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DNA methylation-based chromatin
compartments and ChIP-seq profiles reveal
transcriptional drivers of prostate
carcinogenesis
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Abstract

Background: Profiles of DNA methylation of many tissues relevant in human disease have been obtained from
microarrays and are publicly available. These can be used to generate maps of chromatin compartmentalization,
demarcating open and closed chromatin across the genome. Additionally, large sets of genome-wide transcription
factor binding profiles have been made available thanks to ChIP-seq technology.

Methods: We have identified genomic regions with altered chromatin compartmentalization in prostate
adenocarcinoma tissue relative to normal prostate tissue, using DNA methylation microarray data from The
Cancer Genome Atlas. DNA binding profiles from the Encyclopedia of DNA Elements (ENCODE) ChIP-seq studies have
been systematically screened to find transcription factors with inferred DNA binding sites located in discordantly
open/closed chromatin in malignant tissue (compared with non-cancer control tissue). We have combined this
with tests for corresponding up-/downregulation of the transcription factors’ putative target genes to obtain an
integrated measure of cancer-specific regulatory activity to identify likely transcriptional drivers of prostate cancer.

Results: Generally, we find that the degree to which transcription factors preferentially bind regions of chromatin
that become more accessible during prostate carcinogenesis is significantly associated to the level of systematic
upregulation of their targets, at the level of gene expression. Our approach has yielded 11 transcription factors
that show strong cancer-specific transcriptional activation of targets, including the novel candidates KAT2A and
TRIM28, alongside established drivers of prostate cancer MYC, ETS1, GABP and YY1.

Conclusions: This approach to integrated epigenetic and transcriptional profiling using publicly available data
represents a cheap and powerful technique for identifying potential drivers of human disease. In our application
to prostate adenocarcinoma data, the fact that well-known drivers are amongst the top candidates suggests that the
discovery of novel candidate drivers may unlock pathways to future medicines.
Data download instructions and code to reproduce this work are available at GitHub under ‘edcurry/PRAD-compartments’.
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Background
Study into the mammalian nucleus has revealed that
higher order chromatin structure involves organization
of DNA into co-localized compartments, such that phys-
ical interactions between loci occur almost exclusively
within the same compartment [1]. One compartment is
associated with more open, accessible chromatin and a
higher overall level of transcription, while more closed
chromatin is found in the other compartment, at the
nuclear periphery and around the nucleolus [2]. These
spatial interactions are likely to bring enhancer and pro-
moter sequences into close proximity, giving rise to
transcription, and alternatively to bring silencers and
repressor regions together in order to suppress tran-
scription. The boundary between these compartments is
thought to be genetically encoded, but this is not well
understood [3].
Initial data on the partitioning of the genome into

these two compartments have come from applications of
the Hi-C technique, which uses chromosome conform-
ation capture in conjunction with high-throughput DNA
sequencing to identify pairs of loci that were physically
proximal enough to be cross-linked with formaldehyde
[4]. When a matrix of pairwise contact density is cre-
ated, a clear pattern emerges in which all loci belong to
one of two groups. For each group the likelihood of
within-group interactions is high, but the likelihood of
between-group interactions is low [1]. A recently pub-
lished study has described a method for inferring chro-
matin compartmentalization from CpG methylation
microarray data without the need for Hi-C data [5]. This
method provides the opportunity to use publicly avail-
able DNA methylation datasets, more widely available
than Hi-C data, to investigate the role of chromatin
compartmentalization in human diseases, potentially
highlighting previously unknown molecular characteris-
tics that could pave the way to novel therapeutics.
Prostate cancer is the most common cancer in males

in developed countries, resulting in more than 300,000
deaths worldwide in 2012 (Cancer Research UK (CRUK)
statistics). While many localized cancers are cured with
initial therapy or may be sufficiently indolent that no
treatment is necessary, some will be aggressive with
metastasis leading to death from the disease [6]. Recent
attempts to characterize the molecular basis for prostate
adenocarcinoma (PRAD) have identified recurrent gen-
omic aberrations. These include fusions of androgen-
regulated promoters (e.g. TMPRSS2) with members of
the E26 transformation-specific (ETS) family of tran-
scription factors (occurring in approximately 50% of
tumours [7]) and point mutations of TP53, FOXA1,
PTEN and SPOP [8]. Epigenetic aberrations in prostate
cancer have been identified, including GSTP1 hyperme-
thylation occurring in up to 70% of tumours [9], and few

other candidates have yielded promising results for diag-
nostic or therapeutic tools [6, 10].
Importantly, despite considerable efforts, the molecu-

lar drivers remain unknown for approximately a quarter
of all primary prostate cancers with both good and poor
clinical prognosis [6]. Greater understanding of the
molecular events driving prostate carcinogenesis and the
mechanisms upon which the cancer cells depend for
growth and metastasis could lead to the development of
novel therapeutics that may succeed when standard
treatments fail. To this end, we have applied chromatin
compartmentalization methodology to DNA methylation
profiles of primary PRADs and adjacent normal prostate
tissue in order to find regions of aberrantly compart-
mentalized chromatin. We have integrated these profiles
with gene expression profiles of the same tissue samples
and with a compendium of experimentally derived
genome-wide DNA binding profiles of transcription
factors (TFs). Hypothesizing that cancer-driving TFs will
have DNA binding sites in genomic regions which are
aberrantly compartmentalized in addition to correspond-
ing dysregulation of expression of downstream targets,
this approach highlights both known and novel molecu-
lar drivers of PRADs. A graphical summary of our
analytical approach is presented in Fig. 1.

Methods
Identifying regions of aberrant chromatin
compartmentalization
Level 1 DNA methylation microarray data were down-
loaded from The Cancer Genome Atlas (TCGA) Data
Portal. These data comprise two ‘idat’ files for each of 502
primary PRAD tissues and 50 normal prostate tissues. Idat
files were processed in R using the ‘minfi’ package, accord-
ing to the protocol in [5], using functional normalization
and filtering out loci for which the probe sequence covers
single nucleotide polymorphisms (SNPs) with minor allele
frequency greater than 0.01. Regions with aberrant chro-
matin compartmentalization in PRAD were identified by
comparing compartment calls obtained from analysis of
the tumour tissue dataset against the compartment calls
obtained from normal prostate dataset, for 100-kb
windows tiled across the whole genome. Regions with
a low confidence of compartment call as defined in [5]
(numeric value reflecting confidence in compartment call
less than 0.01) were excluded from subsequent analysis.
All analyses described in this manuscript were restricted
to chromosomes 1–22.

Relating inferred compartment calls to chromatin
accessibility and histone marks in a prostate cancer cell line
Chromatin accessibility data for the LNCaP prostate can-
cer cell line were downloaded from the Encyclopedia of
DNA Elements (ENCODE), in the form of a normalized
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signal of unique reads from DNase-seq mapped to the
hg19 human genome [ENCODE:ENCFF752YDY]. The
sum of this signal of unique reads was computed for each
100-kb window, and these scores were compared for win-
dows with different compartment calls as inferred from
DNA methylation data.
Processed data as H3K27ac ChIP-seq peaks positions

(called with Sole-Search [11], from [12]) mapped to the
hg19 human genome were downloaded from Gene
Expression Omnibus (GEO) [GEO:GSM1249448]. The
proportion of each 100-kb window that is covered by an
LNCaP H3K27ac peak was computed, and these scores
were compared for windows with different compartment
calls as inferred from DNA methylation data.
Processed data as H3K27me3 ChIP-seq peak summits

(called with model-based analysis of ChIP-seq (MACS2)
[13], from [14]) mapped to the hg19 human genome were
downloaded from GEO [GEO:GSE86532]. Each 100-kb
window was evaluated for overlap with an LNCaP
H3K27me3 ChIP-seq summit, and the proportions of win-
dows containing such a ChIP-seq summit were compared
between the sets of windows with each compartment call
inferred from DNA methylation data.

Copy-number profiling of prostate adenocarcinoma tissues
Gene-level thresholded GISTIC2-processed copy-number
data were downloaded from the University of California,
Santa Cruz (UCSC) Cancer Browser website. Genes
were mapped to each 100-kb genomic window using

coordinates defined by Ensembl (Feb 2014 archive
with hg19), and the total number of copy-number
states (homozygous deletion, heterozygous loss, copy-
neutral, low-level copy gain, high-level amplification)
across the cohort was counted for each window.

Mapping transcription factor binding sites
A compendium of TF binding sites was obtained from
ENCODE representing 495 ChIP experiments with du-
plicates, covering 119 TFs in 77 human cell lines. Only
peaks passing an irreproducible discovery rate (IDR) fil-
ter of 2% across at least two replicates were included as
putative DNA binding sites. Androgen receptor binding
sites were obtained from GEO [GEO:GSE65478], using
data from [15]. Binding sites were provided as bed files
denoting ChIP-seq peak coordinates in the hg19 human
genome. TF ChIP-seq studies were then mapped to tar-
get genes for each gene with a ChIP-seq peak lying
within 1 kb of its transcription start site (TSS) as defined
by Ensembl (February 2014 archive with hg19).

Assessing tumour-specific gene expression
Normalized gene-level counts for RNA-seq data for 500
primary PRAD tumours and 67 normal prostate tissues
were downloaded from the UCSC Cancer Browser web-
site. Empirical Bayes moderated t statistics for differen-
tial expression between tumour and normal samples
were obtained using ‘limma’ [16].

Fig. 1 Schematic illustrating the overall analysis procedure, using three input datasets: a PRAD and normal prostate tissue DNA methylation data
from The Cancer Genome Atlas (TCGA); b transcription factor (TF) DNA binding profiles from Encyclopedia of DNA Elements (ENCODE) ChIP-seq
experiments; c PRAD and normal prostate tissue gene expression data from TCGA. Analytical steps are numbered (i–vii), with the final intersection
between lists of TFs from steps (iii) and (vii) giving our candidate driver TFs
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Identifying transcriptional drivers of PRAD
The fold enrichment of TFs binding DNA to regions of
aberrant chromatin compartmentalization in PRAD was
calculated as follows:

F¼
width peaks∩TSOð Þ�

width peaks=TSOð Þ
width TSOð Þ=

width ¬TSOð Þ

where ‘peaks’ refers to the genomic regions showing
reproducible TF binding in the ChIP-seq experiment;
‘TSO’ refers to the genomic regions with tumour-specific
open chromatin; ‘¬TSO’ refers to all genomic regions with-
out tumour-specific open chromatin; ‘peaks∩TSO ’ denotes
ChIP-seq peaks overlapping TSO regions; ‘ peaks=TSO ’
denotes ChIP-seq peaks not overlapping TSO regions. A
second analysis was repeated using a subset of the tumour-
specific open chromatin regions comprising those regions
which had both a change in sign of the principal eigen-
vector of the DNA methylation correlation matrix and also
an absolute change in value of at least 0.2. This reflects
greater confidence in the difference in compartment calls
between tumour and normal tissues.
The statistical significance of differential expression of

a TF target was assessed through rank sum tests imple-
mented in the ‘geneSetTest’ function within the R pack-
age ‘limma’. This tests against the null hypothesis that
the ranks of the TF target genes are randomly distrib-
uted across the differential expression statistics, from
most overexpressed gene (in tumour relative to normal)
to most underexpressed gene.
An integrated measure of tumour-specific chromatin

accessibility was obtained by multiplying the logarithm
(base 10) of the fold-change enrichment of the TF bind-
ing sites in tumour-specific open chromatin with –1
times the logarithm (base 10) of the p value for enrich-
ment of the TF target genes in systematic overexpression
in tumour samples relative to normal prostate tissues.
TFs with a large positive integrated score were thus
hypothesized to be likely transcriptional drivers of pros-
tate adenocarcinoma, especially those TFs with relatively
high-ranking scores in each individual characteristic.
A similar approach was used to find TFs with enrich-

ment of binding sites in tumour-specific closed chroma-
tin and systematic gene expression silencing in tumour
samples relative to normal prostate tissues.

Assessing prostate-specific shRNA incorporation/depletion
Gene-level short hairpin (shRNA) selection biases in
216 cancer cell lines were downloaded from the Pro-
ject Achilles portal (https://portals.broadinstitute.org/
achilles). Prostate-specific lethality was tested by using
a t test to compare the selection bias z-score in prostate

cancer cell lines with the z-scores from all non-prostate
cancer cell lines.

Results
Prostate adenocarcinomas have regions of aberrant
chromatin compartmentalization across the genome
DNA methylation microarray data were used to generate
genome-wide chromatin compartmentalization maps for
primary PRAD tumour and normal prostate tissue at a
100-kb resolution. The method described in [5] resulted
in ‘open’/‘closed’ compartment calls for 100-kb windows
tiled across the genome and a numeric value reflecting
the degree of open-ness (the value of the first eigen-
vector of the correlation matrix). These compartment
calls and scores were created for both tumour and nor-
mal tissue, and the corresponding profiles are shown in
Fig. 2a. Compartment calls are available in Additional
files 1 and 2. To confirm that these compartment calls
inferred from DNA methylation data correspond to
expected chromatin accessibility in prostate cancer cells,
we analyzed a genome-wide profile of normalized DNase-
seq signal from LNCaP cells (obtained from ENCODE).
As the DNase-seq signal increases with chromatin accessi-
bility [17], we compared the total signal in each 100-kb
window of the chromatin compartmentalization maps to
the corresponding compartment call. Genomic windows
assigned to the open compartment had a significantly
higher LNCaP DNase-seq signal than windows assigned
to the closed compartment, both for the compartment
calls inferred from prostate cancer tissues and those in-
ferred from normal prostate tissue (t test p < 2 × 10-16,
Fig. 2d). The difference between the median DNase-seq
signal in the open and closed compartments inferred from
prostate cancer tissues was 2126, whereas the equivalent
difference for open and closed compartments inferred
from normal prostate tissues was 1635. This implies that
the compartment calls from the prostate cancer tissues
correspond more closely to the chromatin accessibility of
a prostate cancer cell line than the compartment calls
from normal prostate tissues. We also compared regions
of the genome with inferred open and closed chromatin
compartments for their prevalence of peaks from ChIP-
seq studies profiling active (H3K27ac) and repressive
(H3K27me3) histone marks in the LNCaP cell line.
Figure 2e shows the distribution of the proportions of
100-kb windows covered by H3K27ac peaks, separated
into open and closed chromatin compartments inferred
from the DNA methylation data. The median proportion
of windows covered by an H3K27ac peak in the tumour
open chromatin compartments was 0.05, but it was only
0.01 for windows in the tumour closed chromatin com-
partment. The equivalent values for windows separated by
normal prostate chromatin compartments were 0.04
(open) and 0.02 (closed). For the repressive histone mark
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H3K27me3, we compared the proportion of genomic win-
dows containing a peak ‘summit’ (highest point of ChIP
enrichment) for open compartment regions and for closed
compartment regions. Of the windows assigned to the
open chromatin compartment in the PRAD tumour sam-
ples, 4.6% contained an H3K27me3 summit, but this
increased to 7.8% for windows assigned to the closed
chromatin compartment. Equivalent values based on nor-
mal prostate chromatin compartments were 4.7% (open)
and 7.7% (closed). These results, particularly relating to
H3K27ac, again imply that the chromatin compartments
inferred from PRAD tumour samples reflect the profile of

histone marks measured in a prostate cancer cell line
more closely than the compartments inferred from
normal prostate tissue samples.
To confirm that these regions of interest are not driven

by changes in copy number, for each 100-kb window we
computed the distribution of copy-number calls across
this cohort of tumours. The proportions of genes with
each copy-number state in the thresholded GISTIC2 data
(homozygous deletion, heterozygous loss, copy-neutral,
low-level copy gain, high-level amplification) are very
similar for the tumour-specific open chromatin windows
and the remaining windows (Additional file 3).

Fig. 2 Genome-wide profiles of chromatin compartmentalization from PRAD and normal prostate tissues. a Genome-wide profiles showing assignment
of 100-kb windows to open or closed chromatin compartments in PRADs (top panel) and in normal prostate tissue (bottom panel). Horizontal axis denotes
rank of each 100-kb window by genomic coordinate, with each chromosome separated by vertical dashed lines. Vertical axis represents the confidence of
assignment of each window to the closed compartment (+ve values) or the open compartment (–ve values). Confidence of assignment is based on the
normalized value of the first eigenvector of the DNA methylation correlation matrix from each set of samples. b Scatter-plot showing the relationship
between compartment assignment in PRAD tumours and in normal prostate tissue. Horizontal axis gives the closed-ness score (value in first eigenvector
of the DNA methylation correlation matrix) for each 100-kb genomic window in the normal prostate tissues. Vertical axis gives the closed-ness score for
the same genomic windows in the PRAD tumour tissues. After excluding windows with a low confidence assignment (defined as having a value of less
than 0.1 in the first eigenvector of the DNA methylation correlation matrix), windows assigned to the open chromatin compartment in tumours but the
closed chromatin compartment in normal tissue are plotted in red, while windows assigned to the closed chromatin compartment in tumours but the
open chromatin compartment in normal tissue are plotted in blue. c Genome-wide profile of the differences in compartment assignment between PRAD
tumours and normal prostate tissues, as in a but featuring only 100-kb windows with a different compartment assignment in the two tissue
types. Genomic windows assigned to the open chromatin compartment in tumours but the closed chromatin compartment in normal tissue
are plotted in red, while windows assigned to the closed chromatin compartment in tumours but the open chromatin compartment in normal
tissue are plotted in blue. d DNA accessibility in LNCaP prostate cancer cell line, shown for genomic regions classified according to inferred
compartment call from normal prostate and PRAD tumour DNA methylation data. Numerical values plotted show the distribution of the average DNAse
I sequencing signal across each 100-kb window. e Accessible chromatin histone modification H3K27ac in LNCaP prostate cancer cell line, shown for
genomic regions classified according to inferred compartment call from normal prostate and PRAD tumour DNA methylation data. Numerical
values plotted show the distribution of the proportion of each 100-kb window that is covered by an H3K27ac ChIP-seq peak
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The genome-wide profiles of inferred compartment
calls are largely similar between the cancer and normal
tissue datasets, with 17,145 out of 22,313 (76.8%) 100-kb
windows sharing the same compartment call in both
cancerous and normal tissue. The profiles made by the
numeric values reflecting compartment open-ness were
very highly correlated, with Pearson correlation coeffi-
cient 0.753. Furthermore, when we exclude 203 windows
with a low confidence of compartment assignment in
either tissue type (as defined in [5]), the compartment
agreement is 81.5% and the correlation coefficient
0.774. The relationship between these scores is illus-
trated in Fig. 2c, with the regions of aberrant PRAD
compartmentalization (defined as those with a differ-
ent compartment call in tumour vs normal tissue,
after excluding those with a low confidence of either
call) highlighted. The distribution of these aberrantly
compartmentalized windows across the genome is
shown in Fig. 2b. It is clear from this chart that there
is a greater density of aberrant compartmentalization
on Chr9 compared with the rest of the genome. In
fact, chromosome 21 also has a greater than twofold
enrichment of aberrant compartmentalization (a full
table of ratios of observed/expected numbers of aber-
rantly compartmentalized windows for each chromo-
some is given in Additional file 4). This chromosomal
enrichment of aberrantly compartmentalized windows
is very similar for both tumour-specific open chroma-
tin and tumour-specific closed chromatin and may
arise from epigenetic changes linked to frequent
aneuploidy events [18].
To get a sense of systematic functional effects driven

by this aberrant compartmentalization, ENSEMBL genes
overlapping with each (open and closed) set of aber-
rantly compartmentalized genomic windows were identi-
fied. Annotated pathway terms from Consensus Path DB
(CPDB) [19] were tested for enrichment in these sets of
overlapping genes. Surprisingly, no pathways were
significantly enriched in regions of tumour-specific closed
chromatin. However, a number of pathways were found to
be significantly enriched in regions of tumour-specific
open chromatin; these are shown in Additional file 5.
They includes known cancer-associated pathways ‘phos-
phatidylinositol phosphate metabolism’ [20], ‘prolactin
receptor signalling’ [21] and ‘platelet-derived growth
factor receptor (PDGFR)-beta signalling’ [22]. We sought
to gain further translatable insight into the systematic
alteration of chromatin compartmentalization in PRAD.

A subset of transcription factors preferentially bind DNA in
regions of aberrant PRAD chromatin compartmentalization
Hypothesizing that TFs critical to the malignant state
of PRAD would have their DNA binding sites resid-
ing specifically in regions of aberrant chromatin

compartmentalization, we used genome-wide TF
binding profiles to identify likely drivers of the ma-
lignant characteristics of these tumours. This was
achieved through evaluating the expected number of
peaks from each ChIP-seq study lying in tumour-
specific open chromatin windows and the expected
number lying in tumour-specific closed chromatin
windows. The ratio between observed and expected
numbers was used to compute a fold enrichment for
systematic co-localization of TF DNA binding sites
to aberrantly compartmentalized chromatin in PRAD.
The distribution of log fold changes is shown in
Fig. 3a, which illustrates the fact that peaks from the
majority of ENCODE TF ChIP-seq studies (regardless
of the cell line in which the study was performed)
are enriched for tumour-specific open chromatin
compartments. Chi-squared tests to compare the observed
distributions of peaks between tumour-specific open chro-
matin windows and all other windows revealed that most
(409) of these enrichments were statistically significant
after adjusting for multiple hypothesis tests. A table of
log2 fold changes, chi-squared test p values and ad-
justed p values for all ChIP-seq studies, for both
tumour-specific open chromatin and tumour-specific
closed chromatin, is provided in Additional file 6.
To further evaluate the specificity of the TF binding

site enrichment to tumour-specific open chromatin win-
dows, we repeated this analysis with different selections
of windows of interest. Varying the cutoff for filtering
selected windows with low confidence of compartment
assignment, and including the windows that were given
the same compartment assignment in both tumour and
normal tissues, we recomputed the fold enrichment for
TF binding sites lying in the selected windows. A heat-
map illustrating pairwise Spearman correlation coeffi-
cients between the profile of fold enrichment across the
ChIP-seq studies for each selection of windows of inter-
est is provided in Additional file 7. Enrichment scores of
the TFs are similar across the range of cutoffs for sets
of windows restricted to the same quadrant of Fig. 2c
(e.g. both sets of windows are open in tumour tissue
and closed in normal tissue, or both sets are open in
tumour and open in normal tissue). Enrichment
scores from one set of windows are generally dissimi-
lar to those obtained using a set of windows that was
in a different quadrant of Fig. 2c (e.g. one set of win-
dows is open in tumour and closed in normal tissue,
but the other set of windows is open in both tumour
and normal tissue). This demonstrates the fact that
the selection of TFs of interest with enrichment in
tumour-specific open chromatin is not sensitive to the
precise value of the cutoff used for filtering out windows
with low confidence of compartment assignment. It also
demonstrates that the enrichments specifically reflect the
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genomic regions with open chromatin in tumour and
closed chromatin in normal tissue, and are not a result of
a generic characteristic of DNA binding for those TFs. We
also repeated the compartmentalization analysis using
randomly sampled subsets (of equal size, n = 251) of
tumour tissue samples for the two groups to compare.
Firstly, the closed-ness scores inferred from each tumour
subset were both markedly more correlated to the
closed-ness scores inferred from the full tumour set
than from the normal prostate tissue set (0.99 (tumour)
vs 0.78 (normal) for the first subset, and 0.99 (tumour)
vs 0.75 (normal) for the second). Second, to the two
tumour subsets’ compartment scores we applied the
approach previously used to identify 100-kb genomic
regions with a clear difference in compartmentalization
between two sets of compartment scores. This approach
yielded 231 regions specifically open in one tumour subset
vs the other, where the same threshold yielded 1582

regions specifically open in the tumours vs normal tissue.
Of these, only 2 regions were shared across both analyses,
which strongly implies that the genomic regions we have
called tumour-specific open chromatin are not an artefact
of our analytical approach and do indeed reflect the state
of prostate tumour compartmentalization relative to
normal prostate tissue.
To further test that the enrichments reflect properties

of these specific sets of genomic regions, for each TF we
evaluated the relationship between the log fold enrich-
ment to tumour-specific open chromatin and the log
fold enrichment to tumour-specific closed chromatin.
The Spearman correlation coefficient across all TF stud-
ies was –0.524 (p < 2 × 10–16), which implies that an
enrichment of a TF’s binding sites in tumour-specific
open chromatin regions generally coincides with a
depletion of that TF’s binding sites in tumour-specific
closed chromatin.

Fig. 3 Analysis of transcription factor DNA binding profiles in the context of aberrant chromatin compartmentalization in prostate adenocarcinoma.
a Degree of enrichment or depletion of TF ChIP-seq peak sites in the set of regions with PRAD-specific open chromatin compartmentalization.
Each ENCODE ChIP-seq study has a corresponding data point, and they are ranked along the horizontal axis by the degree of enrichment
(from most depleted on the left to most enriched on the right). Vertical axis gives log ratio of the observed over expected number of peaks
lying in the regions of PRAD-specific open chromatin (i.e. windows assigned to the open chromatin compartment in tumours but the closed
chromatin compartment in normal tissue). Dotted horizontal line at 0 indicates number of peaks in PRAD-specific open chromatin is exactly
that expected by chance. b Heatmap showing overlap between peak locations for each of the most PRAD-specific open chromatin enriched
TF ChIP-seq studies. Black indicates no overlap, white indicates total overlap. c Scatter-plot showing the relationship between a TF’s enrichment to
PRAD-specific open chromatin and target gene overexpression in PRAD relative to normal prostate tissue. Horizontal axis gives log ratio of observed
over expected number of peaks lying in PRAD-specific open chromatin (as in a) for each ENCODE TF ChIP-seq study. Vertical axis gives –log10 p value
from test of systematic overexpression of inferred target genes of the corresponding TF (genes with ChIP-seq peak lying within 5 kb of TSS) in PRAD
tumours relative to normal prostate tissues. Dashed red lines indicate the median value in each axis across all the included ENCODE TF ChIP-seq studies.
d Volcano plot showing differential expression of candidate driver TFs in the context of all genes’ differential expression between PRAD tumours and
normal prostate tissue. Horizontal axis gives log2 ratio between median expression in PRAD tumours and median expression across normal prostate
tissues. Vertical axis gives –log10 p value of differential expression as evaluated through empirical Bayes moderated t test. Candidate drivers with ChIP-seq
studies suggesting the TF’s DNA binding sites are enriched in regions of PRAD-specific open chromatin are shown in red, candidate driver (TRIM28) with
ChIP-seq studies suggesting the TF’s DNA binding sites are enriched in regions of PRAD-specific closed chromatin is shown in blue
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As we were interested in establishing whether there
may be different tumour-specific transcriptional modules
being driven by groups of TFs, we computed the pair-
wise Jaccard distance to compare the lists of overlapping
tumour-specific open chromatin windows for each
ChIP-seq study. When these pairwise distances are plot-
ted as a heatmap in Fig. 3b, the colours range from per-
fect overlap (white) to no overlap at all (black). We see
that most of the TFs share a similar overall distribution
of DNA binding sites, in that most of the off-diagonal
blocks are light grey, but for nearly all TFs these are
noticeably darker (indicating less overlap in binding site
profiles) than the diagonal blocks (each TF compared to
itself has perfect overlap). This implies that, while the
different TFs may share common regions of DNA bind-
ing, they do have clear differences that could represent
different parts of the tumour-specific transcriptional
program. Knowing that some TFs have had ChIP-seq
studies performed in multiple cell lines, we compared
the tumour-specific open chromatin enrichment scores
for ChIP-seq studies profiling the same TF with studies
profiling different TFs. For a set of 14 TFs that were pro-
filed in at least four different cell lines, we found that all
had a smaller median same-TF difference than other-TF,
regardless of the cell line (the table of values is provided
in Additional file 8). This suggests that the enrichments
we report are likely to reflect characteristics of the TFs
in question, more than the specific cell lines in which
the ENCODE ChIP-seq studies were performed.

Integration of chromatin compartmentalization, gene
expression and ChIP-seq data identifies known and novel
transcriptional drivers of PRAD carcinogenesis
If a transcription factor were to drive a malignant pheno-
type through activation or repression of its downstream
targets, one would expect these targets to have systematic-
ally altered levels of expression in tumours relative to
normal tissue. In order to test this hypothesis, we used
corresponding expression microarray data from the same
cohort of TCGA samples as were profiled with DNA
methylation microarrays and from which we inferred the
chromatin compartmentalization calls. Using t statistics
for differential expression between 500 PRAD tumours
and 67 normal prostate tissue samples, we tested system-
atic enrichment towards overexpression in tumour for
each TF’s target genes (defined as those with TSS
within 1 kb of a ChIP-seq peak); these are presented
in Additional file 9. When we compare each TF’s log2
enrichment towards tumour-specific chromatin and
their –log10 p value representing degree of enrich-
ment towards tumour overexpression of downstream
target genes, we find a reassuring correlation (Pearson
correlation coefficient = 0.45, p < 2.2 × 10–16). These
values are shown in Fig. 3c, along with dashed lines

indicating the median values of each statistic. In par-
ticular, we see that almost all of the TFs with greatest
enrichment for overexpression in tumours also show
clear enrichment of binding sites coinciding with regions
of tumour-specific open chromatin. To ensure these
results were robust to the choice of 1-kb cutoff for assign-
ment of a gene to a given TF ChIP-seq study, we com-
puted the corresponding –log10 p values using a range of
cutoffs (1 kb, 2 kb, 5 kb, 10 kb). The resulting profiles of
per-TF enrichment scores were compared by computing
the Pearson correlation coefficient for each pair of cutoffs.
That the smallest pairwise correlation coefficient was
greater than 0.99 strongly suggests that the degree of
PRAD-specific overexpression we have calculated is
robust to the particular cutoff for assigning target
genes to TFs.
We predict that these TFs have a key role to play in

the pathogenesis of PRAD and as such merit further
examination. To this end we looked at TFs for which
ChIP-seq studies showed >1.5-fold enrichment to aber-
rantly open chromatin and systematic target gene over-
expression with p > 1 × 10–4. Excluding RNAPolII (which
would most likely just reflect actively transcribed genes
in the corresponding ENCODE cell line), we find
KAT2A, MYC, SIN3A, HEY1, SP2, MAX, YY1, ATF3,
NRF1, BCL3, THAP1, MXI1, GABP and ETS1. These
represent our top candidates for TFs driving aberrant
gene expression in PRAD tumours. Looking back at the
TCGA gene expression microarray data, we can see if
any of the predicted driver TFs themselves show aber-
rant expression in the tumours, providing an obvious
mechanism for the observed overexpression of their
downstream targets. A volcano plot showing differential
expression of these candidates in the context of all genes
is presented in Fig. 3d. It is apparent that KAT2A and
MYC are indeed overexpressed in PRAD tumours com-
pared to normal prostate tissue. It is also clear that a
number of the candidate drivers including MXI1,
SIN3A, THAP1 and ATF3 are down-regulated in PRAD
tumours. This suggests that these genes may represent
transcriptional repressors that are themselves silenced in
the malignant phenotype. Additionally, we find TRIM28
to be the only profiled TF significantly depleted for bind-
ing the tumour-specific open chromatin, significantly
enriched in tumour-specific closed chromatin and with
its target genes showing systematically down-regulated
expression in PRAD tumours compared to normal pros-
tate tissue. That TRIM28 itself is overexpressed suggests
that it may be functioning as a transcriptional repressor
actively promoting a malignancy-associated gene expres-
sion program. Although a number of the candidate TFs
are not differentially expressed themselves between
tumours and normal tissue, it does not rule out the pos-
sibility of them driving differences in gene expression
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programs, as their activity could be regulated through
post-translational modifications or through differential
expression of a co-factor required for DNA binding.
This set of putative drivers of aberrant transcription in

PRAD tumours contains a number of known drivers of
malignancy, either through hyperactivation or loss.
Gain-of-function drivers include MYC [23], ETS1 [24],
GABP [25], YY1 [26] and NRF1 [27]. Loss-of-function
drivers include SIN3A [28], ATF3 [29], MXI1 [30] and
THAP1 [31]. Amongst these sets, the novel candidates
KAT2A, TRIM28 and HEY1 are particularly interest-
ing, as they represent previously unknown putative
drivers of prostate cancer. Further supporting this
hypothesis in the case of KAT2A is the observation
that KAT2A-targeting shRNAs were specifically depleted
(t test p = 0.06) in terms of incorporation into prostate
cancer cell lines relative to all other cancer cell lines in the
Achilles high-throughput screen [32].

Discussion
The approach taken in this study utilizes integration of a
publicly available dataset of matched DNA methylation
and gene expression profiles, together with a compen-
dium of DNA-binding profiles, to identify transcriptional
drivers of disease. To our knowledge, this is the first
time that inference of spatial organization of chromatin
has been used in such a way. This study therefore
provides an example from which applications to other
clinically relevant phenotypes could be undertaken,
highlighting potentially therapeutically targetable path-
ways. To this end, we acknowledge that direct pharmaco-
logical targeting of TFs has historically been challenging
[33]. We therefore propose using candidate driver TFs dis-
covered through our approach as a focal point from which
to search for regulating or interacting partners that may
have more favourable characteristics for druggability.
The genomic regions of interest with tumour-specific

open chromatin were identified from primary tissue
samples; therefore, differences in the infiltration of dif-
ferent cell types across each of the two primary tissue
cohorts could leave a signature in the correlations in the
levels of CpG methylation, on which the compartment
calls are based. As the potentially confounding cell types
and their methylation profiles at the CpG sites included
in the analysis (which excludes those in promoter CpG
islands) are unknown, it is impossible at this stage to
separate correlations due to varying levels of infiltrating
cell types from the correlations that reflect the chroma-
tin compartments. Given that our analysis of DNase-seq
data shows that the compartment calls we have used for
the work presented here do indeed reflect chromatin
accessibility and associated histone modifications in a
prostate cancer cell line, we believe that any effect of cell
type composition in the primary tissues is not sufficient

to detract from the assumed biological significance of
the compartment calls.
We have assumed that TFs with clear evidence for

preferential binding of DNA at regions of the genome
undergoing spatial reorganization in a disease state are
likely to be important for driving, or at least maintain-
ing, that state. While it is out of the scope of this study
to carry out experimental work needed to obtain direct
evidence of the role of the candidate TFs highlighted
through our application in prostate cancer, it is encour-
aging to have found considerable evidence in the
literature. It is noticeable that a number of the
candidates identified in our application to PRAD are
linked to the oncogene MYC: notably MXI1, MAX and
SIN3A. MXI1 forms a heterodimer with MAX which
sequesters MAX away from MYC [34]. SIN3A directly
deacetylates c-Myc protein, suppressing its activity [35].
That so many of the genes encoding well-known Myc-
interacting proteins are found in this analysis could be
due to the fact that MYC is such an active and import-
ant driver of prostate cancer that the whole genome is
reorganized to make its downstream targets more ac-
cessible. As the genome-wide DNA binding profiles
were obtained from ChIP-seq experiments in immortal-
ized cell lines [36], they are likely to have downstream
targets of MYC accessible for transcription and for
pull-down during the ChIP procedure. ChIP with anti-
bodies to any proteins binding MYC may be particu-
larly likely to enrich similar regions of the genome, and
hence likely to appear in any similar application of our
analysis to compare rapidly proliferating cells with nor-
mal physiological tissue. Of the highlighted genes with-
out previously known roles in prostate cancer, we find
it interesting to note that both KAT2A and TRIM28
have epigenetic remodelling functions. KAT2A encodes
an acetyltransferase which can alter the epigenetic state
of promoters through acetylating histones [37].
TRIM28 (which encodes the KAP1 protein) is a master
regulator of transcription implicated in the control of a
wide range of biological processes [38]. Given that we
propose KAT2A and MYC as candidate driver TFs in
PRAD which are overexpressed in tumours relative to
normal prostate tissue, one might expect to see a more
‘normal-like’ compartment profile in tumours with low
KAT2A or MYC expression relative to those with high
KAT2A and MYC expression. However, when we
attempted this analysis using MYC-low or KAT2A-low
subsets, the compartment calls were more dissimilar
to both normal and tumour compartment calls than
they were to each other. As MYC is such a ubiqui-
tous oncogenic driver, we presume that heterogeneity
within the MYC-low tumours or alternative mecha-
nisms for activation of the MYC-driven transcriptional
program are more likely reasons for this difference,
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rather than MYC not being a DNA-binding factor
driving malignancy.
It would also require further experimental work to

determine whether the identified TFs were behaving as
‘pioneer factors’ [39] and actively reorganizing the chro-
matin structure in order to enable gene expression, or if
some other mechanism was reorganizing the chromatin
and the TFs merely reflect focal points in the transcrip-
tional programs that are being aberrantly activated in
the disease state. This is based on a model in which TFs
with the most enriched overlap of binding sites to
regions of tumour-specific open chromatin are most
likely to be able to bind accessible chromatin in prostate
tumour cells and to keep that chromatin accessible. If a
TF can bind specific genomic regions that lead to stable
overexpression of a set of genes that give cells a selective
advantage in the context of prostate cancer develop-
ment, then this should be reflected in the enrichments
regardless of the cell line or conditions in which the
ChIP-seq study to profile the TF possible binding sites
was performed. Our analysis in effect uses TFs (via their
experimentally derived DNA binding profiles) to annotate
the functional genomic landscape of the disease pheno-
type in relation to the normal physiological state. In that
sense, the mechanism of chromatin reorganization is of
lesser importance where the TFs are not acting as pioneer
factors, as they are nonetheless required for the disease
state and therefore point to novel therapeutic strategies
for treating the disease in question.

Conclusions
In this study we have shown how DNA methylation and
gene expression datasets can be used in conjunction
with ENCODE’s collection of DNA binding profiles from
human TFs to find likely transcriptional drivers of a dis-
ease state. We have highlighted known and novel drivers
of prostate adenocarcinoma, suggesting further investi-
gation into the role of KAT2A and TRIM28 in carcino-
genesis. Through this application we have demonstrated
that, given the ready availability of such datasets, our
approach represents a powerful technique for understand-
ing the complex transcriptional dysregulation underlying
carcinogenesis and identifying pathways of inquiry for
novel therapeutic targets in cancer.
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