middleware products is exemplified by Syapse
Inc., which produces a “platform” that serves several needs
related to cancer genomics: workflow management, in-
cluding ordering and receiving results; integration of clin-
ical and molecular data; CDS; and support for activities,
such as molecular tumor boards. Several leading organiza-
tions, such as UCSF and Intermountain Healthcare,
are currently implementing the Syapse platform [96].
However, this solution is likely to be unaffordable to
community oncologists, as it requires expensive man-
ual integration, and it is limited by the degree to
which clinical information can be shared by the host
EHR. While “middleware” does not handle clinical in-
formation very well, it fills the much needed gap of
portraying patient genomic information, albeit outside
of the clinician’s workflow.

Application programming interfaces: The power of
using a standardized encoded representation of genomic
data becomes most evident when taking advantage of
the emerging complementary ecosystem of APIs, appli-
cations (apps), and third-party knowledge bases [97]. As
a simple example, the Physician Data Query (PDQ) iden-
tification code for vemurafenib (CDR0000528954, from
Table 3) can be entered directly into the URL of the NCI
Drug Dictionary [98] so as to return the appropriate
page describing the drug, with links out to active clinical
trials. A more complicated example of this representa-
tional state transfer (RESTful) approach to web services
is the OpenFDA API [99], which will take a variety of
coded representations and return a list of reported ad-
verse events to a given pharmacologic agent, in XML
structure. This structure can then be transformed for
user presentation through any of a variety of apps.
Importantly, OpenFDA and similar APIs that expose
non-patient health information data usually require a
thin layer of security, in the form of uniquely identifi-
able API keys.

APIs in the medical domain

Apps that operate within the clinical domain require stric-
ter authorization and security procedures. The Substitut-
able Medical Apps, Reusable Technologies (SMART")
platform was developed to enable the existence of such
apps, which can, importantly, be launched from within or
external to an EHR [97, 100]. SMART applications there-
fore have the potential to be used within the clinical work-
flow, including the ability to work on tablet devices and to
support single sign-on authority. Towards the end of the
initial SMART grant, the HL7 FHIR standard began to
gain momentum. As a result, the SMART platform was
modified to take advantage of FHIR, and the result was



Warner et al. Genome Medicine (2016) 8:113

SMART on FHIR [101]. FHIR operates on the concept of
a group of core “resources” meant to capture the bulk
(around 80 %) of information present in current EHRs
and to provide ready means to extend the standard to cap-
ture the other 20 % (including genomic data). We demon-
strated that such an extension was possible for genomic
data in the SMART on FHIR environment [102] and
subsequently developed a prototype app that could
display population-level genomic data in the context
of an individual patient, SMART Precision Cancer
Medicine (PCM, Fig. 1) [103]. More recently, the con-
cept of a sequence (for example, DNA, protein) has
been brought into the core FHIR resources [104]. As
FHIR captures an increasing number of concepts
from EHR systems, the possibility of ubiquitous
SMART applications increases, allowing patients to
take such applications from institution to institution.
The PMI, which aims to collect biospecimens and
EHR data from at least 1 million participants [8], has
further galvanized the development of the SMART on
FHIR effort, specifically through a related initiative,
called “Sync 4 Science” [105]. This initiative, which is
intended to establish an ongoing feed between an EHR
and the PMI Cohort Program database, involves the place-
ment of an app with revocable long-term authorization
within a patient portal and is actively undergoing imple-
mentation by seven large EHR vendors [106]. Encour-
agingly, a recent survey demonstrated a broad willingness
to share data and samples for the PMI Cohort
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Program, and this consumer engagement is likely to
push the integration of EHR and genomic data even
more rapidly [107].

Utilizing genomic data in the EHR: The need for
knowledge bases

In parallel with the evolution of apps, free and commer-
cial knowledge bases have begun to emerge to capture
the complexity of the marriage of genomic and clinical
data. One of the earliest publicly available knowledge
bases, MyCancerGenome [108], was started in 2011 and
now has information on 22 cancer types and 823 cancer
genes [109, 110]. More recently, the Jackson Laboratory
has released a semi-automated/manually curated data-
base of disease, variant, drug, and clinical trial relation-
ships for 82 genes (as of October 2016): the JAX-Clinical
Knowledgebase [111, 112]. Another database with simi-
lar application is the OncoKB database, developed and
maintained by Memorial Sloan Kettering in partnership
with Quest Diagnostics [113]. This knowledge base con-
tains information about the treatment implications of
specific cancer gene variants and goes on to classify
treatment information based on a Levels of Evidence
system. Clinical Interpretation of Variants in Cancer
(CIViC) is yet another knowledge database that captures
variant-level cancer genomic information [114]. The
mission of the open-source, open-access CIViC know-
ledge base is primarily education and dissemination of

(a) Order
genetic tests

EHR/
Clinical systems

Diagnostic order app

FHIR® data

Diagnostic reporter app

as SMART Precision Cancer Medicine. Figure courtesy of David Kreda

(b) Return genetic test results

Fig. 1 FHIR Genomics can be used to enable multiple steps in the genomic testing and interpretation process. The figure shows a hypothetical
workflow that a clinician would carry out. a First, any of a number of genetics tests are ordered electronically, and the details are transmitted to
an internal or third-party lab, for example a sequencing lab. This step can be accomplished using an app such as the Diagnostic Order App or
through native electronic health record (EHR) capabilities. b Second, the lab generates structured test results which are returned to the clinician
within their workflow. This step can be accomplished using an app such as the Diagnostic Reporter App or through direct interfaces. ¢ Third,
results can be presented and contextualized for the clinician at the point of care through apps that can integrate clinical and genomic data, such

(c) Present & contextualize genetic test results

SMART® on FHIR® data
clinico-genomics apps

FHIR® data

Image: SMART Precision Cancer Medicine App
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information that has been curated by community users
and domain experts.

Clarivate Analytics (formerly the Intellectual Property
and Science business of Thomson Reuters) has released a
subscription-only product, Precision Medicine Intelligence,
that is manually curated, with information on 8514 genes
and 89,631 genetic variants (including intergenic SNPs and
structural variants), as they relate to drug sensitivity, clin-
ical trials, and prognosis (personal communication, Me-
linda Baker, Clarivate Analytics). This product also
employs a 12-point evidence scoring algorithm, which as-
sesses the clinical applicability of a variant association
through a combination of effect sizes, strength of correla-
tions, reproducibility, and the statistical rigor used in the
source publication(s). More general than cancer, the
ClinGen genomic knowledge base [115] is intended to be
an “authoritative central resource that defines the clinical
relevance of genes and variants for use in precision medi-
cine and research” [116, 117]. The live portal was recently
opened, and there is an active EHR working group, whose
task is to “ensure that the ClinGen resource is designed to
be accessible to providers and patients through electronic
health record and related systems.”

With this proliferation of knowledge bases, it can be
difficult to choose among them. Recognizing this swiftly
changing ecosystem, the FDA issued a partner draft
guidance document to the one referred to previously,
entitled “Use of Public Human Genetic Variant Data-
bases to Support Clinical Validity for Next-Generation
Sequencing (NGS)-Based In Vitro Diagnostics” [76]. The
goal of the eventual guidance is to provide oversight for
publicly accessible databases that are providing aggrega-
tion, curation, and/or interpretation services.

One can easily see the scenario where an app, either
within or external to an EHR, can “hook” into an external
knowledge base to provide information at the point of
care. The pilot implementation of PCM demonstrated
seamless linkages to three knowledge bases: Gene Wiki,
MyCancerGenome, and HemOnc.org [104]. Eventually,
guidance in the form of genomic CDS could also be of-
fered through apps. Such “CDS hooks” would be syn-
chronous to the clinical workflow and would only launch
when needed and are under active development [118].
The eMERGE and Implementing GeNomics In Practice
(IGNITE) consortia have also produced a knowledge base
of genomic medicine CDS artifacts [119]. An example of a
genomically informed clinical workflow is shown in Fig. 2.

Conclusions

The avenues for obtaining cancer genomic information
have increased rapidly and will continue to do so as the
costs of genomic testing go down and insurance reim-
bursement becomes more routine. From NGS to methy-
lation panels, we have vast amounts of information
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Test ordering
(DiagnosticOrder Resource)

v

Measurement
(Sequence Resource)

v

Observation (Observation Resource, Repeat to determine response
DiagnosticReport Resource) to therapy; presence of minimal
+ residual disease; emergence of
new mutations presaging relapse;
or new mutations present
at time of progression.

Interpretation
(GeneticObservation Profile)

v

Decision making
(CDS Hooks)

v

Action
(CarePlan Resource)

Fig. 2 Genomic information in the flow of cancer care. This
simplified flow diagram illustrates the process of information
gathering and decision making that characterizes the standard
model of interventional oncology care. In particular, this model is
applicable to the treatment, monitoring, and re-treatment phases
of oncology care. In blue are primarily the information gathering
steps, and in green are the active decision making and intervention
steps. This process is inherently iterative, usually on a pre-planned
schedule such as assessment of treatment response after 8 weeks
of therapy, or surveillance monitoring on a quarterly basis. Each
step of this process can be captured by one or more FHIR
Resources/Profiles, which are shown in italics in parentheses. CDS
Hooks is a special implementation of FHIR for clinical decision

support purposes (see text for details)

characterizing myriad cancer types and their sensitivities
to treatment. While the oncologic data grow in both size
and sophistication, the basics of patient care remain
largely unchanged. Today’s major challenge is to make
the complicated cancer genomic data compatible with our
more traditional clinician-patient interactions. A useful
first step in addressing this challenge is to solve the prob-
lem of cancer genomic data integration with EHRs.

By having cancer genomic information available in
EHRs, providers and patients both stand to benefit, es-
pecially with the movement to more openly shared
EHRs [120]. Perhaps patients would be better informed
as to why they are receiving certain more expensive tar-
geted antineoplastic medications as opposed to cheaper
nonselective alternatives. Perhaps patients could better
understand why their prognosis has changed after re-
ceiving a particular genomic test. In other words, cancer
genomic information integration into EHRs could help
promote the benefits of patient-centered care.

Beyond upholding clinician-to-patient interactions, inte-
grating cancer genomic information with EHRs could be a
major driver of scientific discovery. Substantial amounts
of useful clinical data are available in the long oncologic
narratives within EHRs. Having that information side by
side with genomic cancer information could help unveil
correlations and patterns that were previously obscure.
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An interesting area of development that will undoubt-
edly harness cancer genomic-EHR integration will be
machine learning algorithms and CDS software. Ma-
chine learning algorithms will be better able to identify
patterns in patients’ genomic and clinical data, enlight-
ening clinicians on information and associations that
may have been overlooked. CDS mechanisms will one day
be able to augment the ability of doctors to shape treatment
courses. It is important to note that the development and
maintenance of CDS are not free and may exacerbate dis-
parities, if the appropriate ethical frameworks are not con-
sidered in advance. We anticipate that this important
discussion, including whether the benefits justify the costs,
will need to take place sooner rather than later.

Having cancer genomic information integrated into EHRs
will undoubtedly help clinicians take better care of patients.
With proper integration, patients and their cancer genomic
information should be able to travel more seamlessly be-
tween care centers; we have previously shown that such
interoperability is possible [121]. Other projects, such as
the National Academy of Medicine’s DIGITizE [122], are
also working on integrating genetic information into the
EHR. Furthermore, clinicians may be more inclined to let
the genomic information in their patients’ EHRs better
guide the decisions they make if it is well integrated. For ex-
ample, well-integrated cancer genomic information within
an EHR could inform doctors of other patients with similar
variants and their course of therapy. On the other hand,
such integration of genomic information in EHRs could
help clinicians realize why their patient is unique from the
populations described to date in clinical trials and case
studies. In essence, proper integration would help take the
practice of medicine towards the future of personalized and
precision medicine.
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