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Abstract

Combinations of therapies are being actively pursued to expand therapeutic options and deal with cancer’s
pervasive resistance to treatment. Research efforts to discover effective combination treatments have focused on
drugs targeting intracellular processes of the cancer cells and in particular on small molecules that target aberrant
kinases. Accordingly, most of the computational methods used to study, predict, and develop drug combinations
concentrate on these modes of action and signaling processes within the cancer cell. This focus on the cancer cell
overlooks significant opportunities to tackle other components of tumor biology that may offer greater potential
for improving patient survival. Many alternative strategies have been developed to combat cancer; for example,
targeting different cancer cellular processes such as epigenetic control; modulating stromal cells that interact with
the tumor; strengthening physical barriers that confine tumor growth; boosting the immune system to attack
tumor cells; and even regulating the microbiome to support antitumor responses. We suggest that to fully exploit
these treatment modalities using effective drug combinations it is necessary to develop multiscale computational
approaches that take into account the full complexity underlying the biology of a tumor, its microenvironment, and
a patient’s response to the drugs. In this Opinion article, we discuss preliminary work in this area and the needs—in
terms of both computational and data requirements—that will truly empower such combinations.

Background
Advances in tumor profiling and deep sequencing have
revealed driver mutations and yielded novel targets for a
new generation of cancer drugs. Despite progress in our
abilities to determine and diagnose genetically defined
tumor subgroups and patients most likely to benefit
from available treatments, these therapies have yet to
realize their full potential, owing in part to the intrinsic
and adaptive resistance of tumors [1]. Within cancer
cells, compensatory signaling pathways can be harnessed
to overcome a dependency on any one drug target. This
plasticity of tumor cells enables dedifferentiation and
avoidance of cell death. Furthermore, inherent DNA
instability leads to extensive heterogeneity and rapid
clonal evolution of tumor cells.

A simple literature search reveals hundreds of exam-
ples of both experimental and computational approaches
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that have been used to discover pairs of drugs that may
offer enhanced benefit if used in combination to treat
cancer [2—-4]. Owing to their in vitro nature, most ex-
perimental phenotypic screens search for pairs of drugs
that act synergistically to increase growth inhibition or
induce death of specific cancer cells [5-7]. Similarly,
many computational methods focus on the identification
of drug cocktails to enhance effects that are specific to
the cancer cell by increasing the degree to which intra-
cellular oncogenic bioactivity is suppressed [4, 8, 9].
Both these approaches are based on the principle that by
hitting the cancer cell “harder and faster” the tumor
response will be more dramatic and the likelihood of
cells escaping and resistance emerging will be reduced.
Although these approaches can be effective, the focus on
the cancer cell overlooks the considerable opportunities
for combination therapies to exploit targets outside the
tumor cell.

In this Opinion article we highlight the breadth of
opportunities that are available to improve the longevity
of therapeutic benefit by targeting components of tumor
biology such as the microenvironment or immune re-
sponse in combination with tumor-cell-targeting agents.
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To date, hypothesis-free discovery of such multimodal
drug combinations has been impractical owing to the
diversity of possibilities, the variability of cellular and
molecular contexts, the practicality of preclinical model-
ing, the paucity of data available, and the complexity of
associated computational modeling [2, 10]. We outline
new technologies and advocate the collection and shar-
ing of clinical and laboratory data necessary to enable
computational prediction of testable multimodal drug
combination hypotheses. In addition, we argue for the
development of novel approaches that can model such
multiscale combined phenomena and assess the likeli-
hood that resulting drug combinations will achieve
clinical benefit.

Potential benefit from drug combinations with
targets outside the primary tumor cell

Successful drug combinations used in clinical practice
today, and those emerging in current clinical trials, indi-
cate that more attention should be given to targets out-
side the tumor cell. Of the 521 non-small-cell lung
carcinoma (NSCLC) drug combination trials that have
been completed for which an outcome is reported in
Trialtrove [11], 184 combine multiple drugs that have
targets inside the tumor cell, whereas 110 trials combine
such tumor-cell-targeting drugs with angiogenic agents
and 94 with immune-targeting agents (Box 1). Many
clinical drug combination successes seem to involve
drug pairs with independent effects rather than synergis-
tic activity within the tumor cell [12, 13]. Furthermore,
the considerable increase in immunotherapies in recent
years is apparent among published and ongoing combin-
ation trials (Box 1). It is important, therefore, to discover
additional combination approaches that consider all as-
pects of biology in patients with cancer to best improve
responses by both controlling the tumor and improving
patient wellness, while avoiding antagonism and toxicity.

Targeting independent subpopulations of cancer cells
across heterogeneous tumors

Tumors have inherent DNA instability and encounter
sequential environmental and therapeutic selective pres-
sures throughout their development. In addition, migra-
tion and metastasis lead to the independent evolution of
tumor cell populations at distal sites in diverse environ-
mental conditions. As a result, an advanced cancer can
comprise multiple subclonal tumors, each with inde-
pendent genetic drivers and responses to particular ther-
apies [14, 15]. Most therapeutic choices concentrate on
the driver events that are most prevalent across the pri-
mary tumor; however, recurrence can result from the out-
growth of small pre-existing resistant cell populations [16].
Drug combination approaches designed to tackle several
independent drivers offer great promise, in particular to
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combat subclonal populations that are likely to be resistant
to the primary therapy [17]. Another attractive approach is
to control tumors by using sequential, tailored therapy that
is informed by continuous monitoring of tumor evolution.
Such therapy could be adapted following the detection of
clonal outgrowth to maximize therapeutic benefit; this
approach to therapy is referred to as “temporal collateral
sensitivity” [16, 18, 19].

In addition to inherent heterogeneity and subclonality,
epigenetically driven changes in cell state can give rise to
dedifferentiated cell populations that survive many
therapeutic pressures and have a pivotal role in the de-
velopment of resistant tumor-cell populations [15, 20].
Combination therapies aimed at reducing the plasticity
of tumor cells, synchronizing the cell cycle or otherwise
maintaining sensitized tumor cell states, or targeting
epigenetic dysregulation hold additional promise for
the prevention of drug resistance and tumor evolution
[3, 21, 22]. For example, enhanced or prolonged tumor
responses have been reported using drug combinations
that inhibit DNA repair to sensitize tumor cells to
DNA-damaging agents [23]; target epigenetic regulators
to prevent cell state transition [15]; or synchronize the
cells’ DNA repair cycle at a point that is sensitive to
chemotherapy [24].

Improving response rates by identifying drugs with
independent non-antagonistic effects

Despite advances in companion diagnostics (that is, tests
for biomarkers associated with enhanced response to a par-
ticular drug) and precision medicine (that is, biomarker-led
tailoring of therapies to an individual patient), patient se-
lection remains imperfect, and most marketed agents have
suboptimal response rates in their prescribed indications
[5, 22]. Objective response rates in successful oncology
drug trials are typically below 40% and are not significantly
higher than those in many failed trials (Trialtrove) [11],
which suggests that many therapies may fail in early trials
because of a lack of improved response rate in a defined
population for which response to any drug is infrequent.
Rarely, however, is it proven whether the population in a
failed trial is distinct from the population responding
to the comparator or standard of care therapy. It may
therefore be pertinent to pay more attention to drugs
that benefit different patients across a clinically or
molecularly defined population without antagonism or
significant adverse events.

Targeting tumor promotion and protection conferred by
the stroma and extracellular matrix

Tumors actively remodel their microenvironment,
which comprises a heterogeneous collection of endo-
thelial cells, leukocytes, cancer-associated fibroblasts
(CAFs), mesenchymal stromal cells, growth factors,
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Box 1. Clinical trials of drug combinations in non-small-cell lung carcinoma
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Box 1. Data were collected from Trialtrove [11] for non-small-cell lung carcinoma (NSCLC) trials published between 1996 and 2016 that
tested multiple drugs and mentioned the word “combination” (or equivalent) in the description fields. Basket and umbrella trials that only
tested drugs as monotherapies were excluded. Success rates reflect only the 521 trials that report a positive or negative outcome in Trialtrove; a
further 1997 completed trials did not report an outcome and are not included in the graphs. A positive outcome is reported for trials that met
their primary endpoint; however, the primary endpoint can vary and for this reason phase | trials (for which the endpoints were predominantly

safety or pharmacodynamics) were separated from phase Il, lll, and IV trials (for which the endpoints were predominantly efficacy, response, or

survival). Data include trials assessing combinations relative to respective monotherapies or relative to unrelated control arms. (Continued)
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(See box on previous page.)

Drugs are partitioned into one of five modes of action, which are detailed below:

e Tumor driver: the primary drug target is a protein within (or on the surface of) a cancer cell and drives a hallmark oncogenic process
such as growth, survival, or repair

e Immune: the primary drug target is a protein within (or on the surface of) an immune cell or an immunosuppressive protein on the
surface of a cancer cell

e Angiogenesis: the primary drug target is a protein that controls the development of tumor vasculature

e (lassical cytotoxic: drugs that non-specifically target dividing or unstable cells

e Other: drugs that target processes that are outside of the tumor or unrelated to the disease, such as steroids, nutritional supplements,

analgesics, or therapy associated with a comorbidity

The reported number of trials involving agents with each mode of action refers to the number of Trialtrove entries (independent trials)
that involve one or more agents with a specific mode of action. Therefore, a trial involving multiple agents with the same mode of
action will be counted only once for that mode of action, and a trial involving several agents with different modes of action may be
counted for multiple modes of action.

From our analysis we can come to the following conclusions:

a. A significant proportion of recent clinical trials testing drug combinations in NSCLC involve drugs that do not target cancer cells. Trials
involving immune-targeting agents are mostly ongoing. Aside from tumor-targeting and immune-targeting agents, the
proportions of drugs with other modes of action remain consistent between ongoing trials and those reporting negative or positive
outcomes.

b. A dramatic increase is apparent over recent years in the proportion of NSCLC trials of drug combinations involving immune-targeting
agents. The proportion of trials involving drugs that target tumor drivers within cancer cells has been stable since 2007. The proportion of
trials involving cytotoxic drugs continues to decrease.

¢. The 229 NSCLC trials with negative outcomes in Trialtrove show that, as expected, phase 1 trials are predominantly terminated
owing to safety concerns or adverse effects for drugs that target the following mechanisms of action: cytotoxic (graph i), tumor
cell driver targeting (graph ii), angiogenesis targeting (graph iii), immune targeting (graph iv), and other (graph v). By contrast,
phase Il, lll, and IV trials are mostly terminated owing to lack of efficacy or the primary endpoint not being met. Proportionally
fewer combination trials involving biologic (typically antibody-based) drugs report failures due to safety concerns or adverse
effects (part vi), and since most immune-targeting agents are biologics the relative proportion of their trials terminated owing to

lack of efficacy is increased (graph iv).

proteases, and the extracellular matrix (ECM) [13, 25, 26]
(Fig. 1). Chemotherapies, surgery, and radiotherapy can
also influence the microenvironment, creating general
tissue damage that triggers a wound-healing response
and the influx of inflammatory cells [25]. The resulting
microenvironment in turn promotes tumor growth and
survival by influencing cell migration, differentiation,
immune responses, and inflammation and protects the
tumor from the effects of therapeutics [13]. Growth
factors and endocrine signals delivered to the tumor
from or through the microenvironment offer obvious
targets for combination therapies and a number of suc-
cessful therapies target these molecules [27, 28]. Devel-
opment of therapies that target components of the
tumor microenvironment can be complex, as many
components have a critical role in normal tissues and
processes, as well as in tumor control [29]. Tumor im-
munotherapy will be discussed separately, but other

therapeutic approaches showing promise include:
regulation and degradation of the ECM with matrix
metalloproteinases [29]; collagenases [30]; endocrine
therapies [27]; restricting vascularization with anti-
angiogenics such as bevacizumab [25, 30, 31]; and ma-
nipulating the migration and functions of CAFs [32].

Targeting the physical barrier of the tumor
microenvironment

As well as its role in tumor promotion, the tumor
microenvironment can physically affect tumor pro-
gression and response. Abnormal tumor vasculature,
ECM, and interstitial fluid pressures (which affect
blood perfusion and molecular movement) can pre-
vent drugs from reaching tumor cells (Fig. 1). A num-
ber of therapeutic approaches are being used to shape
the tumor microenvironment specifically to improve
delivery of antitumor agents. These approaches
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Fig. 1 The tumor microenvironment. Many cells and tissue
components interact with cancer cells to influence tumor
progression and response. These include cytotoxic (CD8") T cells
and regulatory T (T,eg) cells, regulatory B cells (B,eg), dendritic cells
(DCs), natural killer (NK) cells, myeloid-derived suppressor cells
(MDSCs), and mast cells, which are involved in the immune response
against the tumor and communicate with tumor cells through re-
ceptor-ligand interactions such as those between programmed cell
death protein 1 (PD-1) and PD-1 ligand 1 (PD-L1). In addition, the
extracellular matrix (ECM), cancer-associated fibroblasts (CAFs), and
endothelial cells of the vasculature are critical to tumor growth,
transformation, and angiogenesis. In addition to targeting the tumor
itself, all of the described components of the tumor

microenvironment represent potential therapeutic targets. Figure
produced with permission of Acerta Pharma and copyright is reserved

include promoting or normalizing vascularization, al-
leviating solid stress, normalizing lymph flow, altering
the composition of the tumor stroma, and elevating
blood pressure [30, 33, 34]. Aside from drug-delivery
considerations, however, the tumor stroma and ECM
have also been reported to physically restrain tumor
growth [35], a role that could potentially be thera-
peutically promoted.

Promoting an antitumor response from the immune
system

The success of agents that stimulate an antitumor
immune response has been well documented in re-
cent years [12, 36, 37]. The use of these agents has
led to dramatic tumor responses and improved sur-
vival in a subset of patients with melanoma, and im-
munotherapies are showing promise in various other
tumor types [38]. Multiple studies are also underway
that combine immunotherapies with numerous tar-
geted agents or cytotoxic therapies [39]; 11 such tri-
als have been reported since 2005 whereas only one
such trial was reported prior to 2005 (Trialtrove)
[11].

When seeking beneficial combinations it is important
to understand the potentially conflicting effects that a
drug may have on the various cell types in the body.
Agents designed to target tumor-cell-driving oncogenes,
for example, may also impact immunosuppressive sig-
nals from the tumor cell or key signaling processes
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within immune cells. Numerous well-studied cancer-cell
drug targets have essential roles in the normal develop-
ment, differentiation, and activity of certain immune
cells (Fig. 1). In tumor cells, inhibition of the mitogen-
activated protein kinase kinase MEK1 (also known as
MAP2K1) can dramatically arrest growth, and high ex-
pression of the immunosupressive programmed cell
death protein 1 ligand 1 (PD-L1) has been associated
with resistance [40]. Within immune cells, MEK1 can
play contradictory roles; for example, it promotes both
CD8" T-cell priming and CD8" T-cell death [41], which
makes it difficult to predict whether inhibition would have
an immunosuppressive or immunostimulatory effect
(Fig. 1). Similarly, inhibition of the kinase mammalian tar-
get of rapamycin (mTOR) inhibits tumor cell growth by
inducing apoptosis [42] and also reduces PD-L1 expres-
sion by the tumor cell [43]. However, mTOR inhibition
also suppresses the immune response against the tumor
by increasing the activity of phosphatidylinositol-3,4,5-
trisphosphate (PtdIns(3,4,5)P;)-mediated signaling path-
ways in cytotoxic CD8" T cells [44]. Inhibition of vascular
endothelial growth factor (VEGF) may, alongside its well-
studied anti-angiogenic effects, promote T-cell effector
function and trafficking to the tumor, decrease PD-1 ex-
pression on CD8" T cells, increase the number of imma-
ture dendritic cells and their T-cell-priming ability, and
reduce the size of T-cell-regulatory myeloid-derived sup-
pressor cell populations [45]. Indeed, preclinical and
translational data have supported synergy between angio-
genesis inhibitors and immunotherapies and led to mul-
tiple trials of such combinations with some early signs of
success [46, 47]. As drug targets in the tumor, the
microenvironment, and immune cells can have both
antitumor and protumor effects, predicting the overall
efficacy of targeted therapies is difficult, but a better
understanding of this complex biology promises to
improve predictions and also reveal the most effective
ways to combine drugs.

Multiple reports now show that there is an improved
antitumor immune response to cancer cells that have
higher mutational loads and resulting increased anti-
genic burden [48]. A number of agents designed to se-
lectively introduce DNA damage to tumor cells [23] are
also now showing success in clinical practice. Although
primarily designed to introduce intolerable levels of
DNA damage to kill the tumor cell directly, such agents
could potentially increase the antigenic burden of a
tumor cell [49]. Furthermore, increased tumor cell death
can lead to the release and recognition of tumor-cell-
specific antigens by the immune system [39]. Such
attempts to enhance the immunogenicity of cancer
cells—that is, the extent to which they are detected by
the immune system—could also have a role in effective
drug combinations.
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Boosting tumor response by targeting the microbiome
The microbiome may have diverse roles in tumor devel-
opment and response, most notably in metabolic modu-
lation of the antitumor immune response [50, 51],
antigenic priming [52, 53], and the equilibrium of
immune cell populations at the tumor site [53]. Ap-
proaches to selectively enrich for beneficial microbial
populations are therefore attractive options to consider
in combination with tumor-cell-targeting agents. Indeed,
recent literature has highlighted the potential to use an-
tibiotics or probiotics and dietary approaches to enhance
responses to cancer immunotherapies [53, 54]. These re-
cent studies have led to the development of so-called
oncomicrobiotics, which indirectly promote beneficial
immune responses through optimization of the gut
microbiome [55].

Improving wellness to extend the benefits of
cancer-targeting therapies

At all stages of drug development, discontinuation of
therapy in patients with cancer is often unrelated to the
primary efficacy endpoint. For example, more than 20%
of phase II, III, or IV trials of combination therapies in
patients with NSCLC listed as terminated in Trialtrove
ceased owing to safety concerns or adverse effects
(Box 1) and a number of the remaining trials that were
terminated owing to the primary endpoint not being
met and lack of efficacy may have tested tolerated dose
thresholds that were too low for efficacy.

Alongside therapy to improve antitumor effects, it is
therefore essential to consider the right combinations of
treatments to improve overall patient wellness, tackle co-
morbidities, and reduce adverse events. Steroid treatment
can prevent intolerable gastrointestinal toxicity and enable
increased dosing of anticancer agents [56, 57]. Secondary
management of chronic obstructive pulmonary disease in
patients with lung cancer can prevent health deterioration
and prolong administration of anticancer agents [58].
Creative intermittent scheduling and switching of therap-
ies can help to avoid toxicities while maintaining pharma-
codynamically effective doses [3, 22]. The advent of
biosensors and other advanced technologies for real-time
monitoring [58-60] offers an unprecedented opportunity
to manage a patient’s wellness throughout their cancer
care and maximize therapeutic efforts.

Much focus has been given to combinations that aim
to enhance tumor cell death and objective responses, yet
tumors influence and are under the influence of many
components of their microenvironment (Fig. 1), and
patient response is in turn influenced by much broader
components of overall health. Despite advances, preclin-
ical models are severely limited in their ability to recap-
itulate all facets of tumor and patient biology. It is
essential, therefore, that we find complementary
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computational approaches to identify potential com-
bination therapies that have a clear cellular and
mechanistic rationale, and that we select the most
appropriate tumor models and patients in which to
test them.

Which computational approaches can identify
these multiscale modes of action?

Myriads of computational methods have been developed
to analyze tumors and their interactions with therapies.
Data-driven methods mine existing data in a hypothesis-
free manner to identify associations that implicate
certain cellular processes, which can then be followed
up in more detail. These methods use the data alone or
combine the data with some prior knowledge, such as
information on biological pathways, to distill knowledge
with more mechanistic content. Data-driven methods
are typically based on a statistical or machine-learning
model that predicts an outcome (for example, drug syn-
ergy) from input features (for example, properties of the
tumor and of the therapies to be used), and they can be
extended to consider context and conditional specificities
of therapeutic effects. By contrast, knowledge-driven
methods use predictive models built from our understand-
ing of a drug’s mode of action. These methods have the
power to predict the effects of drugs in specific conditions
in a mechanistic and dynamic context, although they are
only able to do so for drugs with modes of action that are
included in the model.

Data-driven approaches
As described above, there is an increasing interest in
combining drugs with fundamentally different modes
of action. To analyze and eventually predict these
combinations computationally, we need methods that
are able to integrate different biological processes.
Such integration is probably most straightforward
conceptually for pure data-driven statistical and
machine-learning models. These models can handle
heterogeneous types of data; in the context of predic-
tions of combinations of targeted therapies, models
can be built that integrate genomic data from cells,
chemoinformatic properties of drugs, and mechanistic
information on the pathways in which the drugs’ tar-
gets are embedded (for example, [4, 8, 61, 62]). Simi-
larly, researchers could build models that combine
information on chemotherapies with information on
immunotherapies. However, these approaches have
two main limitations: (1) the algorithms need to be
trained with a large amount of data to be predictive;
and (2) the resulting models provide limited mechan-
istic insight.

Of course any data-driven computational approach
can only be as good as the data that are available to train
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it (Table 1). High-throughput preclinical screens have
started to provide a large amount of data for combina-
tions of targeted therapies [6, 7], but such large-scale
data sets are not easy to generate. Screens in cancer cell
lines are limited to modeling the intracellular effects of
drugs, but efforts to measure the molecular impact of in-
dividual drugs on these cells [63] should be extended to
cover more drug combinations. Cell screens should also
be expanded to include cell types other than cancer
cells, such as stromal cells; only a few examples of such
screens are available to date [28]. Advances in organoid
and ex vivo technologies present opportunities to in-
clude data about stromal cell—cell interactions and envir-
onmental plasticity in data-driven models [64, 65]. It is
also important to expand in vivo screens, particularly in
patient-derived tumor xenografts, to determine the ef-
fects of drugs on components of the tumor microenvir-
onment [66]. In vivo models could also be improved by
using syngeneic (that is, allograft) and genetically engi-
neered mouse models to study interactions between
immune cells and tumor cells [67].

It is conceivable that in the not so distant future there
will be enough data at the patient level to generate stat-
istical models that take into account multiple modes of
drug action and the many pathways involved in tumor
biology. In recent years, there have been efforts to inte-
grate disparate sources of information about patients
[60], multiple layers of which can be important when
considering the potential benefits of combination ther-
apy. The improved availability of longitudinal tumor
genomic profiles (that is, those obtained over a long
period of time to enable the selective pressures of ther-
apy to be monitored) and metastatic tumor genomic
profiles could dramatically change our understanding of
tumor drivers and heterogeneity [17], but this will require
continued improvements in non-invasive monitoring ap-
proaches [16, 22]. Advances in single-cell sequencing can
provide unprecedented high-resolution information about
the impact of drugs on different cell types and the result-
ing variability in cell phenotypes [14, 15]. Data about
germline genetic variation are rarely available for patients
with cancer and, along with historical electronic medical
records, could reveal immunological and metabolic
competencies, comorbidities, liabilities to adverse
events, and other aspects of wellness [58-60, 68]. The
new age of biosensors and smart wearables should be
embraced to enable real-time adaptation of therapy to
effectively manage patient response, health, and ad-
verse events [56]. In summary, improved collection
and sharing of data that are often overlooked in
current assays can bring significant reward, and emer-
ging technologies offer opportunities for new types of
data to be collected at unprecedented breadth and
depth (Table 1).
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This deluge of data will require smart and efficient al-
gorithms to deal with confounding factors and limited
statistical power and extract the inherent relatedness
and redundancies from different types of data. Machine
learning is progressing rapidly to deal with large data
sets, in particular via deep-learning approaches that use
multilayered models [69]. Data fusion strategies enable the
integration of information about a common phenomenon
from different detectors, so that new information can be
derived by comparing the analysis of the combined data
sets with separate analyses of each data set alone [70]. As
the different types of data provide complementary but
incomplete information (Table 1), approaches such as
data-driven approaches that can integrate and combine
heterogeneous types of data are likely to be essential.

Also instrumental will be text-mining approaches. The
potential to advance research, therapy, and disease man-
agement by simply gaining a better grasp of the vast
amount of knowledge that is already available from lit-
erature, databases, health records, and the internet has
attracted efforts in the life sciences field from commer-
cial entities such as IBM’s Watson [71] and stimulated
innovation challenges that aim to develop artificial
intelligence such as those planned by the US Defense
Advanced Research Projects Agency [72]. The know-
ledge framework that these algorithms will build should
provide a scaffold on which advanced machine-learning
methods and information theory can discover and ra-
tionalize trends that might otherwise have been missed.

Knowledge-driven approaches

In contrast to data-mining approaches, dynamic models
that describe the clinical action of therapies at the organ-
ism level provide the basis for pharmacokinetic and
pharmacodynamic studies. These dynamic models are in-
strumental in the development of therapies and their use
in the clinic but include very limited mechanistic detail
and are typically focused on preconceived hypotheses.
Such models can be adapted to analyze key challenges of
cancer treatment, such as resistance mechanisms, that
can be modeled jointly with population-level patient
survival data [73]. They can be applied to study drug
combinations, and efforts have been made to jointly con-
sider therapies with different modes of action, including
chemotherapies and vascular agents [74] or chemother-
apies and immunotherapies [75]. These models, however,
describe the modes of action in a simple and phenomeno-
logical way. To truly integrate molecular data, such as the
increasingly available genomic data from patients, we need
to combine the biochemical underpinnings of the modes
of action of drugs with physiological pharmacodynamics,
typically in the form of ordinary differential equations, to
generate so-called enhanced pharmacodynamic models
[76]. This combination of pharmacokinetics and



Table 1 Preclinical and patient data necessary to model drug combination effects across the tumor microenvironment®

Data type

Advantages

Limitations

Recommendations

Pre-clinical

Patient

Cancer cell-line drug screens

Functional genomic screens
(using siRNA, CRISPR, and
mutagenesis)

Drug or target perturbation
screens (post- treatment
functional data)

Organoids (three-dimensional
buds) or ex vivo screens

Patient-derived tumor
xenograft screens

In vivo screens in GEM,
syngeneic, or humanized
models

Electronic health records

Deconvoluting failed trials

Profiling of cell types from
healthy individuals

Comprehensive profiling
of tumor genetics and
heterogeneity

- Cost-effective route to generate a significant
amount of data

- Detailed data from many cell lines is available,
for example, GDSC [93] and CCLE [94]

- No limit to the number of combinations of
targets testable
- Synthetic lethalities can be readily identified

- Provide information about a drug or target's
mechanistic impact and provide
pharmacodynamics maps that are likely to
be relevant across cell types

- Large data sets are publicly available, for
example, connectivity map and LINCS [63, 95]

Can be used to obtain data about cell-cell
interactions (for example, interactions between
tumor cells and cells in the microenvironment)
and about environmental plasticity

Can model the effects of drugs on
components of the tumor microenvironment

Can model immune interactions

Provide information about environmental
exposures, immunological and metabolic
measures, diagnostic assays, comorbidities
and wellness, and longitudinal follow-up data

Necessary to follow up from failed drug trials
that may overlook responding populations
that are mutually exclusive

Projects are large and well-funded, for example,
GTEx [96] and the Human Protein Atlas [97]

Projects are large, well-funded, and include
tens of thousands of tumors, for example,
projects by TCGA [98] and the ICGC [99]

- Limited to only modeling intracellular
effects

- Cell culture process affects important
biology

- Limited to testing existing drug targets

- Limited to intracellular mechanisms

- Focus on loss of function

- Only work in a limited number of
cell backgrounds

- Typically focus on a few cancer cell
types and/or global disease processes

- Only a few small in vivo screens are
available

- Typically provide data on monotherapy
only

Few established and/or reproducible
models

- Do not model immune interactions

- Cost and ethical considerations need
to be take into account when using as a
discovery (versus test) tool

Cost and ethical considerations need to
be taken into account when used as a
discovery (versus test) tool

- Key data are split across isolated records
in primary care and specialist hospitals,
claims systems, assay providers, and others

- There are currently no curation or
digitization standards

Investment is rarely available to generate
and mine data from failed trials

- Public references may not capture
interpatient (or disease-influenced)
variability

- Findings are often assessed separately
from efficacy data

- Exploratory NGS is not routine for
patients

- Public efforts are typically diagnostic,
focus on the primary tumor, use purified

- Obtain more data for drug combinations

- Use mixed cell assays to model the roles
of other cells in the tumor and microenvironment

- Develop better models of diverse mechanisms
(for example, longer assays and different
endpoints)

- Use a broader range of cell contexts (including
non-cancer cells)

- Develop gain-of-function screens

- Set up repositories that enable data to be
shared and publicly accessible

- Obtain more data from non-tumor cell types
involved in tumor biology

- Carry out larger in vivo screens and/or
meta-analyses

- Acquire more data for drug combinations

Develop standards to identify non-typical
phenotypic parameters that are relevant to the
effects of a drug on the tumor
microenvironments, for example,
cell-type-specific effects and cell—cell
communication

- Address data confidentiality (for example, use
honest brokers) and connect disparate records
for patients

- Improve curation and standardization

- Use a retrospective approval route in which
the responding population is shown to be
distinct from the comparator or standard of care

- Improve integrative analyses across different
types of patient data

- Agree on critical measures that should be
assessed for the tumor microenvironment, drug
toxicity, and patient comorbidities and wellness

- Perform more and deeper spatial single-cell
profiling of longitudinal and metastatic samples
- Increase multi-omic profiling of samples
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Table 1 Preclinical and patient data necessary to model drug combination effects across the tumor microenvironment® (Continued)

Longitudinal and metastatic
tumor genomic profiles

Single-cell sequencing

Germline genetic variation

Biosensors and smart
wearables

Know- ledge Pathway and interaction
networks

Regulomes

Obtaining information about genetic shift
after therapy could dramatically change
our understanding of tumor drivers and
heterogeneity

Provide unprecedented high-resolution
information about genotypic and phenotypic
heterogeneity of tumors and the tumor
microenvironment, including information
about cell differentiation and the effects

of drugs

Provide information about a patient’s inherent
immunological and metabolic competencies,
susceptibility to adverse events, and other
aspects of wellness

Enable real-time reactive adaptation of therapy
to manage response, health, and adverse events

Able to link drug target to biology

Provide omics information that is indicative
of active processes

tumor cell content, and have low
sequencing depth

- Currently only a limited amount of such
data is available

- Ethical and practical considerations regarding
the necessary invasive sampling procedures
need to be taken into account

- Current technologies require fresh tissue
biopsies and obtaining these is often
impractical

- Mature approaches are limited to RNA
profiling

Information is rarely available for patients

with cancer as it is removed to avoid the risk
of patients being identified and confidentiality
being breached

A limited number of devices are currently
available and few molecular measures are
currently possible

- Typically focus only on intracellular pathways
and interactions
- Typically limited to protein—protein interactions

- Often miss cell-context specificity of
regulomes

- Focus on intracellular processes

- Public resources focus on the transcriptome

Continue to advance non-invasive
monitoring approaches

- Set up central repositories for single-cell
omics data from patients and models

- Advance technology that enables exploration
of molecules other than RNA and of non-fresh
tissue samples

Add functional germline variant information
to public databases of tumor genetics

Develop technologies to identify the most
important and relevant measures

Acquire more information about the cell-context
specificity of interactions and about cell-cell
communication

- Obtain more data on cell-type-specific
regulomes (as in, for example, ENCODE [100])
and on extracellular communication regulomes

CCLE Cancer Cell Line Encyclopedia, CRISPR clustered regularly interspaced short palindromic repeats, ENCODE The Encyclopedia of DNA Elements, GDSC Genomics of Drug Sensitivity in Cancer, GEM genetically

engineered mouse, GTEx Genotype-Tissue Expression Project, ICGC International Cancer Genome Consortium, LINCS Library of Network-Based Cellular Signatures, NGS next-generation sequencing, siRNA small interfering

RNA, TCGA The Cancer Genome Atlas

?Key pieces of preclinical and patient data that need to be generated, collected, and shared to achieve the computational ambition of modeling/predicting multimodal combination effects encompassing ECM,
immune, angiogenic, and stromal components of tumor biology
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pharmacodynamics (PK/PD) with mechanistic modeling is
the aim of the emerging field of quantitative and systems
pharmacology [77, 78].

Combinations of small-molecule inhibitors or biologics
that target signaling receptors can be analyzed through
mechanistic models of the downstream signaling net-
works as, for example, logic circuits, causal networks, or
differential equations describing the underlying bio-
chemical reactions [79-83]. However, if we want to con-
sider a combination of a small-molecule inhibitor that
targets a kinase and a drug that affects metabolism or
gene regulation, we would need integrated models of
both molecular layers. Although these molecular layers
have been modeled mechanistically in detail in isolation,
approaches that include both layers are sparse [84—86].

The challenge of building a model that includes the
modes of action of various therapies increases dramatic-
ally if we want to include therapies that affect processes
occurring outside the cancer cell. For example, to inves-
tigate the interplay among tumor cells, immune cells,
and angiogenesis we would require models that incorp-
orate the intracellular molecular processes affected by
the drugs in each of the relevant cell types and we would
then need to combine this information in a cell—cell
communication model. This approach takes into account
only the effects of treatment (pharmacodynamics); mod-
eling also the pharmacokinetics (how the organism deals
with the therapy) adds yet another level of complexity,
particularly as in this case one drug targets the vascula-
ture responsible for delivering the drug and the immune
cells to the tumor. A multiscale approach is required to
take into account all the molecular, cellular, and physio-
logical layers of processes occurring in an organism with
cancer, including the effects of drugs and of the organ-
ism’s own immune system [87].

Which approaches enable the generation of such multi-
scale models and at what point do they become useful for
prediction? If the different aspects are to be considered in
a dynamic and quantitative manner, such as when mod-
eled with differential equations, the model becomes very
large and complex and requires an amount of information
and data that is not typically available or practical, unless
most of the molecular detail is sacrificed. Simpler formal-
isms than biochemistry-based differential equations may
provide a way forward. In particular, logic modeling (also
known as logical modeling) has been applied in diverse
contexts that have relevance for cancer therapies, from
the main apoptotic and mitogenic pathways in tumor cells
to the cell cycle and cell-cell communication [88, 89]. In a
logic model both molecular and phenomenological rela-
tionships can be encoded in the same formalism, enabling
the inclusion of different layers, such that signaling path-
ways can be connected to downstream phenotypes to
study drug synergy in cancer [80, 81, 90] and to predict
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combinations of treatments to halt pro-angiogenesis activ-
ity of monocytes in breast cancer [91], for example. Due
to this versatility and simplicity, logic models are promis-
ing tools to use for studying complex and heterogenous
combination therapies.

No single approach is likely to be able to model
with enough detail and at the same time scale up well
enough to cover everything under consideration. For
example, a logic model might be able to cover a large
number of pathways in different cell types and the
communication among these cells but not be able to
precisely model the molecular mode of action of a
drug; by contrast, a detailed dynamic mechanistic
model can describe such molecular interactions in de-
tail but will only be able to cover a few proteins
within a cell. For this reason, hybrid strategies that
combine different methodologies are likely to be
needed to build such models. Indeed, such multiform-
alism models are becoming increasingly popular [92],
and a range of approaches have been reported to link
the macroscopic aspects of cancer, such as tumor
growth, with the effects of specific therapies [87].

Conclusions

Significant progress has been made in the identification
of drugs to tackle tumor development by targeting
tumor cell signaling that is driven by genetic aberra-
tions, by alleviating protection from the tumor micro-
environment, or by boosting the antitumor immune
response. Most efforts in pre-clinical discovery of
effective drug combinations, however, have focused
only on the direct impact of drug combinations on
signaling within a tumor cell. There is a significant op-
portunity to identify drug combinations that achieve a
disproportionate benefit through an “accumulative
efficacy”—that is, by optimally balancing effects on the
heterogeneous cells of the tumor with effects on host
cells and characteristics that collectively determine a
patient’s outcome.

It is a potentially daunting prospect to consider gener-
ating the necessary data and computational approaches
to model the fundamentally different nature of the ef-
fects of drugs on various cell types and system dynamics
at the organism level. With recent advances in data gen-
eration platforms and computational approaches great
strides have been made in this direction, although no
single computational approach is likely to provide all the
required aspects in enough detail and be able to scale up
effectively. Knowledge-led formalisms can simulate the
result of varying parameters and conditions that can be
used to forecast the efficacy of therapies, but to provide
useful personalized predictions they have to be able to
simulate changes in all the key parameters that can be
expected to influence the overall outcome of a patient.
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Data-driven approaches hold great promise to discover
unforeseen relationships between drug effects and cell
phenotypes, but they rely both on sufficient quantities of
all the relevant data for training models and on incorp-
oration of prior knowledge to overcome statistical limi-
tations and redundancies in these data.

We advocate that more emphasis should be given
to the generation of the necessary data and the devel-
opment of the required computational approaches to
model the full interplay between a therapy, a tumor,
and the host. Knowledge-driven methodologies that
are able to model the relationships between disparate
data types and to report rationalized biological hy-
potheses will have a key role. Even then, it is likely
that complementary experimental discovery platforms
will be required alongside advanced preclinical models
that recapitulate tumor—host interactions. Only
through such intimate integration of experiments and
computational modeling can we consider all the de-
terminants of patient outcome and select optimal
drug combinations.
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