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Abstract

Cancer results from the acquisition of somatic driver mutations. Several computational tools can predict driver
genes from population-scale genomic data, but tools for analyzing personal cancer genomes are underdeveloped.
Here we developed iCAGES, a novel statistical framework that infers driver variants by integrating contributions
from coding, non-coding, and structural variants, identifies driver genes by combining genomic information and
prior biological knowledge, then generates prioritized drug treatment. Analysis on The Cancer Genome Atlas (TCGA)
data showed that iCAGES predicts whether patients respond to drug treatment (P = 0.006 by Fisher’s exact test) and
long-term survival (P = 0.003 from Cox regression). iCAGES is available at http://icages.wglab.org.
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Background
Cancer carries somatic mutations acquired during the
lifetime of an individual [1]. While the majority of these
are “passengers”, which are mutated randomly and func-
tionally neutral, a small proportion are “drivers”, which
are causally implicated in oncogenesis [2]. When it
comes to a patient, the challenge for his/her molecular
diagnosis and treatment lies in rapid and accurate
identification of these driver mutations from a large
amount of background noise from passenger muta-
tions [3, 4], which is important to devise appropriate
targeted therapies.
Next-generation sequencing technology has enabled

researchers to rapidly identify somatic mutations from a
patient by comparing the sequence from his/her tumors
with that from blood or other non-cancerous tissues [5].
These mutations have been well-classified, annotated,
and visualized by endeavors such as IntOgen-mutations
[6]. Accordingly, several other computational tools
were developed to help further pinpoint these cancer
drivers using readily available personal cancer genomic

information or data integrated from these public
databases [7–9]. Such tools can be classified into three
categories based on the different information they use
to identify drivers. The first category uses genomic
mutations, the second category uses transcriptomic
information, and the third category uses post-
transcriptomic information.
The first category of tools, which focuses on genomic

mutations, can be further classified into two subcategor-
ies: tools for batch analysis and tools for personalized
analysis. Some batch analysis tools prioritize genes, such
as MutSigCV [10], MuSiC [11], and Youn-Simon [12],
while others prioritize different kinds of mutations. For
example, computational tools such as CHASM [7], Mu-
tation Assessor [13], and FATHMM (for cancer) [14]
prioritize point-coding mutations, whereas FunSeq2 [15]
prioritizes non-coding mutations. While these tools
paved the way for cancer driver prioritization, there is
still significant room for improvement. For example,
Gnad et al. [16] found that many current methods or
combination of methods for mutation prioritization fail
to exceed 81% accuracy in detecting real cancer driver
mutations. Mutation prioritization tools for personal
cancer genomes, on the other hand, are extremely
underdeveloped. Phen-Gen is one of the few tools for
prioritizing personal disease driver genes using only
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mutations identified from next-generation sequencing
[17]. Similarly, wANNOVAR/Phenolyzer is a combin-
ation of tools that allows identification of disease genes
from genotype and phenotype information [18, 19].
However, these tools are general disease gene
prioritization tools, rather than focusing on cancer,
and may not work well for cancer somatic mutations
due to the use of an allele frequency model from
germline mutations. A more detailed comparison of
the many tools is given in Table 1.
Besides computational tools that use genomic muta-

tions as input, other tools use transcriptomic or post-
transcriptomic information as input. Some tools, such
as PARADIGM-SHIFT [20], DawnRank [21], OncoIM-
PACT[22], and ActiveDriver [23], provide personal
cancer driver gene prediction. However, they require
gene expression, phosphorylation, or copy number
variation data from patients, all of which are not often
feasible to obtain due to cost and other practical issues.
Moreover, they require complicated data preprocessing

and data transformation, which represent challenges for
average biologists and clinicians (Table 1).
Thus, there is a strong need for a robust and user-

friendly tool to systematically predict personal cancer
drivers, which motivated us to develop iCAGES. For an
individual patient with cancer, iCAGES takes his/her
somatic mutation profile as input and rapidly prioritizes
cancer driver mutations, genes, and targeted drugs.
iCAGES consists of three consecutive layers. The first
layer prioritizes personalized cancer driver mutations,
including coding mutations, non-coding mutations, and
structural variations. The second layer links these muta-
tion features to genes using a statistical model with prior
biological knowledge on cancer driver genes for specific
subtypes of cancer. The third layer better serves clini-
cians and researchers interested in personalized cancer
therapy, generating a prioritized list of drugs targeting
the repertoire of these potential driver genes. iCAGES
can help increase the accuracy of cancer driver detection
and prioritization, bridge the gap between personal

Table 1 Functionality comparison between iCAGES and other cancer driver gene detection tools. "V" represents "available"

Category Sub
category

Sub
Subcategory

Output Tool VCF
input
format

Single
patient
analysis

Structural
variation
analysis

Web
server

Personalized
drug

Graphical
result

Prior
knowledge
integration

Non-
coding
Variant

Genomic
variant
analysis
tools

Batch
analysis
tools

Driver point
mutation
prioritization

Protein-
coding
drivers

CHASM V V

Mutation
Assessor

V V

FATHMM V V

SIFT V V

PolyPhen-2 V V

GERP++ V V

VEST V V V

Non-
coding
drivers

FunSeq2 V V V

Driver gene prioritization MuSiC V V

MutSigCV V V V

Youn-Simon V V

Personal
analysis
tools

Driver gene prioritization iCAGES V V V V V V V V

Phen-Gen V V V V

OncoIMPACT V V

Transcriptomic expression analysis tools PARADIGM-
SHIFT

V

DawnRank V

CONEXIC V

TieDIE

DriverNet V

Memo V V

Dendrix V

Phosphorylation analysis tools ActiveDriver V
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cancer genomic data and prior cancer research knowledge,
and facilitate cancer diagnosis and personalized therapy.

Methods
Training data composition
Two types of training datasets were collected for train-
ing radial support vector machine (SVM) variants and
iCAGES gene scores, respectively. For training the radial
SVM, we retrieved a benchmarking dataset from the
Martelotto et al. [24] benchmarking study. We anno-
tated all mutations using ANNOVAR [25] with 11 pre-
dictors of interest, including SIFT [26], PolyPhen-2 [27],
LRT [28], MutationTaster [29], Mutation Assessor [13],
FATHMM [30], GERP++ [31], PhyloP [32], CADD [33],
VEST [34], and SiPhy [35]. We used training data from
805 functionally validated cancer-related missense muta-
tions as true positive (TP) observations and 134 func-
tionally neutral missense mutations as true negative
(TN) observations. For training the logistic regression
(LR) for calculating the iCAGES gene score, we collected
6971 mutated genes from 963 breast cancers from the
The Cancer Genome Atlas (TCGA) data as a training
dataset [36]. A total of 819 genes, which are either sig-
nificantly mutated genes (SMGs) in the TCGA Pan-
Cancer cohort [37] or genes in the Cancer Gene Census
[38], were defined as TP observations. The remaining
6152 genes were defined as TN observations. To avoid
potential false negative observations in our TN training
set, we required that all TN observations not be present
in the KEGG Cancer Pathway [39], or be defined as On-
cogenes by the UniProt database [40], or be defined by
the Cancer Suppressor Genes in the TSGene database
(https://bioinfo.uth.edu//TSGene1.0/index.html) [41], or
have a maximum radial SVM score greater than 0.93.
Next, for each observation, we harvested their four fea-
ture scores as follows. For the radial SVM score, we
trained the radial SVM model using 939 point coding
mutations and calculated the predicted radial SVM score
for each point coding mutation in each of the 6971 mu-
tated genes in the training dataset for the iCAGES gene
scores (default model). Additionally, to accommodate
users who are interested in differences in driver gene
prioritization in different cancer subtypes, we also trained
a complementary model for all cancer subtypes (Add-
itional file 1: Table S1). We downloaded data for all 14,169
cancer patients from TCGA data portal (August 2016),
used Cancer Gene Census genes as TP observations for
each cancer subtype and all other mutated genes as TN
observations, and trained cancer subtype-specific models
for each cancer subtype.

Testing data composition
Four types of testing datasets were collected for testing
the performance of iCAGES. For testing the radial SVM,

we curated two testing datasets. Testing dataset I con-
tains 14,984 non-redundant missense mutations curated
from the COSMIC database version 68 (as TP observa-
tions) and UniProt database (as TN observations) [42,
43]. The rationale for using the COSMIC database to
construct our TP dataset was similar to what was used
in the FATHMM study [14, 30]: frequencies of these
mutations in the database are likely to reflect the im-
portance of these mutations in cancer. We used 14,984
point coding mutations from the COSMIC version 68
database and UniProt database as a benchmarking data-
set [42, 43]. A total of 9574 non-redundant somatic
point coding mutations obtained from the COSMIC
database were used as TP observations, with the follow-
ing filtering criteria: first, all mutations should be som-
atic cancer mutations and identified through whole
genome-wide sequencing studies; second, all mutations
should be recurrent mutations (occurrence greater than
or equal to 4); third, all mutations should have a
maximum minor allele frequency (MMAF) among popu-
lation of 0.01 or less (the MMAF is from various popula-
tions obtained from three major sources, NHLBI Go
ESP for all subjects, African Americans, and European
Americans [44], 46 unrelated subjects sequenced by the
Complete Genomics [45], and the 1000 Genomes Pro-
ject for all subjects, admixed Americans, Europeans,
Asians, and African populations [46]); fourth, all muta-
tions should have no missing values for all predictors of
interest, including SIFT [26], PolyPhen-2 [27], LRT [28],
MutationTaster [29], Mutation Assessor [13], FATHMM
[30], GERP++ [31], PhyloP [32], CADD [33], VEST [34],
and SiPhy [35]. A total of 5410 neutral point coding mu-
tations obtained from the UniProt database were used as
TN observations, with the following filtering criteria:
first, all mutations were annotated as not known to be
associated with any phenotypes, based on the UniProt
annotation; second, all mutations have a population
MMAF greater than or equal to 0.20; third, all mutations
in the TN dataset should not overlap mutations in the
TP dataset—if they did, they were removed from the TP
dataset. To evaluate the performance of iCAGES for
identifying cancer driver mutations from passengers in
cancer driver genes, we curated testing dataset II, which
contains a subset of all variants in cancer driver genes in
testing dataset I.
For batch analysis of the iCAGES gene score, we cu-

rated five testing datasets. Testing dataset I contains data
for all 14,169 patients from 35 subtypes, all downloaded
from the most current version of TCGA data portal
(https://gdac.broadinstitute.org; downloaded on August,
2016). We define TP observations as genes in the Cancer
Gene Census database and TN observations as mutated
genes that are not included in it. Testing dataset II con-
tains molecular profiles of 6748 cancer samples used in
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Rubio-Perez et al. [47], with which the driver database
IntOgen was generated. Testing dataset III contains mo-
lecular profiles of 3178 TCGA cancer patients used in
the Kandoth et al. study [37]. Since testing dataset III
contains patients whose data was also used in testing
dataset II, which may inflate the performance evaluation
of IntOgen, we generated testing dataset IV, which con-
tains 71 unique cancer patients from testing dataset III
but not from testing dataset II. Testing dataset V con-
tains a TCGA mutation dataset used by Kandoth et al.
[37] that is independent of TCGA mutation dataset used
for training iCAGES gene score. The data for testing
dataset V were downloaded from the original publication
and analyzed through the iCAGES pipeline for annota-
tion and prediction. Note that to maintain consistency,
the same process for filtering and defining TP and TN
observations was used as when creating the training
dataset. For personalized analysis, mutation data for two
patients were downloaded from the original publications
from Imielinski et al. [48] and Wagle et al. [49], parsed
and analyzed through the iCAGES pipeline.
The last type of testing dataset is the TCGA targeted

therapy patient cohort to validate the performance of
the iCAGES drug searching module (Additional files 2,
3, and 4). We curated three testing datasets for this
purpose. Testing datasets I and II contain two major
components, genomic variants and clinical information.
For genomic variants, we used TCGA Assembler and
downloaded all copy number variation (CNV) data for
these patients; we also wrote our own TCGA data portal
web crawler and downloaded all remaining single-
nucleotide variants and indels for them [50]. For clinical
information, we also used TCGA Assembler and down-
loaded all patients’ clinical and demographic informa-
tion; we used customized scripts to parse and process
these data to link each patient’s clinical data with his/her
own genomic variant information. The only difference
between testing datasets I and II is that the former con-
tains only individuals that also appeared in Rubio-Perez
et al. Testing dataset III is the same as in Rubio Perez et
al. to benchmark the performance difference from
iCAGES.
To test the performance of the drug nominating layer

of iCAGES, we compiled a list of drugs that comply with
FDA targeted drug prescription guidelines. We carefully
read the FDA label for each of these drugs and made
sure that each is currently approved by the FDA and can
be used for treating certain cancer subtypes. Moreover,
as iCAGES only handles somatic mutation profiles, we
required these FDA targeted drugs to specify at least one
type of genetic variant testing, which should not be
chromosome rearrangement (since this is challenging to
determine given the patients’ exonic somatic mutation
profiles provided by TCGA). We require that each

patient has the same cancer subtype as the FDA drug is
approved for and has the particular mutation that the
drug requires testing for to include this FDA drug in a
patient’s recommended FDA targeted therapy. We
found six patients that are eligible for such an FDA
drug, two of whom suffered from progressive disease
and the remaining four have unknown response. We
also compiled a list of drugs for each patient using
DGIdb to compare its performance with that of
iCAGES. To compile these drugs, we require that
they directly target mutations harbored in the patient
and we use the whole report without any filtering cri-
teria from the DGIdb API.

Structural variants, small insertion/deletions, and
non-coding variants
For structural variants, we developed a normalized signal
score for assessing their cancer driving potential. For po-
tential loss-of-function mutations, the proxy scores,
namely CNV normalized signal scores, are the normal-
ized recurrent focal CNV deletion density signal scores
retrieved from Kim et al. [51] among cancer suppressor
genes classified by Zhao et al. [41]. In the original publi-
cation of Kim et al., every CNV region was assigned a
focal recurrent amplification/deletion signal, which was
calculated based on extensive computational analysis of
8227 copy number profiles gathered from 107 studies on
human cancer genomes. Given the somatic mutational
profile of a cancer patient, iCAGES extracts structural
variants from the mutational profile and searches in the
database to see whether or not these structural variants
occur in the recurrent focal amplification/deletion re-
gions. If variants do occur within these regions, iCAGES
then uses a regional annotation module to assign the
corresponding recurrent amplification or deletion signals
to each one of the variants as their CNV density; for
variants that do not occur in these regions, we assign
0 as the CNV density score. With the same rationale,
for gain-of-function mutations we used normalized re-
current focal CNV duplication density signal scores
retrieved from Kim et al. [51] among oncogenes in
the UniProt database [40]. To annotate a given struc-
tural variant, therefore, we first filtered all potential
loss-of-function/gain-of-function mutations harbored
in these putative cancer suppressor genes/oncogenes
and then annotated them with the corresponding nor-
malized CNV signal scores to estimate their cancer
driving potential (Additional file 1: Figure S1). To an-
notate small insertions and deletions given limited
knowledge of their mode of action, we assigned each
variant to be both a loss-of-function and gain-of-
function mutation for downstream modeling and used
the more deleterious annotation score as its final
variant score.
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For the point non-coding mutation score, we retrieved
whole-genome FunSeq2 scores (http://FunSeq2.gersteinlab.
org/downloads) and used them to annotate each point
non-coding mutation for all genes in the iCAGES gene
score training dataset [15]. Note that for a gene harboring
more than one mutation of the same category, we used the
maximum score of each category as the final feature score
for each gene.

SVM modeling and feature selection for the iCAGES
variant score
Eleven predictors were used for SVM modeling, includ-
ing SIFT, PolyPhen-2, LRT, MutationTaster, Mutation
Assessor, FATHMM, GERP++, PhyloP, VEST, CADD,
and SiPhy. The rationale for using these 11 different
predictors is described as follows. First, each contributes
a different facet of information for a coding variant
(Additional file 5). Second, the pairwise Pearson correl-
ation coefficient of these scores also shows that each of
these scores provides additional information for describ-
ing a coding variant (Fig. 1). Third, our previous study
demonstrated the benefit of integrating nine of these
predictors into a single model to boost the prediction
power in Mendelian disease studies [52]. Here, we used
a similar approach for cancer studies, hoping to boost
the predictive power of cancer driver variants. Of these,
SIFT, PolyPhen-2, LRT, MutationTaster, Mutation Assessor,

and FATHMM were transformed to a 0–1 scale using the
same methods described in dbNSFP [53, 54], with 1 indi-
cating the highest potential of deleteriousness. Violin plots
of all predictors were analyzed to determine whether there
were any outliers that were biologically infeasible and to
roughly investigate their distributions in the TP and TN ob-
servations. Pairwise Pearson correlation coefficients of all
continuous and binary variables were calculated to examine
potential collinearity between predictor variables and to
roughly assess the predictive power of each predictor. Since
we observed strong collinearity between HumDiv- and
HumVar-trained PolyPhen-2 predictors, we chose HumDiv
data as recommended by the developers.
For TP observations, we required that their MMAF be

less or equal to 0.01 to filter for somatic mutations that
were actually germline mutations. For TN observations
in our data, we required all mutations to have a MMAF
greater than or equal to 0.20 to filter for mutations that
frequently occurred in the population and were therefore
likely to be neutral polymorphisms. Such filtering was
realized using ANNOVAR with the proper PopFreqMax
parameter settings [25].
To test the hypothesis that a non-linear combination of

predictors can better model the patterns of cancer driver
mutations, two linear machine-learning algorithms, in-
cluding LR and linear SVM, and a non-linear algorithm,
radial SVM, were evaluated using the R package “e1071”

SIFT

PP2 HDIV

PP2 HVAR

LRT

MT

MA

FATHMM

VEST

CADD

GERP

PhyloP

SiPhy

Outcome

Correlation plot of all variables in training dataset

0.
0

0.
6

TN TP

SIFT

0.
0

0.
6

TN TP

Polyphen2_HDIV

0.
0

0.
6

TN TP

Polyphen2_HVAR

0.
0

0.
6

TN TP

LRT

0.
0

0.
6

TN TP

MutationTaster

2
2

TN TP

MutationAssessor

10
0

TN TP

FATHMM

0.
2

0.
8

TN TP

VEST

0
20

TN TP

CADD

10
0

TN TP

GERP++ RS

4
0

3

TN TP

PhyloP

0
10

20

TN TP

SiPhy

a b 

Fig. 1 Analysis of each predictor selected for the radial SVM modeling for iCAGES variant score. a Correlation diagrams illustrating the pairwise
Pearson correlation between all predictors and outcome variable in the training dataset. The color and size of the shaded region in the pie charts
at the upper right indicate the level of correlation, with red and larger proportions of the shaded region indicating higher positive correlation. b
Violin plots of scores from different predictors (different colors) in the training dataset in the TP (deleterious) and TN (neutral) groups. Each plot
shows the median (indicated by the small white dot), the first through the third interquartile range (the thick, solid vertical band), and the density
(different colors) of the predictor scores in each group
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[55]. After the radial SVM was selected to model the pat-
terns of cancer driver mutations, its parameters were fur-
ther tuned to enhance its performance. In the radial SVM,
γ measures the size of the radial kernel e

‐γ u‐vj j2ð Þ: the larger
the γ, the smaller the size of the kernel. And the parameter
c is a constant of the regularization term in the Lagrange
Formulation that measures the cost of constraint viola-
tion: the larger the c, the more cost for constraint viola-
tion. These two parameters were tuned and the best set of
parameters with the least potential of overfitting was used
in the final model. Backward feature selection was also ap-
plied in the model to select a parsimonious set of predic-
tors. Diagnostic plots for all models were examined and
all model assumptions were evaluated in the LR model.
The predictive performance of all models was evaluated
using the receiver operating characteristic (ROC) curve
with a five-fold cross-validation. For each ROC curve, a
95% confidence interval (CI) was calculated with 2000
bootstrap replicates implemented using the R packages
“pROC” [56] and “ROCR” [57], respectively.
To select the proper predictors for establishing the ra-

dial SVM, we investigated the correlation between every
single predictor with cancer pathogenicity using data in
our training set. From the result, individual predictors,
including SIFT, PolyPhen-2 (trained on HumDiv), LRT,
MutationTaster, Mutation Assessor, FATHMM, GERP+
+, SiPhy, VEST, CADD, and PhyloP scores all demon-
strated high linear correlation with point coding muta-
tions being cancer pathogenic; therefore, they were
selected for radial SVM modeling (P < 0.0001 with
Bonferroni correction). Moreover, no pair of predic-
tors had collinearity issues, so all predictors can be
used in one model without encountering potential nu-
merical problems. In addition, the distribution of each
individual predictor among the TP and TN observa-
tions demonstrated distinctive differences, especially
for PolyPhen-2, MutationTaster, and SiPhy, further
justifying the use of these predictors for modeling
(Fig. 1; Additional file 6).
To test whether we can further enhance the perform-

ance of the radial SVM in distinguishing TP from TN
observations, we also performed backwards model selec-
tion for selecting the best cocktail of predictors, using
the area under the curve (AUC) value from the ROC
curve as criterion. Results showed that the full model
containing all 11 predictors performs the best with the
highest AUC value and was thus chosen to be the
preliminary model (AUC = 0.89, 95% CI 0.85–0.93;
Additional file 1: Figure S2; Additional file 7 and
Additional file 8). We also tuned our parameters in the
preliminary model to further improve its performance.
The combination of c = 10 and γ = 0.001 achieved good
performance with intermediate cost and γ and was chosen
to be the set of parameters for the final model. Therefore,

our final radial SVM model measuring the cancer patho-
genicity of every single point coding mutation in a per-
sonal genome included all 11 predictors with parameter
cost = 10 and γ = 0.001.

LR modeling for the iCAGES gene score
We constructed a LR model for each gene as follows.
First, we examined summary statistics for all four feature
variables, including three output scores from the first
layer and Phenolyzer score retrieved from the Phenoly-
zer web application. This step is to ensure that the use
of all four feature variables is valid. Moreover, the
distributions of all of these variables were analyzed to
determine whether there are any outliers that were bio-
logically infeasible. Pairwise Pearson correlation coeffi-
cients of all continuous and binary outcome variables
were calculated to check potential collinearity between
the predictor variables and to investigate the unadjusted
relationship between the outcome and each predictor.
No collinearity was observed between predictors using
R-square (square of Pearson correlation coefficient) of
0.90 as the criterion; therefore, all predictors were used
for modeling potential cancer-driving genes, using mul-
tiple LR (Additional file 7). Second, after justifying the
validity of all four variables, we used them and fitted a
non-regularized multiple LR model in R with the follow-
ing optimization function.

min
1
m

w;b

X

n

−yn log h xnð Þð Þ− 1−ynð Þ log 1−h xnÞÞððð

h xnð Þ ¼ 1

1þ e− wTxnþb½ �

where yn denotes the binary outcome measuring the
pathogenicity of the nth gene, xn is a column vector con-
taining all four predictor scores for the nth gene, w is a
column vector of weights assigned to every predictor
score, b is the bias term (or constant) in the linear
combination of predictors, and h(xn) is the sigmoid
function of xn.
The reason for using a non-regularized model is be-

cause the number of variables is very small and therefore
over-fitting is unlikely to be an issue. We outputted
weights of all four predictors generated in the LR model
in Additional file 9 and used them as a template to cal-
culate LR predicted cancer driving probabilities, namely
h(xn), for any given mutated gene in a cancer patient.

Feature construction for the iCAGES drug scores
One criterion used to rank drugs is to examine the activ-
ities on their targets. Recent large-scale drug screening
programs, such as the NIH Molecular Library Program,
screen for drugs that modulate the activity of gene
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products and provide their bioactivity score by measur-
ing the activity of each drug in bioassays. Available in
the PubChem database, such bioactivity scores are col-
lected and averaged over each drug to estimate average
marginal activities [58]. To measure drug activity, we re-
trieved PubChem PCAssay Data from the PubChem
(ftp://ftp.ncbi.nlm.nih.gov/pubchem/Bioassay/CSV/Data/
). PubChem activity scores were averaged over each drug
and their distributions examined and potential outliers
were removed. Next these scores were normalized to a
0–1 scale and used as PubChem active probability for
each drug. On the other hand, it is known that drugs
can also indirectly interact with a gene. We reason that,
by including drugs that target neighbors of the mutated
genes in the patient, we can broaden the scope of
personalized cancer drug discovery and increase the
patient’s chance of getting proper treatment. To
measure relatedness of each mutated gene with its
neighbor, we retrieved raw BioSystems relatedness
scores from the BioSystems database (ftp://ftp.ncbi.-
nih.gov/pub/biosystems/CURRENT), normalized them
to a 0–1 scale, and used them as BioSystems relatedness
probabilities for each pair of genes. BioSystems is curated
by NIH/NCBI and is perhaps the most comprehensive
knowledgebase for biological pathways. It is an aggregated
database of several source databases: KEGG, BioCyc (in-
cluding its tier 1 EcoCyc and MetaCyc databases and its
tier 2 databases), Reactome, the National Cancer Insti-
tute’s Pathway Interaction Database, WikiPathways, Gen-
ome Oncology, and others.
Mining for targeted therapies can be improved if the

functions of their targets are known. We incorporated
prior knowledge and functionally annotated each gene
to be “cancer suppressors”, “oncogenes”, or “other genes”
[41, 59]. It is known that cancer is a Darwinian process
played out in somatic tissues, so to search for effective
drugs for patients, we focused on drugs that can poten-
tially disrupt the evolutionary advantage caused by mu-
tated genes in cancer tissue. For example, if a cancer
patient harbors a mutated MTOR, which is an onco-
gene, then we should search for drugs that negatively
influence its function. Likewise, for mutated cancer sup-
pressor genes, we should search for drugs that positively
influence the function of this gene. Therefore, for each
candidate cancer driver gene predicted in the second
layer, iCAGES queries the drug–gene interaction data-
base DGIdb for expert-curated drugs which “activate”
tumor suppressors, “inhibit” oncogenes, and interact
with other genes.
Given a list of potential cancer driver genes, each with

an iCAGES score, we search for targeted drugs as
follows. First, to search for their neighboring genes, we
query the BioSystems database for each gene and its top
four most-related neighbors according to their normalized

BioSystems relatedness probability. The rationale is that
we want to find drugs that target not only the actual mu-
tated gene but also its close “neighbors” in biological path-
ways and weight them differently depending on the
“distance” between the “neighbors” and the actual mutated
gene. This is because, based on our experience, ~50% of
the time there is no drug directly targeting the repertoire
of mutated genes in a patient. In this case, interrupting
the pathway of these genes can be an alternative strategy
to find targeted drugs for this patient [49, 60, 61]. Second,
we classify each gene to be a cancer suppressor, oncogene,
or other type of gene by querying the TSGene database
and UniProt oncogenes. Third, we use the DGIdb
database to query targeted drugs activating cancer sup-
pressors, inhibiting oncogenes, and interacting with other
genes, respectively, with different parameter settings.
More specifically, for cancer suppressor genes, we query
for expert-curated drugs with positive influence on ex-
pression of these genes through the following terms of
DGIdb: activator, inducer, positive allosteric modulator,
potentiator, and stimulator. For oncogenes, we query for
expert-curated drugs with negative influence on expres-
sion of these genes through the following terms of DGIdb:
agonist, antisense, competitive, immunotherapy, inhibitory
allosteric modulator, inverse agonist, negative modulator,
partial agonist, partial antagonist, vaccine, inhibitor, sup-
pressor, antibody, antagonist, and blocker. For other
genes, we query for expert-curated drugs with any kind of
interaction with the target. We also curated a list of FDA-
approved cancer therapies to complement DGIdb’s drug
collection and searched for drugs in this list that directly
or indirectly interact with the set of mutated genes and
their neighbors. Finally, for each drug, given the BioSys-
tems relatedness probability of its direct target with the
original mutated gene, PubChem active probability for the
drug, and iCAGES gene score for the original mutated
gene, we can calculate the joint probability of a drug being
a therapeutic candidate for the patient by multiplying
these three probabilities together, generating an iCAGES
drug score.
We also classify each drug to be a first tier drug if they

are FDA approved, second tier drug if they are undergo-
ing clinical trials based on active records of clinical trials
retrieved from https://clinicaltrials.gov, and third tier
drugs if otherwise. We currently consider these follow-
ing two types of repurposing. First, tumor type repur-
posing (tumor type different than clinical guidelines).
Second, alteration repurposing (drugs targeting a muta-
tion in a driver gene being employed for another muta-
tion in the same gene). For drugs (FDA approved or
clinical trial drugs) that fit either one of the repurposing
criteria, we include them as tier 1 (for FDA approved
drugs) and tier 2 (for clinical trial drugs). As DGIdb
drugs are computationally predicted drugs for general
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gene–drug interaction research and hence lack infor-
mation on their effective mutations and cancer types,
we currently have not designed a repurposing strategy
for them.

Indexing and speed optimization
To speed up large database queries, we created a binary
linear indexing and searching algorithm termed TDS
(Two-step dictionary searching). Each database is split
into many bins of X lines (by default X = 10) for each
chromosome/contig. TDS creates a binary index file re-
cording positions of these bins in the database. Mean-
while, TDS maintains a static array of chromosome/
contig names and positions of first bins in the index file.
During a search, TDS first locates the bin position in the
index, then performs a sequential search from the par-
ticular bin in the database. Time costs are bounded by
two random accesses plus X or fewer sequential ac-
cesses. Chromosome/contig name can be generalized to
any key name in a key-coordinate structured database;
therefore, TDS is not limited to applications in genome
studies. Tests on NA12878 whole genome SNP/indel
VCF data (more than four million records) from the
Genome In a Bottle consortium [62] and FunSeq2 anno-
tation (~200 GB) show that TDS outperforms Tabix [63]
by ~30% (Additional file 1: Figure S3).

Statistical analysis
Statistical analysis and LR modeling was conducted
using R (version 3.0.1). The ROC curve was drawn using
the R package “ROCR”. Using “pROC” a 95% CI was cal-
culated. SVM modeling was conducted using “e1071”.
The iCAGES package was written in Perl and the user
interface was written in Ruby on Rails, JavaScript, and
HTML5. For survival analysis, we used Stata 14.1 to per-
form analysis and generate all results and figures.

Input and output of iCAGES
iCAGES takes somatic mutations from a patient as
input. This input file can be in either ANNOVAR [25]
input format, VCF format, or BED format. For VCF for-
mat, it considers three types of input files. The first type
contains only somatic mutations detected in one single
patient. The second type contains both tumor and germ-
line mutations in a single patient. This is the raw output
file format from several somatic mutation detection
tools. The third kind contains both tumor and germline
mutations in multiple patients. In the last case, the user
needs to specify which sample he/she needs to analyze
so that iCAGES can perform a single patient analysis
based on the particular patient of interest. For the BED
format, it can be used to specify locations where struc-
tural variants occur or locations of genes that are over-
or under-expressed for advanced users. Another optional

input is the subtype of cancer, as specified by the user,
which activates iCAGES to apply the models trained for
this particular subtype to further enhance its predictive
performance. Major output files from iCAGES contain
three CSV (comma-separated value) files, each corre-
sponding to results from a layer of iCAGES. The first
CSV file contains cancer driver mutation prioritization
and includes information such as mutation context, mu-
tation category (in the current study, we classify muta-
tions into three categories, point coding mutations,
point non-coding mutations, and structural variations)
and driver mutation score. Note that each driver muta-
tion score corresponds to a mutation category. The sec-
ond CSV file contains cancer driver gene prioritization
results and includes information such as gene category
(in the current study, we classify genes into three cat-
egories, genes in the Cancer Gene Census [64, 65], genes
in the KEGG cancer pathway [66], and genes in other
categories), maximum radial SVM score, and iCAGES
gene score. The third CSV file contains personalized
drug prioritization results and includes information such
as predicted drugs, their final target, and their iCAGES
drug scores (Table 2). To facilitate interactive graphics
rendering for iCAGES web server, a JSON file was also
generated, which contains the same information as in
the three CSV files. Therefore, we have provided
information showing the extensive utility of iCAGES for
average biologists, clinicians, and patients.

Versions of the human reference genome
iCAGES supports three versions of human reference ge-
nomes, hg18, hg19 (default), and hg38. When using the
iCAGES standalone package or web application, users
need to specify the version of the human reference gen-
ome. All annotation scores from iCAGES originally used
hg19 as the reference genome, and we used liftOver to
directly convert radial SVM scores, FunSeq2 scores, and
CNV normalized signal scores from hg19 coordinates to
hg18 and hg38.

Results
Overview
A general overview of iCAGES is given in Fig. 2. To
prioritize driver mutations, the first layer takes somatic
mutations from next-generation sequencing as input and
outputs three types of driver potential scores for coding
mutations, non-coding mutations, and structural vari-
ants, respectively. To prioritize driver genes, the second
layer takes two major sources of input. The first source
measures the genomic potential of a gene being a per-
sonal cancer driver and the second source measures the
prior knowledge of a gene being a driver for a specific
cancer subtype, based on previous biological knowledge,
through Phenolyzer predictions. Given these two sources
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Table 2 Major output files of iCAGES

Category Column name Description Example

Mutation
prioritization
output

Gene name HUGO name of the gene ARAF

Chromosome
number

Chromosome number of this mutation 1

Coordinate Genomic coordinate of the mutation 1234560

Reference allele Reference allele of this mutation C

Alternative allele Alternative allele of this mutation G

Mutation category Whether this mutation is a point coding mutation, point non-coding
mutation, or structural variation

Point coding mutation

Mutation context Genomic context of the mutation c.641C > G

Protein context Protein context of the mutation p.S214C

Score category If the mutation is a point coding mutation, then the category is the
radial SVM score; if a point non-coding mutation, then Funseq2
score; if structural variation, then normalized CNV signal score

Radial SVM

Driver mutation score Value of the corresponding score 0.932

Gene
prioritization
output

Gene name HUGO name of the gene ARAF

Gene category Whether this gene belongs to the Cancer Gene Census, KEGG Cancer
Pathway, or other categories

KEGG cancer pathway

Maximum radial SVM
score

Maximum radial SVM score of all point coding mutations in the gene 0.932

Maximum FunSeq2
Score

Maximum FunSeq2 score of all point non-coding mutations in the
gene

0.000

Maximum normalized
CNV Signal score

Maximum normalized CNV signal score of all structural variations in
the gene

0.000

Phenolyzer score Phenolyzer score of the gene 0.306

iCAGES gene score iCAGES gene score of the gene 0.484

Drug
prioritization
output

Drug name Name of the drug SORAFENIB

Final target gene Mutated gene in the patient finally targeted by the drug ARAF

Direct target gene Mutated gene in the patient directly targeted by the drug ARAF

iCAGES gene score iCAGES gene score of the target gene 0.484

BioSystems
normalized
Relatedness
probability

BioSystems normalized relatedness probability between the direct
target of the drug and the target gene

1.000

PubChem normalized
drug active
probability

PubChem normalized drug active probability of this drug 1.000

iCAGES drug score iCAGES drug score of the drug 0.484

Tier Which tier this drug belongs to, whether it is FDA approved (tier 1),
undergoing clinical trials (tier 2) or otherwise (tier 3).

1

Brand name Commercial brand name of this drug NEXAVAR

FDA approved
subtype

What cancer subtypes approved by FDA can this drug be applied to Hepatocellular carcinoma, renal cancer,
thyroid cancer

Clinical trial name The name of the active clinical trials on this drug Sorafenib phase II study for Japanese
anaplastic or medullary thyroid
carcinoma patients

Clinical trial
organization

The organization for this clinical trial BAYER

Clinical trial phase Phase of this clinical trial 2

Clinical trial URL URL of this clinical trial http://clinicaltrials.gov/show/
nct02114658
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of input, iCAGES then models the patterns of putative
cancer drivers observed in TCGA data with a LR model
and outputs a prioritized list of genes ranked by their
cancer driving potential, or iCAGES gene scores. To
predict personalized treatment, the third layer takes the
prioritized list of mutated genes and their iCAGES gene
scores, searches for drugs targeting these genes and their
neighbors, and prioritizes the drugs according to their
pharmacodynamic activities, relatedness of their targets
to the mutated genes, and the corresponding iCAGES
gene scores. It outputs a prioritized list of drugs ranked
by their probabilities of being effective for the particular
patient, that is, the iCAGES drug scores. Finally, we

implemented iCAGES as a command-line tool and a
web server; the latter facilitates users without inform-
atics skills to perform analysis on personal cancer ge-
nomes, unlike most other tools (Table 1). In the
sections below, we describe the features and perform-
ance for each of the three layers in iCAGES and
demonstrate the performance of iCAGES using sev-
eral real-world examples.

Layer 1: Variant prioritization
Description
The first layer is variant prioritization, which tackles
three kinds of variants: point coding mutations, point

Fig. 2 The iCAGES package as three layers. The input file contains all variants identified from the patient; it can be either in ANNOVAR input
format or in VCF format. The first layer of iCAGES prioritizes mutations. It computes three different feature scores for annotating the gene,
including the radial SVM score for each of its point coding mutations, CNV normalized peak score for each of its structural variations, and
FunSeq2 score for each of its point non-coding mutations. The second layer of iCAGES prioritizes cancer driver genes. It takes three feature scores
from the first layer, generates the corresponding Phenolyzer score for each mutated gene and computes a LR score for this gene (iCAGES gene
score). The final level of iCAGES prioritizes targeted drugs. It first queries the DGIdb and FDA drug database for potential drugs that interact with
mutated genes and their neighbors. Next, it calculates the joint probability for each drug being the most effective (iCAGES drug score) from three
feature scores, which are iCAGES gene scores for its direct/indirect target, normalized BioSystems probability measuring the maximum relatedness
of a drug’s direct target with each mutated gene (final target), and PubChem active probability measuring the bioactivity of the drug. The final
output of iCAGES consists of three major elements, a prioritized list of mutations, a prioritized list of genes with their iCAGES gene scores, as well
as a prioritized list of targeted drugs with their iCAGES drug scores
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non-coding mutations, and structural variants. For point
coding mutations, various tools, such as SIFT [26] and
PolyPhen-2 [67], have been developed and widely used;
however, they were developed for germline mutations
and may not be specifically tuned for cancer somatic
mutations. Our previous study has demonstrated the
value of integrating multiple scoring methods to en-
hance the accuracy of classifying Mendelian disease vari-
ants [52]. To test whether integrating these methods can
also enhance the accuracy of classifying cancer driving
variants, we trained a radial SVM model to annotate
each point coding mutation based on the scoring pat-
terns of 11 different prioritization tools and evaluated its
performance. For point non-coding mutations, we chose
FunSeq2 to annotate these mutations because it is
currently the only available tool for comprehensively pri-
oritizing cancer drivers for non-coding mutations. Struc-
tural variants may cause transcriptional alterations by
either loss-of-function or gain-of-function effects and, to
our knowledge, there is a paucity of tools for annotating
these variants for their cancer driver potentials. There-
fore, we developed a method to quantify the cancer
driver potential of structural variants based on the prop-
erty of the structural variants (gain or loss) as well as the
cancer relevance of the genes (oncogenes or tumor sup-
pressors) [68]. Since structural variants in cancer tend to
be enriched in specific regions in the genome [51], we
used a normalized CNV signal score based on CNV du-
plication and deletion patterns and their presence in on-
cogenes or tumor suppressors as an estimate of the
driver potential of structural variants. Given the limited
knowledge on the mode of action of small insertions and
deletions, to annotate them we assigned each variant to
be both loss-of-function and gain-of-function for down-
stream modeling and use the more deleterious annota-
tion score for the final variant score.

Performance evaluation
Among the three mutation feature scores, we highlight
the performance of the radial SVM score in the current
section. We developed the radial SVM scores using a
well curated training data set in the Martelotto et al.
[24] benchmarking study and then evaluated its per-
formance on two testing datasets. Testing dataset I con-
tains 14,984 non-redundant missense mutations curated
from the COSMIC database version 68 (as TP observa-
tions) and UniProt database (as TN observations) [42,
43]. The rationale for using the COSMIC database to
construct our TP dataset was similar to that used in the
FATHMM study [14, 30]: the frequencies of these muta-
tions in the database are likely to reflect the importance
of them in cancer. To evaluate the performance of
iCAGES in distinguishing cancer driver mutations from
passenger mutations in cancer driver genes, we curated

testing dataset II, which contains a subset of all variants
in cancer driver genes in testing dataset I. We then mea-
sured the performance of different methods using the
AUC value of the ROC plot. We found that our radial
SVM model performed better than all other variant
prioritization tools, including general missense mutation
scoring tools and cancer-specific driver mutation detect-
ing tools, in distinguishing drivers in general cases and
in cancer driver genes. Among general missense muta-
tion scoring tools, VEST achieved the highest discrim-
inative power (AUC = 0.91, 95% CI 0.91–0.91 for testing
dataset I; AUC = 0.95, 95% CI 0.94–0.96 for testing data-
set II), which is still slightly lower than our radial SVM
model (P = 0.01 for testing dataset I, P = 0.65 for testing
dataset II, one-sided test with 2000 bootstraps) (Fig. 3).
Similar results were obtained when comparing our
model against the cancer-specific driver mutation
detecting tools CHASM [7] and Mutation Assessor [13].
Additionally, the radial SVM score also outperformed
other machine learning-based scoring methods, such as
linear SVM and LR. For example, even though the linear
SVM performed rather impressively (AUC = 0.77, 95%
CI 0.76–0.78), it failed to match the radial SVM model
(P < 1 × 10−15 with one-sided test with 2000 bootstraps)
(Fig. 3a).
Additionally, we also performed reduced set analysis

by training a reduced radial SVM with each feature de-
leted from the model and compared its performance
with the feature that was deleted, further confirming the
significant advantage of using radial SVM in predicting
drivers (Additional file 1: Figure S4). Therefore, we be-
lieve that the radial SVM score proved itself to be a
highly effective choice for scoring somatic coding muta-
tions both in general cases and in cancer driver genes in
the first layer of iCAGES.

Layer 2: Gene prioritization
Description
The second layer is gene prioritization, which relies on
annotation results from the first layer. Harboring vari-
ants with different functional effects, the cancer driver
potential of each gene can be different depending on the
distinct types of mutations, such as coding mutations,
non-coding mutations, and structural variants. To model
contributions from different types of mutations, we ap-
plied a LR model trained on 6971 mutated genes from
TCGA data from 963 patients with breast cancer, the
most common cancer type in females and one of the
most well-studied cancer types [69], using four feature
scores described as follows (we wish to stress here that
although our default model focused on breast cancer, we
do provide models for 35 other subtypes of cancer;
Additional file 1: Table S1). To characterize each gene,
we annotated each of its mutations with three genomic
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feature scores: the radial SVM score, CNV normalized
signal score, or FunSeq2 score. To link non-coding vari-
ants with FunSeq2 score to a gene, we assigned each of
such variants to its closest gene in terms of genomic dis-
tance. Considering that one gene may harbor more than
one mutation of each category, for each gene we took
the maximum of each feature score among all mutations
and generated its three genomic feature scores. On the
other hand, prior knowledge generated from decades
of cancer genetic and genomic research can help us
improve gene prioritization. Such knowledge is docu-
mented in various publically available databases. To
quantify such prior knowledge on cancer and its associ-
ated genes, we applied a database-mining tool, Phenoly-
zer, which outputs a ranked list of candidate genes based
on their association with specific subtypes of cancer
[19]. After integrating these pieces of information, the
output of the second layer is the LR-predicted probabil-
ity for each gene, namely the iCAGES gene score, which
measures the cancer-driving potential for this gene.
From sensitivity and specificity analysis, we recommend
0.11 as the binary cutoff for the iCAGES gene score
(Additional file 1: Figure S5).

Performance evaluation
We evaluated the performance of iCAGES on five co-
horts of data from cancer patients in large projects or
recent publications, as well as on two published cases of
targeted therapy-guided exceptional responders, and

demonstrated its better performance in all seven cases.
Testing dataset I contains molecular profiles from all
14,169 patients from 35 cancer subtypes, all downloaded
from the most current version (August 2016) of TCGA
data portal. We define TP observations as genes in the
Cancer Gene Census database and TN observations as
other mutated genes in this cohort. We compared the
performance of MutSigCV and iCAGES on this dataset
(Fig. 4a) and on each subtype (Additional file 1: Figure S6)
and found that iCAGES achieved significantly better
performance than MutSigCV in both cases (P < 1 × 10−10,
one-sided test with 2000 bootstraps). Testing dataset II
contains 6748 cancer samples used in Rubio-Perez et al.
[47], on which driver database IntOgen was generated, to
evaluate whether or not iCAGES’ personalized prediction
can reach comparable performance with IntOgen’s batch
prediction (Fig. 4b). We found that iCAGES did show
comparable performance with IntOgen in nominating
drivers using the top five genes as candidate drivers and
demonstrated significantly better performance using the
top 10 or top 20 genes as candidate drivers (P < 0.0001,
Z-test). Note that IntOgen drivers were generated on
this exact dataset using all patients at once while
iCAGES only generated personalized output for each
cancer patient in the cohort, and yet it achieved com-
parable or better performance than IntOgen. Testing
dataset III contains 3178 TCGA cancer patients used in
Kandoth et al.’s study (Fig. 4c). On this dataset we com-
pared the performance of iCAGES against IntoOgen,

Performance of iCAGES gene score on testing dataset
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Performance of radial SVM score on CGC genes on testing datab

Fig. 3 Performance of the first layer of iCAGES. a Performance of the radial SVM score evaluated on the COSMIC version 68 testing dataset
(testing dataset I). A higher AUC score indicates better performance. The 95% CI was computed with 2000 stratified bootstrap replicates. b
Performance of the radial SVM score evaluated on Cancer Gene Census genes from COSMIC version 68 testing dataset (testing dataset II)
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Fig. 4 (See legend on next page.)
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Phen-Gen, and MuSiC and showed significantly better
performance of iCAGES compared to all the other
methods, including MuSiC, which was used in Kandoth
et al.’s original publication for driver gene analysis
(P < 0.0001, Z-test). Since testing dataset III contains
patients whose data was also used in testing dataset
II, which may inflate the performance evaluation of
IntOgen, we generated testing dataset IV, which con-
tains 71 unique cancer patients from testing dataset
III but not in testing dataset II. In this dataset, we
observed a larger proportion of patients with their
drivers correctly specified using iCAGES than using
IntOgen (1.75-fold change in this testing dataset ver-
sus 1.23-fold change in testing dataset III), demon-
strating the advantage of iCAGES in driver gene
prioritization in new cancer patients. Similar findings
were observed in testing dataset V, which used the
same source dataset as testing dataset III but differed
in the filtering strategy for driver genes (Additional
file 1: Figure S7).
Additionally, we compared the performance of the

iCAGES gene score with a recently published personal
pathogenic gene prioritization tool, Phen-Gen, using
data from two recently published cases on personalized
cancer therapy. The first case reported the treatment
course of a patient with lung adenocarcinoma [48], the
most common subtype of non-small cell lung cancer
and which remains clinically challenging. Even though
recurrent mutations in genes such as KRAS, EGFR, and
ALK have been reported, the key oncogenic driver is
evasive in most cases [70–73]. Therefore, the study in-
terrogated the cancer genome of this patient, manually
examined all mutated genes, and selected one or more
potential targets to design personalized therapy accord-
ingly. By investigating the somatic mutations of this pa-
tient, Imielinski et al. [48] found that ARAF was likely to
be one of the cancer driver genes for lung adenocarcin-
oma in this case and this was responsive to targeted
therapy with sorafenib. Using published data of somatic
mutations, iCAGES was able to replicate this finding
by nominating ARAF as the first candidate cancer
driver gene out of 129 genes with somatic mutations
(Additional file 10). In contrast, Phen-Gen only
ranked ARAF as the sixth candidate out of 12 genes

related to any phenotype accepted by this tool (top 50%)
(Additional file 1: Table S12). Similar results were ob-
served in the second case, which was a patient with an ad-
vanced solid tumor [49]. While the iCAGES gene score
nominated MTOR as the third most likely candidate
(ranked after CTNNB1 and TP53) out of 649 mutated
genes, Phen-Gen did not include MTOR as a gene
interacting with any phenotype accepted by this tool
(Additional file 11, Additional file 1: Table S14). Therefore,
we believe that our approach can take into account differ-
ent effects of different mutations guided by prior know-
ledge, model the patterns of cancer drivers, and accurately
nominate the cancer driver genes.

Layer 3: Drug prioritization
Description
Although the main motivation to develop iCAGES is to
identify driver genes from personal cancer genomes, the
results may also facilitate the selection of treatment
strategies. The third layer of iCAGES aims to link candi-
date genes to drugs, through a three-step process. The
first step queries the BioSystems database for its top
neighboring genes in the same biosystem and calculates
its normalized relatedness score [74]. The next step clas-
sifies each gene into tumor suppressor genes, oncogenes,
or other genes and queries the DGIdb database for these
different types of genes according to their corresponding
cancer evolutionary properties [75]. Additionally, it also
queries FDA guidelines and clinical trial databases to in-
clude the corresponding targeted drugs, similar to what
was used in Rubio-Perez et al. [47]. Moreover, to meas-
ure the activity of a drug, we retrieve its marginal activ-
ity scores from the PubChem database [76], average
them over each drug, and normalize them to 0–1 as the
activity score for this drug. The final step calculates the
joint probability of a drug being an effective drug for this
particular patient by multiplying the iCAGES gene score
for its target, its relatedness score, and its marginal ac-
tivity score, thus generating the iCAGES drug score.

Performance evaluation
We tested the performance of this layer on the two
aforementioned cases as well as three testing datasets
against the Rubio-Perez et al. personalized cancer

(See figure on previous page.)
Fig. 4 Performance of the second layer of iCAGES. a Performance of the iCAGES score compared to MutSigCV, evaluated on 14,169 TCGA
patients. A higher AUC score indicates better performance. The 95% CI was computed with 2000 stratified bootstrap replicates (testing dataset I).
b Performance of iCAGES compared to IntOgen, evaluated on data from 6748 patients used in the Rubio-Perez et al. study. Each bar represents
the number of patients whose cancer driver gene can be identified by iCAGES or by IntOgen. Top One, Top Five, Top Ten and Top Twenty refer to
using the top gene, top five genes, top ten genes, and top 20 genes from prediction, respectively. A significant advantage of iCAGES compared
to other tools is indicated with ***P ≤ 0.0001 (Bonferroni correction; testing dataset II). c Performance of iCAGES compared to IntOgen, Phen-Gen,
and MuSiC evaluated on data from 3178 patients used in the Kandoth et al. study (testing dataset III). d Performance of iCAGES compared to
IntOgen, Phen-Gen, and MuSiC evaluated on data from 71 patients used in the Kandoth et al. study but not in the Rubio-Perez et al. study
(testing dataset IV)
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therapy prescription pipeline [47], DGIdb, and the strict
FDA prescription guideline. We demonstrated that the
iCAGES drug recommendation pipeline can better lever-
age predicted driver genes to facilitate the selection of
optimal personalized treatment strategies.
For the two case studies, we downloaded the genomic

data for these two patients and analyzed them using the
iCAGES framework. The first patient, with lung adeno-
carcinoma, demonstrated an extraordinary response with
sorafenib, which was indeed nominated by iCAGES as
the top drug candidate out of 122 predicted drugs
(Additional file 12). We want to emphasize here that so-
rafenib is not an FDA-approved drug for treating lung
adenocarcinoma; yet iCAGES nominated its off-label use
for this patient due to the identification of ARAF as a
driver gene in layer 2, which was indeed highly effective
in this specific patient as reported in the original study.
Similarly, for the second patient, with a solid tumor,
iCAGES nominated everolimus, which directly targets
the MTOR gene, as the third best candidate out of 489
predicted drugs (Additional file 13).
For the cohort studies, we complied three testing

datasets, on which we evaluated the performance of
iCAGES, Rubio-Perez et al.’s strategy, DGIdb, and the
strict FDA prescription guidelines. Testing dataset I con-
tains data from 146 patients from TCGA project with
annotation on their targeted therapies, which were also
used in Rubio-Perez et al.’s study. Among them, 22 have
a known response to their therapies. While iCAGES cor-
rectly predicted therapies that the complete responders
responded to in seven out of nine cases and excluded
therapies that incurred progressive disease in seven out
of 13 cases, DGIdb correctly predicted six cases in all 22
patients and Rubio-Perez et al. correctly predicted 13 in
total (Fig. 5d). For the remaining 124 patients with miss-
ing response annotations, we observed 66% higher sur-
vival probability for patients whose targeted therapy
regime included iCAGES-predicted tier 1 drugs after
controlling for age and gender (Cox proportional hazard
ratio = 0.34, P = 0.002 from Cox regression, 95% CI
0.17–0.66). In comparison, only applying the DGIdb pre-
dicted drug (P = 0.087 from Cox regression, 95% CI
0.78–46.49) or applying the Rubio-Perez et al. method
(P = 0.569 from Cox regression, 95% CI 0.22–2.30) did
not impact patient survival.
Similar results were observed on testing dataset II,

which contains 335 patients from TCGA project with
annotation on targeted therapies. Note that only six pa-
tients of this cohort (1.79%) were eligible for using FDA
approved drugs according to the FDA prescription
guidelines, which was consistent with previous findings.
For 68 of them with known responses, iCAGES excluded
drugs that incur progressive disease for 52% of the non-
responders and predicted drugs with complete response

for 15% of the responder group (P = 0.006 by two-sided
Fisher’s exact test). Moreover, for the remaining 267 pa-
tients with unknown response, patients whose targeted
therapies include iCAGES-predicted drugs are more
likely to survive cancer throughout their lifetime
than those whose therapies do not, after controlling
for age and gender (Cox proportional hazard ratio =
0.53, P = 0.003 by Cox regression, 95% CI 0.36–0.81).
To compare iCAGES’s potential for finding druggable

targets, we curated testing dataset III, which contains
the same cohort as Rubio-Perez et al., and showed a sig-
nificantly higher potential for finding druggable targets
within the spectrum of mutations harbored in these
6748 cancer patients for all three tiers (P < 0.0001 Z-test
for all comparisons with Bonferroni correction). The
improved performance is present whether we include
pathway information from BioSystems in the drug recom-
mendation or not. Therefore, the iCAGES drug score
demonstrated itself to be an effective tool for predicting
effective cancer therapies in multiple real-world scenarios.

Discussion
In the current study, we established a statistical frame-
work, iCAGES, to rapidly analyze patient-specific cancer
genomic data, prioritize cancer driver events, and predict
personalized therapies. Compared to currently available
tools, iCAGES achieves better performance by correctly
predicting cancer driver mutations, genes, and targeted
drugs in analyses on both population-based cohorts and
personal cancer genomes. Below we specifically discuss
several unique aspects that iCAGES possesses.
iCAGES fills a practical role that other tools hardly ad-

dress. While similar tools, such as MutSigCV [10] and
MuSiC [11], only require genomic mutations as input,
they do not allow single patient analysis due to the na-
ture of their algorithms. Indeed, they define cancer
drivers as genes whose mutation rate is significantly
higher in tumors than in normal tissues among a group
of patients. Since it is not feasible to calculate mutation
rate in only one patient, we cannot apply these tools for
personalized cancer driver prioritization, which makes
iCAGES a complementary option for studying driver
events for individual patients.
To facilitate researchers who only have genomic muta-

tion data, we designed iCAGES to be less demanding on
the data type. While other personalized cancer driver
prioritization tools, such as DawnRank [21], often re-
quire patient’s cancer signature data, including genomic
mutation, tumor gene expression data, and normal gene
expression data, iCAGES only requires the patient’s gen-
omic mutation data (in VCF format or in ANNOVAR
input format) and handles all data preprocessing steps
for users. Nevertheless, iCAGES users can optionally sup-
ply structural variant information (deletion/duplication),
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gene expression information (over/under-expressed), or
cancer subtype information (for more accurate Phenolyzer
analysis) to potentially improve predictions.
Another unique feature of iCAGES is that it is the

only computational tool that considers point coding
mutations, point non-coding mutations, and structural
variants together in prioritization of driver genes. While
Phen-Gen [17] also allows for point coding mutation
prioritization, it ignores non-coding mutations and struc-
tural variants, which are known to contribute to cancer
progression and may have a significantly different muta-
tion pattern compared to coding mutations. Similarly, as
Rubio-Perez et al. [47] pointed out, not including non-
coding mutations is one of the major limitations in their
work. Yet, non-coding mutations play such an important

role in altering regulatory changes in the genome, as
shown in recent large-scale studies such as ENCODE
[77], that they are too important to neglect when priori-
tizing genes that drive cancer. To quantify such signifi-
cance, we showed the statistical contribution of
including non-coding mutations through the analysis of
multivariate logistic regression of the iCAGES gene
score (Additional file 9). The results show that each unit
increase of the FunSeq2 score in a gene is statistically
significantly associated with a 37% increase of the odds
of this gene being a driver in a patient (P < 0.00033,
two-sided Wald test).
Moreover, we would like to point out that low fre-

quency drivers are not underrepresented in our work, in
contrast to Rubio-Perez et al. We do not classify drivers

Fig. 5 Performance of the third layer of iCAGES. a–c Kaplan–Meier survival curve for 124 TCGA patients with targeted therapy with unknown
response whose data were also used in the Rubio-Perez et al. study (testing dataset I). a Red and blue curves represent patients whose treatments
do and do not contain iCAGES-predicted first tier drugs, respectively. Red and blue areas represent the 95% confidence interval for the survival
curve. b Red and blue curves represent patients whose treatments do and do not contain Rubio-Perez et al.-predicted drugs, respectively. c Red
and blue curves represent patients whose treatments do and do not contain DGIdb-predicted drugs. d Number of TCGA patients with targeted
therapy with complete response or progressive disease who received correct iCAGES-predicted drugs (blue), DGIdb drugs (gray), Rubio-Perez et al.
tier one drugs (orange). e Number of patients used in Rubio-Perez et al. study who can potentially benefit from iCAGES (without pathway
component from BioSystem) predicted drugs from three tiers (blue), iCAGES-predicted drugs (green), Rubio-Perez et al.-predicted drugs (orange).
Significant advantage of iCAGES compared to other tools is indicated as ***P≤ 0.0001 and Bonferroni correction (testing dataset III)
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based solely on their recurrences, but also consider their
downstream functional impacts as well as prior know-
ledge on each gene’s cancer relevance distilled from
decades of accumulated knowledge of gene–gene and
gene–phenotype interactions. In fact, one major draw-
back of selecting cancer driver genes based on high mu-
tational frequency is that all variants are weighted the
same way, regardless of their downstream functional
impact. We established radial SVM machine learning
models that learned the patterns of cancer drivers from
a set of confident and experimentally confirmed driver
and passenger missense mutations to broadly prioritize
cancer drivers for both recurrent and rare mutations.
Instead of solely relying on mutation frequencies, our
method exploits the functional impact of missense
mutations and is more suitable not only for personal-
ized cancer driver analysis but also for analysis of rare
variants arising from large-scale cancer genome se-
quencing projects.
To better serve clinical researchers interested in person-

alized cancer therapy, we designed iCAGES to be one of
the first tools for prioritizing personal cancer drugs.
DGIdb [75] is similar in terms of this functionality because
it also generates a list of drugs interacting with a list of
genes. However, iCAGES’ drug prioritization layer has
several advantages over using DGIdb alone. First, to en-
hance the specificity of drug queries, iCAGES first classi-
fies genes into cancer suppressor genes, oncogenes, and
other genes and then queries DGIdb for drugs interacting
with these genes based on their role in cancer; therefore,
compared to the original DGIdb drug list, the iCAGES
drug list is much smaller in size and may contain fewer
false positives. Second, unlike DGIdb, iCAGES prioritizes
drugs using the driver potential information of a given tar-
get gene (iCAGES gene score), relatedness probability
from BioSystems, and drug activity score from PubChem.
Such a personalized prioritization process demonstrated
itself to be not only effective in several real-world scenar-
ios but also useful for researchers and clinicians who want
to make the best use of their time and resources. Third, in
some cases, DGIdb is not able to predict well-established
FDA-approved targeted cancer drugs since its source
databases are not updated enough to include them. To
address this issue, we added an additional iCAGES-
specific drug database that contains all FDA-approved

targeted therapy drugs to complement the list of drugs
predicted by DGIdb. Fourth, to mimic real-life scenarios
where clinicians and researchers are interested in the opti-
mal targeted drugs that are FDA approved and/or under-
going clinical trials, we also downloaded and parsed all
current ongoing clinical trial information and annotated
each drug in different tiers to indicate whether they are
FDA-approved drugs or are undergoing clinical trials.
Another method that seems to share conceptual similar-

ities with our iCAGES drug prioritization module is de-
scribed in Rubio-Perez et al.; however, the fundamental
methodologies of iCAGES personalized drug prioritization
are largely different. In fact, the only overlapping method
in both studies is the data source: we both refer to FDA
guidelines and cancer clinical trials to search for targeted
drugs. Indeed, our work attempts to cast a broader net, as
we include not only drugs that have been well studied in
trials and approved for market use, we also include drugs
that have not been studied well but may be of interest to
computational biologists and for future cancer drug
screening research. Besides, a major component of our
last layer is the scoring scheme, which is distinct from
Rubio-Perez et al. It is true that they also included a
scheme to separate predicted drugs into several tiers; how-
ever, within each tier there is no prioritization method, so
that a patient may harbor multiple “driver” genes with
therapies from the same tier, which is common for pa-
tients with late stage cancer and many somatic mutations.
Therefore, compared to DGIdb and Rubio-Perez et al.,
iCAGES may be a more practical tool for personalized
drug prioritization in cancer.
Furthermore, iCAGES contains a first drug recom-

mendation pipeline that has demonstrated a high sur-
vival advantage in real-world cancer patients compared
to current methods. Developing such a framework is
challenging, as shown in the pioneering work by Liang
and colleagues [78]. Using 953 samples from four cancer
types, Liang and colleagues found that adding molecular
features provides limited predictive power for predicting
patient survival, which indicates the complexity of can-
cer molecular data and motivated us to develop a more
complex architecture that can impact patient survival,
from mutations, to genes, to drugs. As shown in ~25,000
cancer patients from multiple studies, iCAGES was dem-
onstrated to be an accurate tool in each individual layer

(See figure on previous page.)
Fig. 6 The web interface of iCAGES, as demonstrated using data from Imielinski et al. a The submission page for iCAGES. Users can enter data
with the VCF format (default) or with ANNOVAR input format used in the ANNOVAR package. b Dynamic form for advanced users. Users can click
“Advanced Options” and enter additional information, such as structural variations in BED format, cancer subtype, and drugs that this patient has
been using. c Bubble plot output of the iCAGES package. The size of the bubbles indicates the weight of the iCAGES score and different colors
indicate the category of the gene. Red, blue, and green indicate that this gene belongs to the Cancer Gene Census, the KEGG cancer pathway, or
neither category, respectively. Pink bubbles that are connected to blue, green or red bubbles indicate targeted drugs. d The corresponding bar
plot of the output. The length of the bar indicates the weight of the iCAGES score and different colors indicate the category of the gene
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and finally a practical framework for predicting clinically
relevant drug prescription. We believe that our study
complements Liang and colleagues [78] in incorporating
molecular, pathway, and clinical information to establish
reliable therapeutic strategies.
To utilize valuable prior biological knowledge gener-

ated from numerous research studies on cancer, we inte-
grated one of the largest biological knowledge databases
on gene–gene and gene–phenotype interaction networks
in the iCAGES pipeline. In its second layer, to score
genes based on their prior association with cancer, we
applied Phenolyzer, a database-mining tool, which inte-
grates 15 different biological knowledge databases. Such
large-scale integration of biological knowledge enhances
the accuracy of iCAGES, as the prioritization process is
not only based on personal genomic context but also
guided by expert knowledge from decades of research.
To facilitate cancer genetics and genomics research for

average biologists and clinicians, the iCAGES web server
is equipped with a more user-friendly interface com-
pared to other cancer driver prioritization tools. For ex-
ample, it includes a well-documented introduction and
examples so that a general user can easily learn to em-
ploy this package in his/her daily research. Moreover, to
enhance the user experience, modern web technologies
are employed. For example, we use the D3.js JavaScript
library and render an interactive bubble plot, summariz-
ing the outputs all in one plot (Fig. 6). For practical rea-
sons, we also considered the time consumption of
iCAGES. Using the index function embedded in ANNO-
VAR [25] optimized by our TDS algorithm, which
outperforms Tabix [63] by ~30% for a query, the com-
mand line iCAGES achieves an average runtime of 47 s
(47 ± 3.2) on a Linux cluster node with 12 CPU cores,
each 2.76 GHz, for analyzing mutation data from an
average patient (Additional file 1: Figure S3). We antici-
pate that these features of iCAGES can help average re-
searchers without bioinformatics and machine-learning
expertise to analyze genomic data, prioritize candidate
genes, and search for suitable personalized therapies for
a given patient.
Despite these unique advantages, as one of the first

tools for comprehensive personal cancer driver and drug
prioritization, iCAGES has its limitations. First, it is a
challenge to obtain large-scale high quality data for
training cancer driver classifiers. For example, our train-
ing dataset for the radial SVM score consists of only 939
manually curated and functionally validated missense
mutations. Moreover, Cancer Gene Census may not be
the ideal gold standard for classifying driver genes, as
drivers in individual tumors may differ greatly due to the
heterogeneity of cancer and hence may not have been
included by the Cancer Gene Census database. Besides,
a bias is potentially introduced by using breast cancer

mutations as training data. The rationale for why we
used breast cancer patients for training is because breast
cancer is the most common cancer type in females and
is one of the most studied cancer types with the largest
amount of data from TCGA project and our model
demonstrated generality in nominating cancer driver
genes from 14,169 cancer patients from TCGA. Finally,
to make use of information from non-coding variants
from patients, we associated each non-coding variant
with its genomically closest gene. This strategy is only
valid for promoters, as promoters functionally explain
most of the variations in RNA expression and hence
downstream phenotypic changes [79]. As for other types
of regulatory elements, this strategy may not be optimal.
Those limitations can be overcome in the future devel-
opment of iCAGES, with better training data and deeper
understanding of cancer biology and regulatory elements
in non-coding regions.
Last but not least, we wish to point out a caveat when

using different versions of COSMIC as a database for
benchmarking datasets: more stringent filtering criteria
should be used in more recent versions of COSMIC
data to generate more reliable testing datasets. To see
whether our findings can be reproduced in other ver-
sions of COSMIC data, we compiled an additional
benchmarking dataset using COSMIC version 57, with
the same filtering criteria as used by the FATHMM
team for training their hidden Markov model [30].
From our results, we observed similar findings as
with the COSMIC version 68 dataset and excellent
performance of FATHMM, as seen in their original
publication. Note that the filtering criteria in version
57 is much looser than what we applied in our study;
for example, to compile TP observations in the COS-
MIC 57 dataset, it was only required for mutations to
be found in the whole gene screen and for the occur-
rence in the database to be greater than 5. To test
whether this looser filtering strategy could be applied
for compiling a testing dataset from the COSMIC
version 68, we applied the same filtering criteria. We
found that in this new dataset, all prioritization tools
have much deteriorated performance, with an AUC
around 0.5, which is almost close to random
(Additional file 1: Figure S8). This result indicates
that potential contamination and random noise exist
in the new dataset (for example, some common
germline mutations may be incorrectly classified as
somatic mutations in more recent releases of COS-
MIC). Indeed, the major difference between these two
versions of data lies in the inclusion of 1,385,270 mu-
tations, mostly collected from large-scale sequencing
projects, such as TCGA. These data made version 68 ~ 5.7
times larger than version 57. We caution that together
with the amount of information from large-scale data
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comes extra noise, which demands a strict filtering
process to ensure high quality data.

Conclusions
We demonstrate the superior performance and effective-
ness of iCAGES and we hope that this tool can comple-
ment current cancer driver detection tools, pave the way
for development of such comprehensive statistical
frameworks, and shed light on cancer driver gene dis-
covery and new avenues for personalized cancer therapy.
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