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Abstract

Background: Allele-specific expression (ASE) is differential expression of each of the two chromosomal alleles of an
autosomal gene. We assessed ASE patterns in the human left atrium (LA, n=62) and paired samples from the left
ventricle (LV, n=76) before and after ischemia, and tested the utility of differential ASE to identify genes associated
with postoperative atrial fibrillation (poAF) and myocardial ischemia.

Methods: Following genotyping from whole blood and whole-genome sequencing of LA and LV samples, we
called ASE using sequences overlapping heterozygous SNPs using rigorous quality control to minimize false ASE
calling. ASE patterns were compared between cardiac chambers and with a validation cohort from cadaveric tissue.
ASE patterns in the LA were compared between patients who had poAF and those who did not. Changes in ASE in
the LV were compared between paired baseline and post-ischemia samples.

Results: ASE was found for 3404 (5.1%) and 8642 (4.0%) of SNPs analyzed in the LA and LV, respectively. Out of
6157 SNPs with ASE analyzed in both chambers, 2078 had evidence of ASE in both LA and LV (p < 0.0001). The SNP
with the greatest ASE difference in the LA of patients with and without postoperative atrial fibrillation was within
the gelsolin (GSN) gene, previously associated with atrial fibrillation in mice. The genes with differential ASE in poAF
were enriched for myocardial structure genes, indicating the importance of atrial remodeling in the pathophysiology of
AF. The greatest change in ASE between paired post-ischemic and baseline samples of the LV was in the zinc finger
and homeodomain protein 2 (ZHX2) gene, a modulator of plasma lipids. Genes with differential ASE in ischemia were

enriched in the ubiquitin ligase complex pathway associated with the ischemia-reperfusion response.

Conclusions: Our results establish a pattern of ASE in the human heart, with a high degree of shared ASE between
cardiac chambers as well as chamber-specific ASE. Furthermore, ASE analysis can be used to identify novel genes

associated with (poAF) and myocardial ischemia.

Background

Genetic variation causes disease through alteration in
the quantity and function of proteins, among other
mechanisms [1]. Expression of a gene’s messenger RNA
(mRNA) is controlled by numerous mechanisms that are
influenced by local and distant genetic variation, such as
single nucleotide polymorphisms (SNPs).
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Quantifying gene expression by RNA sequencing
(RNA-seq) is performed by alignment of short RNA se-
quence reads from a tissue that is mapped to a reference
genome sequence. The number of measured mRNA
reads accurately measures gene expression [2]. Methods
utilizing high-throughput RNA-seq have been used to
study the genetic background of multiple cardiovascular
diseases. This has thus far mostly been performed in ani-
mal models, exemplified by the assessment of changes in
gene expression in mouse models of myocardial ische-
mia [3, 4]. In humans, we recently used this technique
to measure the effects of ischemia on the gene expres-
sion of the left ventricle (LV) during cardiopulmonary
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bypass [5]. This indicated substantial changes in the ex-
pression of a wide variety of functional categories of
genes between the baseline and post-ischemic samples
in a short amount of time.

Differences in expression between each of the two
SNP alleles in autosomal genes, called allele-specific ex-
pression (ASE) [6], allows us to examine the biological
control of specific gene expression in health and disease
[7]. This technique has successfully quantified ASE
across a host of tissues, revealing that 2.3% of all tested
SNPs control nearby gene expression, with substantial
tissue-specific variation and moderate similarity in the
ASE pattern of similar tissue types [8].

Studies on ASE in specific organs are sparse, especially
using living tissues, and the ASE landscape of the human
heart is poorly understood. Furthermore, limited data
exist to show that ASE analysis can be useful to under-
stand the pathophysiology of cardiac disease. Here we
utilized two unique high-throughput RNA-seq datasets
from the human left atrium (LA) and left ventricle (LV)
during open heart surgery. We used these data to dis-
cover ASE in these tissues after filtering and quality con-
trol of both SNPs and RNA reads to call ASE. Our
hypothesis was that there was ASE common to both
chambers, as well as chamber-specific ASE. Further-
more, we assessed whether ASE could be used to iden-
tify novel variants associated with cardiac disease by
comparing differential ASE between patients who had
postoperative atrial fibrillation (poAF) and those who
did not, and to find variants with differential ASE associ-
ated with the myocardial response to ischemia.

Methods

Patient cohorts

We obtained tissue samples from two prospective stud-
ies utilizing next-generation RNA-seq and high-density
genome-wide DNA genotyping. Samples from the LA
came from a cohort of 62 Caucasian patients undergoing
mitral valve repair or replacement surgery for mitral
valve regurgitation with cardiopulmonary bypass. During
incision of the LA to access the mitral valve, a small
sample of the left atrial free wall was obtained and used
for RNA isolation.

LV samples were obtained during placement of the LV
vent in 76 Caucasian patients undergoing aortic valve re-
placement for aortic stenosis with or without concomi-
tant coronary artery bypass grafting. A small punch
biopsy of the anterior apex of the LV was obtained at
two time points: immediately after aortic cross clamping
(baseline) and shortly before aortic cross clamp removal
(post-ischemia) as described previously [5]. Between
samples, cold blood cardioplegia was intermittently ad-
ministered to reduce the extent of myocardial ischemia.
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There was no patient overlap between the LA cohort
and LV cohort.

Patient demographics, surgical, and clinical outcome
phenotypes were collected prospectively. Patients who
donated LA samples were followed for poAF, defined as
AF identified by any clinician during the primary
hospitalization.

RNA-seq and genotyping
For both studies, tissue samples were placed in RNAlater
(Ambion; ThermoFisher Scientific) solution, followed by
whole RNA extraction using standardized methods [5].
After reverse transcription of single-stranded RNA to
double-stranded DNA, isolation of short fragments,
poly(A) addition and ligation of adaptors, double-
stranded sequencing was performed on an Illumina
HiSeq 2000 (Illumina, San Diego, CA, USA). Read
length for the samples was in the range of 90-100 bp.
DNA was isolated from whole blood using standard
methods. SNP genotyping was performed using the
Mlumina Omni2.5 array with additional exome content
(Illumina, San Diego, CA, USA) chip, version 1.1 for the
LV samples and version 1.2 for the LA samples.

Sequence alignment and processing for ASE calling

After RNA-seq, adaptor sequences and low-quality reads
were removed, TopHat2 and BowTie algorithms were
used to align the sequenced reads to the human genome
(hg19) [9]. A list of heterozygous SNPs for each individ-
ual was generated and the RNA sequences that uniquely
overlapped the location of each heterozygous SNP were
identified [10]. From the patient mRNA sequence reads
and the location of heterozygous SNPs in each patient,
the appropriate base read at the location of each hetero-
zygous individual was extracted and counted using
SAMtools and custom made scripts [10].

ASE calling and statistics

All statistics and imaging was done in R, version 3.1.0.
Several filters were applied to identify SNPs appropriate
for ASE calling [11]. Only SNPs with at least one hetero-
zygous individual were analyzed. A minimum of 15 RNA
reads crossing the heterozygous SNP were required.
SNPs were also required to be in Hardy—Weinberg equi-
librium (p > 0.00001) and have a genotyping rate of more
than 95%, to be included. Only SNPs in regions with a
mappability score of 1 were included, indicating good
mapping of short reads to the region. Only reads with a
unique mapping to the genome were used. Finally, we
estimated the overall genotyping error (ratio of the
counts of alleles other than reference and alternative al-
lele to the overall number of allele counts). Using this
estimate, we tested the null hypothesis that the number
of alleles other than the reference and alternative alleles
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was the same as the overall genotyping error. The SNPs
where the null hypothesis was rejected at p < 0.05 were
considered to potentially have evidence of genotyping
error or random monoallelic expression and were ex-
cluded from further analysis.

After the application of each filter, we assessed the ref-
erence sequence ratio, defined as REF/ALT + REF, where
REF is the read count of the allele listed in the human
reference genome (hgl9) and ALT is the read count of
alternative genome allele. An overall ratio of 0.5 indi-
cates an equal number of reads of reference and alterna-
tive allele, indicating no preference for the allele listed in
the reference genome used for aligning (reference gen-
ome bias). This can be used for individual SNPs to as-
sess ASE and also as a summary statistic over all SNPs
to assess reference genome bias.

We evaluated both the traditional binomial test and al-
gorithms utilizing different statistical distribution to call
ASE, with the goal of reducing the number of false posi-
tives and reference genome bias. A binomial test was
used for each SNP using the sum of REF and ALT allele
counts over all individuals. This tests the REF/ALT +
REF ratio against the null hypothesis of a REF/ALT +
REF ratio of 0.5. The edgeR package was used to call
ASE, utilizing negative binominal distribution and esti-
mation of individual sample and variant expression dis-
persion [12]. This was performed using both the sum of
REF and ALT allele counts with a fixed dispersion esti-
mate of 0.1 and also by using REF and ALT allele counts
from each individual. Alternatively, the limma package
was used to call ASE after voom transformation of the
count matrix using REF and ALT allele counts from each
individual [13]. The results of the algorithms were com-
pared by QQ and Venn plots to visualize the number of
SNPs/genes with ASE (Additional file 1: Figure S1-S3).
The ASE calling was assessed visually by plotting the
REF/ALT + REF ratio versus p value of the ASE assump-
tion (Additional file 1: Figure S4). A false discovery rate
(FDR)-adjusted p value < 0.05 was used to avoid overcal-
ling ASE, and considered indicative of ASE.

After ASE calling in the LA and LV samples, SNPs
with ASE in both chambers were identified, as well as
SNPs with chamber-specific ASE in either LA or LV but
not the other. The absolute number of shared SNPs was
compared against the distribution of the number of
shared SNPs with 10,000 permutations of a random
sample of eligible SNPs.

The left atrial expression of reference and alternative
alleles of each heterozygous SNP was compared between
patients who did and did not have poAF. Differential
ASE during ischemia was tested by comparing the ex-
pression of the reference and alternative alleles of each
heterozygous SNP between the baseline and the post-
ischemia sample, using paired analysis of the LV samples.
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A functional enrichment analysis was performed on the
gene sets with differential ASE (at FDR-adjusted p value
<0.05) using the GeneMANIA algorithm within the
Cytoscape network visualization tool [14, 15]. This ana-
lysis was performed using the default interaction net-
works with the exception of the default co-expression
networks, which were exchanged for custom-made LA
and LV co-expression networks using our gene expres-
sion data. The algorithm allowed the inclusion of the
top 20 related genes and at most 20 attributes using
automatic weighting.

Validation cohort

To contrast our result against an independent set of
data, we downloaded the ASE dataset from the
Genotype-Tissue Expression (GTEx) pilot analysis. The
generation of this dataset has been described in detail
elsewhere [8]. In short, the dataset contains results from
RNA-seq, both exome sequencing and genome-wide
RNA-seq of various tissues in several hundred deceased
individuals after variable amount of warm ischemic time.
Sequence alignment and quality control of genotyping is
similar to the one done in this study. The GTEx dataset
release contains counts of reference and alternative al-
leles of heterozygous SNPs. We extracted from this data-
set counts of reads overlapping reference and alternative
alleles of heterozygous SNPs from the left atrial append-
age tissue and from the left ventricular tissue. After fil-
tering the available SNPs using the same minimum
number of overlapping reads and both mappability and
read counts, we applied the same filters of minimum
read numbers and mappability criteria, and then called
ASE with the edgeR algorithm based on individual allele
counts. For those SNPs available for ASE analysis in
both our LA tissue and the GTEx left atrial appendage
tissue, we compared the number of SNPs with ASE in
both datasets with the number of ASE in either dataset.
This was contrasted with the same statistic after 10,000
random permutations of the eligible SNPs. The same
analysis was performed for SNPs in our LV tissue set
and the GTEx LV tissue.

Results

Patient demographics

The mean age of patients who had LA sampling (n = 62)
was 58 years and 44% were female. Following the sur-
gery, 21 (34%) patients had poAF, defined as any atrial
fibrillation diagnosed by clinician during the initial post-
operative hospitalization. The patients with poAF were
older (65 versus 56 years, p =0.006) and had a higher
rate of hypertension (81% versus 41%, p = 0.01), but the
groups were otherwise highly similar. There was no dif-
ference in the past history of myocardial infarction, dia-
betes, or previous history of atrial fibrillation. Similarly
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the rates of preoperative use of renin-angiotensin-
aldosterone inhibitors, beta-blockers, calcium channel
blockers, and statins were similar between the two
groups. Furthermore, although LA volume was enlarged
(mean LA volume 71 mL/m?), there was no difference in
LA volume between the two groups. Similarly, cardio-
pulmonary bypass and aortic cross-clamp time was com-
parable between the two groups (data not shown).

The mean age of patients who had paired LV sampling
(n =76) was 74 years and 42% were female. The vast ma-
jority (86%) of patients had LV ejection fraction of more
than 50%. A total of 43 patients (56%) had concomitant
coronary bypass surgery alongside the aortic valve re-
placement. The median ischemic interval created by aor-
tic cross-clamping was 90 min (range 48—284).

Filtering of RNA reads and SNPs and selection of ASE
calling algorithm

After removal of low-quality reads, trimming of adaptor
sequences, and alignment to the human genome, a total
of 421,780,889 reads from the LA samples overlapped a
heterozygous SNP in at least one individual. Of those,
9,451,851 reads were not uniquely mapped to the human
genome and were removed, leaving 412,329,038 reads
for analysis. Similarly, from the LV samples a total of
1,879,293,644 reads overlapped a heterozygous SNP in
at least one individual. Of those, 158,775,428 reads were
not uniquely mapped, leaving 1,720,518,216 reads for
analysis.

After filtering SNPs with an inadequate number of
overlapping reads and those failing Hardy—Weinberg
equilibrium, along with cross-checking for minimum
genotyping rate and mappability criteria, a total of
112,020 and 214,626 SNPs were available from the LA
and LV samples, respectively (Additional file 1: Table
S1). There was a substantial improvement in reference
genome bias following SNP filtering (Additional file 1:
Figure S1).

There was a high agreement of ASE calling between
binomial test and ASE called by both the edgeR and
limma algorithms. However, there was a substantial vari-
ability in the absolute number of SNPs with significant
ASE (Additional file 1: Figure S2). The edgeR ASE call-
ing using individual sampling, which was used for fur-
ther analysis, was sufficiently conservative in both the
LA and LV samples and the QQ curves had a similar
shape for both tissues (Additional file 1: Figure S3).
From the SNPs with ASE based on this algorithm (FDR-
adjusted p <0.05), a higher number of SNPs had REF/
ALT + REF ratio greater than 0.5 than a ratio less than
0.5 in both samples (3383 (59%) versus 2305 (41%), p <
0.001 for the LA samples, and 5539 (64%) versus 3103
(36%), p<0.001 for the LV samples) (Additional file 1:
Figure S4). This indicates some residual reference
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genome bias in the SNPs with ASE called. We further-
more observed that this bias was more prominent
among SNPs with fewer covering reads (Additional file 1:
Figure S5).

SNPs and genes with ASE in LA and LV

In the LA samples, there were 12,768 SNPs with signifi-
cant ASE at p <0.05 (Additional file 2). Of those, 5688
had an FDR-adjusted p value <0.05 (Fig. 1a). Table 1
shows the ten SNPs with the most significant ASE and
Fig. 1a shows the genomic distribution of all SNPs with
ASE in the LA. From 55,984 SNPs available for analysis
in our LA samples and the genome-wide LA appendage
samples from GTEx, 1356 had evidence of ASE in both
sample sets (p < 0.0001 by permutation, Additional file 1:
Figure S4). Similarly, of 24,830 SNPs available for ana-
lysis in our LA samples and the exome-sequencing LA
appendage samples, 688 had evidence of ASE in both
sample sets (p < 0.0001 by permutation, Additional file 1:
Figure S7).

In the LV samples, there were 13,009 SNPs with sig-
nificant ASE at p <0.05 (Additional file 3). Of those,
3774 had an FDR-adjusted p value<0.05 (Fig. 1b).
Table 2 shows the ten most significant SNPs and Fig. 1b
shows the genomic distribution of all SNPs with ASE in
the LV. From 45,496 SNPs available for analysis in our
LV samples and the genome-wide LV samples from
GTEx, 1358 had evidence of ASE in both sample sets (p
<0.0001 by permutation, Additional file 1: Figure S8).
Similarly, of 24,830 SNPs available for analysis in our LV
samples and the exome-sequencing LV samples, 531 had
evidence of ASE in both sample sets (p < 0.0001 by per-
mutation, Additional file 1: Figure S9).

SNPs and genes with ASE in both LA and LV and differential
ASE in LA compared to LV
A total of 79,538 SNPs were available for ASE calling in
both the LA and LV samples and 6157 had evidence of
ASE (at FDR-adjusted p<0.05) in at least one tissue
(Fig. 2a). Of those, 2078 had evidence of ASE in both
LA and LV, a significantly increased number compared
to random permutations of eligible SNPs (p<0.0001
Fig. 2b). Out of the SNPs with ASE in either tissue, a
significantly higher ratio of SNPs had the same direction
of REF/ALT + REF ratio (either >0.5 or <0.5 in both tis-
sue types) in the group of SNPs with ASE in both LA
and LV, compared to both the group with ASE in LA
and not LV (88% versus 72%, p <0.0001) and the group
with ASE in LV and not LA (88% versus 81%,
p <0.0001). Table 3 shows the top ten SNPs with ASE in
both LA and LV.

We also tested for differential ASE in the LA com-
pared to the baseline LV samples. This identified a total
of 215 SNPs with a significantly different ASE between
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Fig. 1 A Manhattan plot showing the distribution of SNPs with ASE in (@) left atrium (LA) and (b) left ventricle (LV). Horizontal lines indicate p = 0.05
(solid red) and a Bonferroni-adjusted p value of 0.05/n where n is the number of SNPs tested in each tissue (blue)

the two chambers at FDR p value of<0.05. Table 4
shows the top ten SNPs with differential ASE in the LA
compared to the baseline LV sample.

Genes with differential ASE in patients with AF and
ischemia

Finally, we assessed the utility of using ASE to discover
novel genetic variants associated with clinical pheno-
types by testing for differential allelic expression within
groups of patients or paired samples. From the LA sam-
ples, the expression of each allele of available heterozy-
gous SNPs was compared between the subgroup of

Table 1 SNPs with allele-specific expression in the LA

patients who had poAF (34%) and those who did not.
This identified 24 SNPs with differential expression of
the REF and ALT alleles between the patients who had
poAF compared to those who did not, at an FDR-
adjusted p value of < 0.05 (Table 5). Of those, three SNPs
had more than one heterozygous individual in both the
poAF and control groups, minimizing the effects of a
potential genotyping error on ASE calling. The SNP that
had the most difference in ASE between the patients
with poAF compared to those without was within the
GSN gene. Two SNPs with significantly different ASE
and more than one heterozygous individual in both

SNP Gene Chr Location Samples Reads REF/ALT + REF FDR-adj. p value
rs3810232 RPS9 19 54,704,760 35 33,337 005 <107
rs111794229 TIMP3 22 33,257,378 23 9569 0.89 <1073%
rs202118461 LYRM5 12 25,357,576 32 3253 0.86 <1073%
rs112332443 TGOLN2 2 85,545,951 15 2395 0.95 2x107°%
rs422733 COL4A2 13 111,164,614 33 2714 092 2x107%
rs3832425 SSR1 6 7,289,415 31 2281 092 5x 1072
rs1046138 PKP2 12 32,944,162 32 9156 0.84 1x107%%2
rs3210020 PDLIM1 10 96,997,440 11 1746 0.89 4x107%
rs1051336 HLA-DRA 6 32,412,592 19 10,132 0.74 8x1072*
rs9512 ABLIM3 5 148,639,762 30 2,580 022 8x 1072

The table shows the ten SNPs with the most significant ASE in the LA samples (n = 5688), the gene they are located within, the genomic location, number of
heterozygous samples and reads overlapping the SNP available for ASE calling, the REF/ALT + REF ratio, and the FDR-adjusted p value for ASE
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Table 2 SNPs with allele-specific expression in the LV
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SNP Gene Chr Location Samples Reads REF/ALT + REF FDR adj. p value
1s76148815 MTR 1 237,063,719 92 8029 0.07 5x1072"
157772210 MTCHI 6 36,936,771 58 8199 091 1x1072%
rs2260914 ZSCAN1S 19 58,598,784 50 2967 0.07 2x107%
rs1046138 PKP2 12 32,944,162 64 21,767 092 8x 1071
rs2075846 OXAIL 14 23,239,512 66 14818 092 5x107"78
rs200574632 MULT 1 20,826,784 64 3728 0.94 3x107%
rs17850531 ECHDC3 10 11,805,339 56 2467 097 5x107%
rs164577 SLC30A5 5 68,417,755 84 1374 003 8x107"
rs312185 AP2S1 19 47,342,867 76 2040 096 2x107
1s2586306 ABR 17 909,451 76 2626 0.06 4x107

The table shows the ten SNPs with the most significant ASE in the LV samples (n = 3774), the gene they are located within, the genomic location, number of
heterozygous samples and reads overlapping the SNP available for ASE calling, the REF/ALT + REF ratio, and the FDR-adjusted p value for ASE

groups, were within the TNSI1, LITAF, and CLDNIS8
genes (Table 5). Analysis of the functional category of
the genes with differential ASE in poAF revealed enrich-
ment within categories involved in cardiac structure,
such as cardiac muscle tissue development, the sarco-
mere, and the myofibril (Table 6, Additional file 1: Fig-
ure S10).

From the LV samples, differential expression of refer-
ence and alternative alleles was compared between the
post-ischemia sample and baseline sample in a paired
manner, searching for changes in ASE as a response to
ischemia. This identified three SNPs with differential ex-
pression of reference and alternative alleles between
post-ischemia and baseline sample at an FDR-adjusted p
value of < 0.05 (Table 7). The SNP with the most signifi-
cant change in ASE after ischemia was within the ZHX2

gene, followed by CUL4A (Table 7). Analysis of the func-
tional category of the genes with differential ASE be-
tween the baseline and post-ischemic sample revealed
enrichment within categories involved in the ubiquitin
ligase complex and the regulation of transcription in re-
sponse to stress (Table 8, Additional file 1: Figure S11).

Discussion

Here we analyzed ASE utilizing a unique dataset of
high-throughput RNA-seq of a large number of samples
obtained from the living human LA and LV. This elimi-
nates artifacts induced by sampling cadaveric donors
with varying degrees of warm ischemia [8]. We identified
the existence of a substantial amount of ASE in both the
LA and the LV of the heart. While a significant portion
of the ASE is shared between the two chambers, we

Frequency
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L 1 ]
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1
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Number of genes with ASE in LA/LV

Fig. 2 a A Venn diagram showing the number of SNPs with ASE (called at p < 0.05) in both LA and LV and those with ASE in one tissue but not
the other. b The number of SNPs with ASE in both LA and LV (black bar, 2078) is greater than the distribution of 10,000 random draws from the
SNPs available for ASE analysis (gray histogram)
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Table 3 SNPs with allele-specific expression in both LA and LV
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LA LV

SNP Gene Chr  Location Samples REF/ALT + REF FDR-adj. p value ~ Samples REF/ALT + REF FDR-adj. p value
rs3810232 RPS9 19 54704760 35 0.05 <1073 76 003 4x107'%
rs1046138 PKP2 12 32944162 32 0.84 1x107%%2 64 092 8x 1071
rs422733 coL4A2 13 111,164,614 33 092 2x107% 74 0.92 1x10°%
rs202118461  LYRMS 12 25357576 32 0.86 <107% 60 095 9% 107°
rs1060391 YWHAB 20 43536807 28 0.80 8x107'% 64 0.90 1x107%
rs2075846 OXATL 14 23239512 33 091 2x10°%° 66 092 5x10778
rs1042917 CoL6A2 21 47,545,768 31 075 2x107¢ 78 073 2x 1072
1s7988661 LMO7 13 76427347 1 072 1x107? 30 0.74 2x107°
157772210 MTCHT 6 36,936,771 29 092 9x 107 58 091 1x 10727
rs7988661 LMO7 13 76,427,347 1 072 1x107? 30 0.74 2x107°

The table shows ten of the SNPs with significant ASE in both LA and LV, sorted
SNP rsID, the gene it is located within, the genomic location, number of hetero:
ratio, and the FDR-adjusted p value for ASE for LA and LV tissues

observed LA and LV-specific patterns of ASE. Further-
more, we show that the estimation of differential ASE
can be used to identify genes potentially involved in
pathogenesis of poAF and myocardial ischemia.
Quantifying global gene expression by high-
throughput sequencing is traditionally done by align-
ment of short RNA sequence reads isolated to the tissue
of interest to a previously known reference genome se-
quence, and subsequently to a library of known mRNA
sequences and quantification of the amount of each
mRNA molecule [2]. This will, however, combine the ex-
pression of both alleles, making assessment of ASE
impossible. In addition to the limitations and methodo-
logical concerns involved in expression quantification,
several specific issues must be considered when asses-
sing ASE with high-throughput RNA-seq data [11]. SNP
genotyping accuracy is of key importance, since

by the sum of ranked p values for ASE calling for both LA and LV. Shown is the
zygous samples for both LA and LV available for ASE calling, the REF/ALT + REF

incorrect genotyping of a homozygous SNP as heterozy-
gous will lead to incorrect calling of ASE. We performed
SNP genotyping using a separate assay based on DNA
from peripheral blood to minimize genotyping error. A
major source of bias and false positives is due to refer-
ence sequence/allele mapping bias. This is a bias intro-
duced by the preferential alignment of RNA reads to the
genome if the SNP included in the read is the reference
allele, i.e. the allele included in the reference sequence
used for aligning [16]. It is extremely important to quan-
tify reference sequence bias and attempt to minimize it
to reduce false positives. In this project, reference gen-
ome bias was minimized by utilizing only samples with
longer read lengths and by aggressive filtering of SNPs
and reads eligible for analysis. After ASE calling, some
degree of reference genome bias still existed, especially
for variants with fewer covering reads. Our results

Table 4 SNPs with differential allele-specific expression in LA compared to LV

LA LV Differential ASE LA vs. LV
SNP Gene Chr  Location Samples REF/ALT+REF FDR-adj.  Samples REF/ALT+REF FDR-adj.  FDR-adj. p value
p value p value

rs137831 ACO2 22 41903813 43 0.96 4x107%° 24 047 079 1x107°
16816298  TECRL 4 65144051 17 039 0.001 25 068 4%x107  1x107%
rs1128416  PPPICB 2 29,001,691 30 048 3x10° 31 032 1x10% 2x107%°
1046138 PKP2 12 32,944,162 32 0.84 1x10%°% 32 092 8x107 8x107®

157292 MB 22 36007045 36 056 3x107% 35 051 1 1x107'°
rs2531332  RPL3L 16 1994749 33 062 2x107% 38 051 097 3x107°
rs201567919  ADAR 1 154,556,764 26 072 2x107°% 38 0.59 1x10%  2x10"
rs1063281 TNST 2 218668732 46 053 0.13 39 046 0.003 5x 1072

rs7508 ASAHT 8 17913970 21 072 1x10% 38 0.56 0.03 Tx10"
161756583  OGDH 7 44747514 4 065 2x107° 6 0.80 2x10°%°  3x107

The table shows the ten SNPs with the most significantly different ASE in the L.

A compared to LV samples (baseline pre-ischemia). Shown is the gene the SNP is

located within, the genomic location, number of heterozygous samples for both LA and LV, the REF/ALT + REF ratio, the p value for ASE calling, and finally the

FDR-adjusted p value for the test of differential ASE between LA and LV tissues
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Table 5 SNPs with differential allele-specific expression in the LA for patients with poAF

poAF No poAF
SNP Gene Chr Location Reads Samples REF/ALT + REF Samples REF/ALT + REF FDR-adjusted p value
rs2230287 GSN 9 124065224 10279 1 1.00 2 050 1x10°%
1541267649 CUTA 6 33,384,473 576 1 1.00 2 048 4x107%
rs3733570 QDPR 4 17,503,433 538 3 046 1 1.00 4x107%8
rs114068468  HLA-DPBI 6 33,054,463 572 2 055 1 1.00 6x107%°
rs2241198 IGFBPS 2 217,539,068 642 1 1.00 3 052 2x107%
rs11550240 COX8A 11 63,743,756 4318 1 0.56 1 1.00 2x107%°
rs1800215 COL1AT 17 48265495 688 2 057 1 003 1x107"
rs200375051 7 5 40,972,534 1081 1 051 3 1.00 8x 1077
rs3762568 FASTKD2 2 207631461 518 1 1.00 6 051 5x1078
rs45555133 DACT3 19 47151717 288 3 049 2 1.00 9x 107"
rs117770959  ZMIZ2 7 44,807,772 207 3 048 1 1.00 1x10°®
15118077107 NEURL4 17 7,221,197 176 1 1.00 4 046 5x10°
rs74450883 FAM2198 15 75,193,432 361 2 048 1 1.00 9% 107
rs56173620 LAMA2 6 129722453 460 2 051 1 1.00 2x10°
rs11538698 MGLL 3 127,540,635 662 1 049 4 1.00 4x107°
rs79181968 SERPINA3 14 95080814 254 1 1.00 3 060 9% 107
rs12117552 LMNA 1 156,104,292 886 1 050 1 1.00 0.002
kgp10133162  CLDN18 3 137,750586 188 3 0.11 5 060 0.004
rs138684608  TMEDIO 14 75643,107 693 1 046 1 1.00 0.005
1147227072 PCOLCE2 3 142,567,193 685 1 053 1 1.00 0.007
1s61741262 TNST 2 218669225 3070 3 043 9 052 001
1s574774 ASAH1 8 17,914,883 3591 1 068 2 076 002
1s4280262 LITAF 16 11,647,492 1801 7 045 10 057 0.04

The table shows the SNPs with different ASE in the LA in patients who had poAF compared with those who did not. Shown is the gene the SNP is located within,
the genomic location, number of reads overlapping the SNP, number of heterozygous LA samples for both patient groups, the REF/ALT + REF ratio, and the FDR-

adjusted p value for differential ASE between the two patient groups

therefore need to be cautiously interpreted, since some
SNPs with ASE are likely false positives from remaining
reference genome bias. Further filtering of reads and vari-
ants to eliminate all reference genome bias is challenging,
as further filtering of reads can substantially reduce the
power of the analysis and other bias can be introduced by
methods such as masking the reference genome [16].

Finally, the usage of simple statistical methods that are
not specific to gene expression analysis to detect ASE,
such as binomial test, can increase false positives and
negatives since they fail to consider both inter-sample
and inter-variant variability in gene expression and its
measurement during differential expression calling. This
was avoided by using the edgeR algorithm to call ASE.
This utilizes the negative binomial algorithm, and esti-
mates both the sample and marker-specific dispersion to
generate variability estimates for each individual marker
before calling differential expression.

After calling ASE on the filtered datasets using edgeR,
we found that 3404 (5.1%) of SNPs eligible for ASE

calling in the LA and 8642 (4.0%) of SNPs eligible for
ASE calling in the LV had evidence of ASE at a FDR p
value of <0.05. The genes with the strongest evidence of
ASE in the LA were structural genes involving muscle
proteins, the cardiac contraction chain (TNNT2, TTN),
collagen (COL4A2), and cardiac energy homeostasis and
cardiac fibrosis (TIMP3) [17, 18]. Interestingly, the SNP
showing the greatest ASE in the LV sample was within
the methyltransferase (MTR) gene involved in folate me-
tabolism. Variants in this gene have been associated with
both congenital heart disease, but only when the associ-
ated variant is inherited from the mother [19]. This sug-
gests either global or tissue-specific imprinting of this
gene, i.e. expression of each allele dependent on parental
origin. Depending on the parental origin of the reference
and alternative allele, this could potentially generate an
ASE pattern observed within our assay, but we are lim-
ited by the lack of parental genotyping to explore this
further. Also of interest is the plakophilin 2 gene (PKP2),
associated with right ventricular cardiomyopathy [20]
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Table 6 Functional enrichment analysis of genes with differential
allele-specific expression in poAF
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Table 8 Functional enrichment analysis of genes with differential
allele-specific expression in cardiac ischemia

GO annotation FDR p value Coverage GO annotation FDR p value  Coverage
Cardiac muscle tissue development 0.008 5/85 Ubiquitin ligase complex 9% 107" 11/158
Sarcomere 0.008 5/86 Cullin-RING ubiquitin ligase complex ox10™ 10/96
Contractile fiber part 0.009 5/102 Cul4-RING ubiquitin ligase complex 5x107'° 6/21
Myofibril 0.009 5/102 Regulation of transcription from RNA 0.040 3/36
Cardiac ventricle morphogenesis 0.009 4/47 polymerase Il promoter in response to sress

Contractile fiber 0,009 5112 Protein monoubiquitination 0.040 3/36
Myofilament 0012 3/16 Ubiquitin protein ligase binding 0.043 4/137
Cardiac ventricle development 0012 4/56 Negative regulation of cell cycle 0.043 5/291
Cardiac chamber morphogenesis 0014 4/60 ﬁle?:sl;giZei;DS,:‘gtsemplated transcription 0043 /41
Muscle structure development 0017 6/244 The table shows the results of functional enrichment analysis of the genes
Striated muscle tissue development 0017 5/142 ‘;Tigtzri‘ﬁffr:'e”ﬁa' ASE in response to cardiac ischemia by the GeneMANIA
Cardiac chamber development 0018 4/70

Muscle tissue development 0018 5/150 A second aspect of our analysis was to identify SNPs/
Actin cytoskeleton 0025 6/277 genes with differential ASE in disease states. Comparing
Ventricular cardiac muscle tissue 0030 3/29 differential ASE in the LA of individuals. between 'Fhose
morphogenesis who had poAF compared to those who did not, we iden-
Ventricular cardiac muscle fissue 0030 329 tified multiple interesting genes, three of which have
development previously been associated with AF. The gene with the
Muscle organ development 0030 5/172 most significantly different allele-specific expression was
Requlation of ATPase activity 0035 3/31 gelsolin (GSN), a protein that participates in cytoskel-

The table shows the results of functional enrichment analysis of the genes
with differential ASE in poAF by the GeneMANIA algorithm

and multiple genes involved in mitochondrial energy
metabolism (MTCHI1, OXAIL, MULI).

From the subset of SNPs eligible for ASE calling in
both LA and LV, we found that 2078 of the SNPs had
ASE in both tissues (at unadjusted p <0.05), a signifi-
cantly higher number than would be expected at random
(Fig. 2b, p <0.0001). This is in line with results from the
GTEx study, where tissues with similar origin had a
higher number of shared sites with ASE [8]. Especially
interesting are those sites where the ASE pattern differs
between LA and LV. The strongest difference was in the
aconitase gene (ACO2), which is a part of the citric acid
cycle and is essential for maintenance of mitochondrial
DNA [21]. It is plausible that the control of metabolism
fulfilling the differential energy needs of the two cham-
bers is mediated via ASE.

eton maintenance, modulating calcium-channels. A GSN
mouse knockout has been found to have a short PQ
interval and a prolonged QRS and QT interval, and im-
portantly, an increased susceptibility to AF [22]. The col-
lagen 3A1 gene (COLIAI) is a known target gene of the
microRNA  miR29b. The atrial expression of both
miR29b and COL1A1 has been found to be changed fol-
lowing ventricular tachypacing in a canine model, indi-
cating that the gene might play a role in atrial
remodeling following increased myocardial oxygen de-
mand [23]. Additionally, a frameshift mutation in the
lamin A/C gene (LMNA) has been described in a family
with early-onset AF and sudden cardiac death [24]. The
paucity of genes with prior association with AF in the
list of genes with differential ASE in patients with poAF
shows the power of utilizing ASE analysis to identify
novel genes associated with cardiac disease that cannot
be identified with analysis of the DNA sequence or over-
all mRNA expression.

Table 7 SNPs with differential allele-specific expression in cardiac ischemia

Pre-bypass Post-bypass
SNP Gene Chr Location Reads Samples REF/ALT + REF REF/ALT + REF FDR-adjusted p value
rs4871331 ZHX2 8 123,963,996 224 2 0.35 0.64 2% 107
kgp9659493 CUL4A 13 113,918,770 1541 5 0.56 044 0.015

The table shows the SNPs with differential ASE in the post-bypass sample compared with the baseline sample of the same individual, assessing the ASE response
to cardiac ischemia. Shown is the gene each SNP is located within, the genomic location, number of reads overlapping the SNP, number of heterozygous individuals
(each providing pre- and post-bypass sample), the REF/ALT + REF ratio, and the FDR-adjusted p value for differential ASE between the post-bypass compared

to the pre-bypass
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Of the two genes with differential ASE and multiple
individuals in both the poAF and control group, the ten-
sin 1 (TNSI) gene codes for a protein with cytoskeleton
contact roles and contains a motif that mediates signal
transduction [25]. Variants in this gene have been associ-
ated with mitral valve prolapse [26], which was the sur-
gical indication for a substantial number of our patients.
Thus, the ASE could contribute to either AF pathogen-
esis or the response to mitral valve prolapse. The func-
tional enrichment analysis of genes with differential ASE
in poAF indicated an enrichment of genes involved in
cardiac structure, that supports the importance of struc-
tural remodeling in the pathogenesis of AF [27].

Similarly, the comparison of ASE in paired samples
before and after ischemic injury via cardioplegic arrest
identified three genes of interest. The zinc finger and
homeodomain protein 2 (ZHX2) has been identified as a
modulator of plasma lipids [28] and it is plausible that
regulation or dysregulation of lipid metabolism is a re-
sponse to hypoxemia. Interestingly the overexpression of
the ubiquitin E3 ligase gene (CUL4A), found to have dif-
ferential ASE in our ischemia model, has been found to
suppress apoptosis and DNA damage in experimental
pheochromocytoma model of ischemia-reperfusion [29].
This gene has not previously been associated with re-
sponse to hypoxia in cardiac cells and is an interesting
target for further studies. Functional enrichment analysis
highlighted the ubiquitin ligase complex pathway, but
other members of this pathway, including CHIP and
MDM?2, have been associated with the regulation of
apoptosis in ischemia-reperfusion injury [30]. It is likely
that expression differences affecting this pathway are in-
volved in the immediate response to ischemia and they
serve as interesting targets for follow-up studies. Fur-
thermore, our analysis is limited by a relatively short
time and mild ischemic insult between the baseline and
post-ischemic sample. More profound or prolonged is-
chemia might yield allele-specific expression changes
within other pathways of interest or a more profound
ASE-response.

Conclusions

Our results demonstrate that patterns of tissue-specific
ASE exist in the human heart, some shared between the
LA and LV, as well as chamber-specific ASE. Further-
more, we have shown the utility of ASE to highlight
novel genes involved in disease states. With increasing
availability of RNA-seq datasets with a high number of
RNA reads of sufficient length and progress in the meth-
odology of ASE analysis, this opens novel and exciting
areas to advance the understanding of the genetic back-
ground and molecular mechanisms behind the patho-
genesis of common and complex diseases, including
those in the human heart.
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