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Abstract 

Background:  Primary central nervous system lymphoma (PCNSL) is a rare lymphoma of the central nervous system, 
usually of diffuse large B cell phenotype. Stereotactic biopsy followed by histopathology is the diagnostic standard. 
However, limited material is available from CNS biopsies, thus impeding an in-depth characterization of PCNSL.

Methods:  We performed flow cytometry, single-cell RNA sequencing, and B cell receptor sequencing of PCNSL cells 
released from biopsy material, blood, and cerebrospinal fluid (CSF), and spatial transcriptomics of biopsy samples.

Results:  PCNSL-released cells were predominantly activated CD19+CD20+CD38+CD27+ B cells. In single-cell RNA 
sequencing, PCNSL cells were transcriptionally heterogeneous, forming multiple malignant B cell clusters. Hyperex‑
panded B cell clones were shared between biopsy- and CSF- but not blood-derived cells. T cells in the tumor micro‑
environment upregulated immune checkpoint molecules, thereby recognizing immune evasion signals from PCNSL 
cells. Spatial transcriptomics revealed heterogeneous spatial organization of malignant B cell clusters, mirroring their 
transcriptional heterogeneity across patients, and pronounced expression of T cell exhaustion markers, co-localizing 
with a highly malignant B cell cluster.

Conclusions:  Malignant B cells in PCNSL show transcriptional and spatial intratumor heterogeneity. T cell exhaustion 
is frequent in the PCNSL microenvironment, co-localizes with malignant cells, and highlights the potential of person‑
alized treatments.

Keywords:  Primary central nervous system lymphoma, Single-cell RNA sequencing, Intratumoral heterogeneity, T 
cell exhaustion, Spatial transcriptomics, Flow cytometry
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Background
Primary central nervous system lymphoma (PCNSL) 
represents a rare and highly aggressive form of extran-
odal malignant lymphoma with an incidence of approxi-
mately 0.47 per 100,000 person-years manifesting in 
the craniospinal axis without clinical evidence of sys-
temic involvement [1]. First-line therapy in PCNSL 
usually comprises high-dose methotrexate in combi-
nation with additional agents, but the optimal treat-
ment regimen, especially in relapse, remains subject of 
ongoing studies [2]. Scarce biomaterial is available for 
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scientific purposes because the diagnostic gold stand-
ard in PCNSL is a stereotactic central nervous system 
(CNS) biopsy that returns minuscule tissue pieces. The 
little available material is required for diagnostic histo-
pathology, which necessitates formalin fixation and par-
affin embedding, impeding transcriptional studies. The 
majority of PCNSL cases are histologically classified as 
diffuse large B cell lymphoma (DLBCL) [3] and are of 
an activated B cell (ABC)/non-germinal center B cell 
(GCB) subtype (~80%) [4].

Cerebrospinal fluid (CSF) exhibits specific alterations 
in PCNSL, such as elevated levels of CXCL13, IL-10, or 
microRNA-21 [5–7], and might therefore represent a 
potential surrogate when combined with high-resolu-
tion techniques. However, lymphoma cells can only be 
detected infrequently (13.3–23.3%) in the CSF of affected 
patients [8], thus further complicating mechanistic 
understanding and diagnosis.

Genome-wide studies revealed recurrent alterations in 
PCNSL that are not shared with systemic DLBCL, sug-
gesting a distinct pathogenesis [9]. Activation of NF-kB, 
MYD88, BTG2, and PIM1 has been implicated in the 
PCNSL pathogenesis [10] and is associated with changes 
of the tumor microenvironment (TME) [11]. Genomic 
alterations may also affect genes that are involved in 
immune evasion mechanisms, including deletions in the 
HLA locus (6p21), copy-number loss of B2M (15q21.2), 
or copy-number gain of CD274/PD-L1 (9p24.1) [12]. 
Accordingly, immune checkpoint molecules (PD-1, 
CTLA-4, TIM-3) have emerged as potential therapeutic 
targets in PCNSL [13]. Prospective trials of the check-
point blockade with PD-1 inhibitors have been initiated 
in PCNSL (NCT02779101, NCT02857426), but no results 
have been published yet. A small retrospective study 
reported long-term responses in five of six patients fol-
lowing nivolumab treatment [14]. Despite these advances, 
the TME in PCNSL remains poorly defined [11].

Single-cell RNA-sequencing (scRNA-seq) is a powerful 
tool to uncover intratumor heterogeneity, for example in 
peripheral B cell lymphomas [15]. Malignant subpopu-
lations in peripheral lymphomas were transcriptionally 
distinct with specific drug response profiles, potentially 
paving the way for personalized cancer treatments [15]. 
Here, we circumvented the problem of limited sample 
access by studying cells released into the surrounding liq-
uid from a CNS biopsy rather than the biopsy itself and 
denoted this approach “Whiskey Method.” Flow cytom-
etry of such released cells facilitated immediate distinc-
tion between lymphomatous and non-lymphomatous 
tissue biopsies. By combining scRNA-seq and spatial 
transcriptomics, we identified a surprising intratumoral 
transcriptional heterogeneity with distinct spatial pat-
terns of malignant B cell clusters. Immune repertoire 

analysis displayed shared hyperexpanded clones between 
biopsy- and CSF-, but not blood-derived cells. The TME 
was characterized by increased expression of immune 
checkpoint molecules, immune evasion signaling from 
the PCNSL, and spatially defined T cell exhaustion, 
which co-localized with a highly malignant B cell cluster. 
We thus identify a potential novel avenue for detection, 
characterization, and ultimately treatment of rare, but 
aggressive PCNSL.

Methods
Patient recruitment, follow‑up, and therapy
We recruited sixteen patients with radiological findings 
suggestive of PCNSL in the University Hospital Münster. 
Patients received a stereotactic biopsy by the neurosur-
geon to confirm the diagnosis and specify the lymphoma 
type for further treatment. Eight of the sixteen patients 
(mean age 74 years, M:F ratio 7:1) yielded a positive 
diagnosis of DLBCL of the CNS whereas eight patients 
(mean age 68 years, M:F ratio 6:2) were diagnosed with 
glioblastoma. Multiparameter flow cytometry of PBMCs 
was performed in 14 of 16 cases, and of biopsy fluid in 
all cases. scRNA-seq was applied to five samples of two 
PCNSL patients (PBMC, biopsy fluid, and CSF of patient 
1; PBMC and biopsy fluid of patient 2). Spatial transcrip-
tomics was performed on biopsy material obtained from 
4 PCNSL patients (patients 1–3 and patient 7). More 
details are given in Additional file 1: Table S1.

The “Whiskey Method”
Samples were obtained using a frame-based (Leksell 
Stereotactic System, Elekta Instrument AB, Stockholm, 
Sweden) or a frameless image-guided (VarioGuide, 
Brainlab AG, Munich, Germany) stereotactic system. 
In all cases, the target point was defined within the 
contrast-enhancing, non-necrotic lymphoma-suspi-
cious lesion (Fig.  1A). After reaching the target point 
with the biopsy needle, samples were gained by care-
ful aspiration using a 2-ml syringe filled with 1 ml 
sterile 0.9% sodium chloride solution. The obtained tis-
sue was subsequently transferred into a sterile sample 
container filled with 2 ml 0.9% sodium chloride. Sus-
pension for cytometry and scRNA-seq was prepared 
after the first successful aspiration of tissue to avoid 
potential contamination by blood cells after repeated 
biopsies. The cell suspension was prepared by gently 
shaking the sample container for 10 s. The supernatant 
was subsequently transferred to a second sample con-
tainer and subjected to flow cytometric and scRNA-seq 
analyses, while the biopsy tissue remained in the first 
sampling tube and was complemented by additional 
samples before being sent for neuropathological evalu-
ation. Immediately after collection, cell viability was 
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determined by trypan blue staining, which was higher 
than 95% (97±1.8%) in our samples. Samples were spun 
down and cell pellets were resuspended in 1 ml PBS. 
One hundred microliters of the cell suspension (1:10 
dilution) was used for FACS staining (see “Methods”). 
After staining and washing, cells were resuspended in 
200 μl FACS buffer (PBS, 1% FCS, 2 mM EDTA) and 
the whole volume of the sample was acquired by flow 
cytometry. Total cell number of CD45+ leukocytes was 
determined by counting all cells within the CD45+ gate 
× dilution factor (10x) (Fig. 1A).

Multiparameter flow cytometry
PBMCs and biopsy fluid samples were stained for 30 
min at 4 °C using pre-defined panels of directly fluoro-
chrome-conjugated monoclonal antibodies (mAbs) at a 
working concentration of 5–10 μg/mL (see Additional 
file  2: Supplementary Methods for more information 
on the gating, and Additional file 3: Table S2 for the list 
of flow cytometry antibodies). After washing, all sam-
ples were analyzed using the NaviosTM or CytoFlexTM 
flow cytometer (Beckman Coulter, Germany) and 
the FlowJoTM Software V10. The gating strategies are 
depicted in Additional file 4: Fig. S1-3.

Histology and immunohistochemistry
Immunohistochemical staining of formalin-fixed and par-
affin-embedded tissue for CD3 (rabbit polyclonal, #GA503, 
Dako, Glostrup, Denmark), CD20 (mouse monoclonal, 
#GA604, Dako, Glostrup, Denmark), CD79a (mouse 
monoclonal, #GA621, Dako, Glostrup, Denmark), and 
Mib1/Ki67 (mouse monoclonal, #GA626, Dako, Glostrup, 
Denmark) was performed using the streptavidin-biotin 
method on an automated staining system (Omnis, DAKO). 
Slides were counterstained with hematoxylin.

Generation of single‑cell libraries, sequencing, 
and preprocessing of sequencing data
The samples were loaded onto the 10x Genomics Chro-
mium Single Cell Controller, using the Chromium Sin-
gle Cell 3′ Library & Gel Bead Kit v2-3. B cells were 
positively selected from blood-derived cells, using 
CD20-microbeads according to the manufacturer’s pro-
tocol (Miltenyi). Biopsy-derived cells and B cell-enriched 
blood cells in patient 1 were processed using CITE-seq 
supported scRNA-seq, all other samples were processed 
with standard scRNA-seq. Sequencing was carried out 
commercially on an Illumina Nextseq 500 with a 26-8-
0-57 read setup, a Nextseq 2000 with a 28-8-0-91 read 
setup, and a Novaseq 6000 with 150-8-0-150 read setup. 
Counting of CITE-seq data was performed with CITE-
seq-count [16]. To generate spliced/unspliced expression 
matrices, velocyto v0.17 [17] was employed with the 
run10x command, using the gene annotation file from 
cellranger and the human repeat masker file from the 
UCSC genome browser. For further details, see Addi-
tional file  2: Supplementary Methods and Additional 
file 5: Table S3.

Reconstructing BCR information from 3′ scRNA‑seq 
libraries
To obtain single-cell BCR repertoire information, a novel 
method to sequence antigen receptor information from 3′ 
scRNA-seq libraries was used, which we have described 
previously [18]. The method allows shortening the con-
stant region of antigen receptors during enrichment 
while maintaining their cell barcode and unique molecu-
lar identifier (UMI) information attached to the 3′ of the 
cDNA molecules. In summary, the method involves self-
circulating the cDNA library, enriching the VDJ region, 
and re-linearizing. For more details, see Additional file 2: 
Supplementary Methods.

Fig. 1  The “Whiskey Method” provides unique access to malignant cells and facilitates detection of PCNSL. A Experimental scheme of the “Whiskey 
Method.” Brain biopsy was collected into a sterile sampling tube filled with 2 ml 0.9% sodium chloride. The sample container was swirled for 10 
s, and the supernatant was immediately subjected to flow cytometric and scRNA-seq analyses. The biopsy tissue was sent for neuropathological 
evaluation. B Representative flow cytometry dot plots of CD45+ leukocytes and flow cytometry analysis of the percentage and number of CD45+ 
leukocytes in the samples of PCNSL (n = 8) and glioblastoma (n = 8) patients (Additional file 1: Table S1 and Additional file 2: Supplementary 
Methods). C Flow cytometry analysis of CD19+CD20+ B cells (Bc) within the CD45+ leukocyte gate in peripheral blood (n = 7) and biopsy samples 
(n = 8) of PCNSL samples. B cell subpopulations were further characterized by analyzing the distribution of CD27+CD20+, CD38+, CD38+CD27+, 
CD138+, CD5+CD10−, CD5−CD10+, and of Ig kappa or lambda light chain expressing cells. The gating strategy is shown in Additional file 4: Fig. 
S1. D Flow cytometry analysis of CD3+CD56- T cells (Tc) and CD3−CD56+ NK cells in the CD45+ lymphocytes gate within peripheral blood (n 
= 7) and biopsy samples (n = 7) are shown. NK cells were further subclustered into CD56dimCD16+ and CD56brightCD16− NK cells. T cells were 
further characterized by the percentage and ratio of CD4+ and CD8+ Tc, and CD4+CD25+IL7R− Treg, as well as the distribution of naive T cells (Tn; 
CCR7+CD45RA+), central memory T cells (Tcm; CCR7+CD45RA-), effector memory T cells (Tem; CCR7−CD45RA−), effector memory recently activated 
T cells (TEMRA; CCR7−CD45RA+). In addition, percentages of CD4+ and CD8+ T cells expressing HLA-DR and PD-1 were determined. Gating 
strategies are depicted in Additional file 4: Fig. S2. Data are depicted as mean, error bars show the SE; two-sided Mann-Whitney U test was used to 
calculate statistical significance between groups; * p<0.05, ** p<0.01, *** p <0.001, **** p <0.0001, ns not significant

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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Spatial transcriptomic investigation
Five-micrometer FFPE sections of human PCNSL sam-
ples were placed on a Visium Gene Expression (GEX) 
slide (10x Genomics), which incorporates about 5000 
molecularly barcoded and spatially encoded capture 
spots. Deparaffinization, hematoxylin and eosin (H&E) 
staining, and decrosslinking were performed according 
to the protocol of Visium Spatial Gene Expression for 
FFPE (10x Genomics). After incubation with the Probe 
Hybridization Mix (10x Genomics), the tissues were per-
meabilized and the representative probes were captured. 
GEX libraries were generated for each section and then 
sequenced on an Illumina NextSeq2000. The data were 
processed by spaceranger count v1.3 together with the 
corresponding H&E-stained images in tiff format to gen-
erate the gene expression matrices (default settings). We 
used the Human Probe Set from 10x Genomics (Visium 
Human Transcriptome Probe Set v1.0) to map the 
data. For further technical details, see Additional file  5: 
Table S3.

Data analysis of scRNA‑seq
Downstream analysis was mainly performed with the R 
package Seurat v4.1 [19], following the official tutorial 
and as described previously [18, 20]. Shortly, low-quality 
cells and cell doublets were removed by filtering cells 
with few genes (<200), high number of genes (>3500–
6000), or high mitochondrial percentages (>20–30%) for 
each sample separately. Doublets were removed with 
scDblFinder. scRNA-seq data were normalized with 
LogNormalize in Seurat (scale factor 10,000), while 
CITE-seq data were normalized with the centered log 
ratio method. Highly variable genes were identified and 
data were scaled. We used principal component analysis 
(PCA) for primary dimensionality reduction. To identify 
the number of PCs for further analysis, we performed an 
elbow plot and used 30 dimensions for downstream anal-
ysis. Batch effects were addressed for each sample sepa-
rately with Harmony v0.1 [21]. Clusters were identified 
by the FindNeighbors (based on KNN graphs) and Find-
Clusters (based on Louvain method, resolution = 0.2) 
functions in Seurat. Harmony embeddings were used as 
input for Uniform Manifold Approximation and Projec-
tion (UMAP), which allows data visualization in a two-
dimensional space. Clusters were annotated based on 
known marker genes. B and T cell clusters were extracted 
as separate subsets, and PCA (based on the top 2000 
highly variable features), batch correction with Harmony, 
UMAP, and clustering with Seurat were re-performed on 
each subset. DotPlots and FeaturePlots were generated 
with internal visualization functions in Seurat. Heatmaps 
were created with pheatmap v1.0, stacked bar plots, and 
enrichment dotplots were generated with ggplot2 v3.3. 

Differentially expressed (DE) genes were calculated with 
the FindMarker function in Seurat (RunPresto imple-
mentation) based on the Wilcoxon rank sum test with 
an adjusted p-value threshold (based on Bonferroni cor-
rection) of 0.05, minimum fraction of 10%, and average 
log2 fold change of 0.25. Differentially expressed genes 
were plotted in volcano plots, using Enhanced Volcano 
v1.12. We used the EnrichR package v3.0 [22] to perform 
the Enrichment analysis based on the NCI-Nature Path-
way Interaction Database. Comparisons of our scRNA-
seq dataset with data from Roider et al. [15] were made 
with clustifyr v1.6 [23] and were based on annotations 
provided by the authors. T cells were projected onto the 
UMAP embeddings of a murine reference atlas with Pro-
jecTILs [24], using default settings. Copy number vari-
ations were determined with infercnv v1.10 [25]. The B 
cell clusters were downsampled to 1000 cells per cluster, 
GENCODE v19 was used as a gene order file, and the 
cells from the nmBc1/2 clusters were used as reference 
cells. Infercnv was run with a cutoff of 0.1, as advised in 
the official vignette for 10x data, denoising by the default 
dynamic thresholding and an additional median denois-
ing filter. The chromosomal aberrations were added to 
the Seurat object with infercnv and visualized as a feature 
plot with Seurat.

RNA velocity and pseudotime analysis
RNA velocity analysis was carried out with scVelo v.0.2.5 
[26], following the official tutorial. We used slingshot v2.2 
[27] to perform the pseudotime analysis. Reclustered 
cells from mBc1-4 clusters were imported into scVelo. 
Data were normalized and logarithmized (using the top 
5000 genes), and first- and second-order moments were 
computed (with 30 PCs and 30 neighbors). Finally, RNA 
velocity was calculated, using the generalized dynamical 
model, which is solved in a likelihood-based expectation-
maximization framework to learn the unspliced/spliced 
phase trajectories for each gene.

Slingshot was run with the reclustered cells from 
mBc1-4 clusters, with mBc2 as a starting cluster and 
default parameters. The pseudotime lineages were visu-
alized with the UMAP embeddings from Seurat using 
ggplot2.

Identifying cellular interactions
We analyzed cellular signaling with CellPhoneDB v3.0 
[28]. Processed scRNA-seq data of biopsy-derived cells 
including manual cluster annotations were used as input. 
Statistical iterations were set to 1000 and ligands/recep-
tors expressed by less than 1% of the cells were removed. 
The resulting ligand-receptor pairs are based on the Cell-
PhoneDB repository.
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Single‑cell immune repertoire analysis
Single-cell BCR data were analyzed with scRepertoire 
v1.5 [29] according to the official vignette. BCR heavy 
and light chains were combined based on their cellular 
barcodes. Cells with a missing chain or more than two 
immune receptor chains were removed. scBCR were 
merged with scRNA-seq data of the B cell clusters. The 
categorization into clone types was based on the amino 
acid sequence.

Spatial transcriptomics analysis
Visium data were analyzed with Seurat v4.1 [19] follow-
ing the official tutorial. We normalized the data with 
sctransform [30]. To integrate the scRNA-seq results, we 
used the “anchor”-based method in Seurat.

Statistics
Statistical analysis was performed using Mann-Whitney 
U test and, if applicable, with Bonferroni adjustment for 
multiple hypothesis testing.

Results
The “Whiskey Method”: a simple tool for accelerated 
detection and characterization of PCNSL
Little material is available from CNS biopsies, and it is 
required for diagnostic confirmation of suspected PCNSL 
by histology and immunohistochemistry. Here, we iden-
tified a simple, but efficient way to obtain suspended 
PCNSL cells that were abundantly released into the sur-
rounding liquid while briefly swirling the transferred 
biopsy material in saline. Due to the swirling movement, 
we denominated this approach the “Whiskey Method” 
(Fig.  1A). The method did not compromise the quality 
of the histopathology of the biopsy (Additional file 4: Fig. 
S4A,B). In total, we obtained biopsy-derived cells from 
sixteen patients and immediately performed flow cytom-
etry for diagnostic purposes and evaluation of the TME 
(Additional file  1: Table  S1). None of those patients had 
received corticosteroids or chemotherapy before collect-
ing biopsy-derived cells (Additional file 1: Table S1). FACS 
analyses of cells released from the biopsy revealed that the 
mean percentage and number of CD45+ leukocytes was 
>10 times higher in samples from patients subsequently 
histologically diagnosed as PCNSL (n = 8, M = 31.3%, 
SEM = 9.8%; M = 366,094 cells, SEM = 94,908 cells) than 
in glioblastoma patients (n = 8, M = 3.1%, SEM = 1.7%; 
M = 24,353 cells, SEM = 5758 cells) (Fig. 1B). Tumor cells 
detach from the tumor bulk more easily in PCNSL than 
in glioblastoma patients, likely because of the discohesive 
growth pattern in PCNSL and less branched morphology 
compared to glioma cells (Additional file  4: Fig. S4C,D). 
In addition, the majority of biopsy-released CD45+ cells 

within the PCNSL samples consisted of CD19+CD20+ B 
cells (Bc) (M = 67.3%, SEM = 7.0%), while Bc proportions 
in blood (M = 7.0%, SEM = 1.7%) were in the expected 
range (Fig. 1C, Additional file 4: Fig. S1).

Extended flow cytometry showed that CD19+CD20+ 
Bc obtained from PCNSL biopsies were CD10 nega-
tive, showed variable expression of CD5 and high CD27 
expression (Fig.  1C, Additional file  4: Fig. S1). Both 
CD38+ and CD38+CD27+ Bcs were significantly elevated 
in biopsy-derived Bcs when compared to blood, while 
CD20+CD138+ plasma cells were not increased. Immu-
noglobulin (Ig) light chain restriction (>80% expres-
sion of Kappa (κ) or Lambda (λ) Ig) was detected on all 
biopsy-derived Bcs. In peripheral blood, κ/λ ratios were 
mostly within the expected range (M = 1.57) [31]. The 
“Whiskey Method” thus facilitates the detection and fur-
ther characterization of PCNSL cells within a few hours.

Distinct immune cell alterations in the PCNSL 
microenvironment
Next, we aimed to characterize the TME by evaluat-
ing immune cells infiltrating PCNSLs by flow cytom-
etry (Fig. 1D, Additional file 4: Fig. S2). Biopsy material 
contained lower proportions of CD4+ T cells (Tc) than 
blood. Similar percentages of CD8+ Tc were found in 
peripheral blood and biopsies, leading to an increase in 
the CD8/CD4 ratio at the tumor site. Tumor-infiltrating 
CD4+ and CD8+ Tc displayed an effector memory phe-
notype (Fig.  1D). Moreover, we identified elevated pro-
portions of CD4+CD25+IL7R− regulatory Tc (Tregs) 
within the biopsy material. CD3−CD56+ NK cells infil-
trated the tumor at low frequencies with a predominance 
of CD56brightCD16dim NK cells, whereas peripheral blood 
was dominated by CD56dimCD16+ NK cells. Finally, we 
detected an induction of the immune checkpoint mol-
ecule PD-1 on CD4+ and CD8+ Tc in the biopsy. Collec-
tively, we identified a distinct cellular composition of the 
TME in PCNSL, featuring signs of T cell exhaustion.

Single‑cell transcriptomics reveals heterogeneity 
of malignant B cells in PCNSL
We sought to better characterize PCNSL by combining 
the “Whiskey Method” with single-cell RNA sequencing 
(scRNA-seq). We applied scRNA-seq to five samples from 
two patients with PCNSL (patients 1 and 2, Additional 
file 1: Table S1). We performed scRNA-seq and single-cell 
B cell receptor sequencing (scBCR) of cells from biopsy and 
peripheral blood (Bc-enriched using anti-CD20 microbe-
ads) at the time of stereotactic biopsy from both patients 
(Additional file 4: Fig. S5). In addition, we collected CSF in 
patient 1 at relapse and also performed CITE-seq in blood 
and biopsy material from this patient (Additional file  1: 
Table S1).
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We merged the data from all samples with batch cor-
rection and thereby obtained 73,896 total single-cell tran-
scriptomes (biopsy = 36,266; blood = 33,342; CSF = 4288) 
after removing low-quality cells and doublets (Additional 
file  5: Table  S3, Methods). We annotated the main clus-
ters based on the expression of marker genes (Fig. 2A,B). 
Two large clusters expressed Bc markers and were tenta-
tively named non-malignant Bc (nmBc) and malignant 
Bc (mBc) (CD19, MS4A1/CD20, CD79B) (Fig.  2B, Addi-
tional file 6: Table S4). In accordance with flow cytometry, 
CD27 and CD38 expressions were increased in mBc and 
SDC1/CD138 was absent, as it is well known in PCNSL 
[32] (Fig.  2B). Furthermore, we identified two myeloid 
clusters with monocyte and granulocyte markers (mye-
loid1-2: LYZ, S100A12, CD14, LYVE1, MRC1) and a clus-
ter exhibiting mDC1 markers (mDC1: CLEC9A, XCR1, 
BATF3). Furthermore, we detected a T/NK cell cluster (Tc: 
CD3E, TRAC​, IL7R, NKG7), a platelet cell cluster (PLT: 
CLU, GNG11, PPBP, GP9), and an oligodendrocyte clus-
ter (oligo: PLP1, MBP, MAG). We confirmed the identity 
of the main cell populations on the protein level by using 
CITE-seq in one patient (Fig. 2C).

To better understand the intratumor heterogeneity of 
PCNSL, we investigated the B cell clusters in more detail 
by subclustering all cells in the mBc and nmBc clusters 
(Fig. 2D). We identified four clusters annotated as malig-
nant clusters (mBc1-4) that showed chromosomal aber-
rations commonly found in PCNSL [33], including gains 
in chromosome 1, 12, and 22, and losses in chromosome 
6 (Fig.  2D–F). This does not imply that all cells of the 
respective clusters are necessarily malignant. We visu-
alized the most differentially expressed genes between 
the Bc clusters (Fig. 2G; Additional file 7: Table S5). The 
mBc1 cluster expressed the pre-B cell receptor-asso-
ciated molecule VPREB3, the B cell activation marker 
CD83, and genes associated with cell metabolism, cel-
lular growth, and tumor progression (DDX54, PRDX6, 
GRHPR). We found an immature, dedifferentiated phe-
notype with a distinct expression of cell cycle (TOP2A, 
HMGB2, TUBA1B) and proliferation genes (MKI67) in 

mBc2 (Fig. 2G). The mBc3 cluster was characterized by 
a more mature phenotype with signs of class-switching 
(JCHAIN, MZB1) (Fig.  2G; Additional file  7: Table  S5). 
We found expression of genes involved in cancer pro-
liferation (PARP14, VMP1, APOE) in the mBc4 cluster 
(Fig.  2G; Additional file  7: Table  S5). In contrast, nmBc 
resembled naive mature B cells (CD52, SCIMP, BANK1) 
as expected for blood-derived Bc (Fig.  2G; Additional 
file  7: Table  S5). In accordance, mBc1-4 were nearly 
exclusively found in biopsy- and CSF-derived leukocytes, 
while nmBc mainly originated from blood (Fig.  2H). 
CSF mirrored the relative cluster abundance of the 
biopsy, while blood Bc featured distinct cluster propor-
tions (Fig.  2H). The relative abundance of malignant Bc 
clusters was surprisingly similar across both patients in 
blood- and biopsy-derived leukocytes (Fig.  2H). Com-
pared to nmBc, mBc1-4 expressed transcripts previously 
commonly detected in PCNSL [5, 34], lending further 
support to the assumed neoplastic identity of those clus-
ters (Fig.  2I). Of note, most of those genes were differ-
entially expressed in two of the malignant clusters (e.g., 
mBc2: BUB3, KRAS, TP53; mBc3: XBP1, BTG2; mBc4: 
CXCL13, BCL6, IL10). We thus detected a surprisingly 
pronounced intratumor heterogeneity in PCNSL. Based 
on the chromosomal aberrations, tissue origin, transcrip-
tional profile, and presence/absence of a hyperexpanded 
clone (see below), we annotated mBc1-4 as malignant 
and nmBc as non-malignant Bc clusters.

Differential expression of chemokines in malignant B cell 
clusters
Gene expression analysis of chemokines and their 
receptors further supported intratumoral hetero-
geneity of PCNSL (Fig.  2J). We observed increased 
expression of CCL17, CXCL17, and CX3CL1 in mBc1, 
CXCL1 in mBc2, CCL1, CCL3, CCL25, and CCL26 
in mBc3, and CCL2, CCL5, CCL19, CCL27, CXCL8, 
CXCL12, and CXCL13 among others in mBc4 (Fig. 2J). 
This is in line with previous studies demonstrating 
that CXCL13 is highly specific for PCNSL [5, 35]. The 

(See figure on next page.)
Fig. 2  Single-cell transcriptomic reveals heterogeneous malignant B cell phenotypes in PCNSL. A UMAP plot of 73,896 total single-cell 
transcriptomes aggregated from five samples (patient 1: biopsy, blood, CSF; patient2: biopsy, blood). B Gene and protein (C) cell markers of the 
clusters identified by single-cell RNA sequencing (scRNA-seq) and CITE-seq (biopsy and blood from patient 1). Color encodes average gene/
protein expression, and dot size represents the percentage of cells expressing the gene. The threshold of percentage of cells expressing the gene/
protein was set to 15% in B and 90% in C. D UMAP plot of 45,890 reclustered B cells (mBc and nmBc cluster from A). E Analysis of copy number 
variations of downsampled B cell clusters. The nmBc1-2 clusters were used as reference cells and mBc1-4 as observations. The amplification of 
chromosomal regions is colored in red and the deletion of chromosomal regions in blue. F Feature plots of chromosomal gains and losses with the 
UMAP embeddings of D. Color encodes the proportion of chromosomal aberration. G Top ten differentially expressed genes of each B cell cluster 
shown in a heatmap. Selected genes are highlighted. Gene expression values were scaled gene-wise. H Proportions of B cells split by sample and 
colored by cluster name. I–J Gene expression heatmap of known PCNSL- associated genes (I) and of chemokines and their receptors (J) in B cell 
clusters, scaled gene-wise. Gene name - alias: MS4A1 - CD20; SDC1 - CD138; SELL - CD62L; IRF4 - MUM1. Abbreviations: mBc - malignant B cells; nmBc 
- non-malignant B cells; mDC1 - myeloid dendritic cells type 1; oligo - oligodendrocytes; Tc - T cells; PLT -platelets; p1 - patient 1; p2 - patient 2; CSF 
- cerebrospinal fluid
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chemokines expressed in mBc1-4 have the potential 
to attract a range of immune cells, including regu-
latory T cells (Tregs), macrophages, neutrophils, 

myeloid-derived suppressor cells (MDSC), different T 
helper, and DC subsets (see Additional file 8: Table S6 
for details) [36]. In contrast, nmBc1-2 expressed a 

Fig. 2  (See legend on previous page.)
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different set of chemokines and chemokine recep-
tors than mBc1-4 including CXCL3, CXCL5, CCR3, 
CCR7, CCR9, CXCR1, CXCR4, and CXCR5. Since the 
CXCL13–CXCR5 axis is pivotal in recruiting Bc [37], 
non-malignant Bc might have been attracted from the 
periphery to the tumor by malignant Bc during lym-
phoma progression.

Malignant B cell clusters show a phenotypic gradient 
with multiple developmental trajectories
We next aimed to better understand the develop-
mental relationship between the individual biopsy-
derived Bc clusters. mBc2 displayed high expression 
of cell cycle genes, suggesting an immature, proliferat-
ing phenotype (Fig.  3A). We performed RNA velocity 
of single cells, which is based on the ratio of spliced/
unspliced mRNA, with scVelo [26], a likelihood-based 
dynamical model, and with pseudotime (Fig.  3B,C). 
The resulting streamlines delineated developmental 
paths from mBc2 to mBc4 and from mBc2 over mBc1 
to mBc3 (Fig. 3C). This suggests multiple developmen-
tal trajectories within malignant Bc, potentially differ-
entiating from cycling and immature Bc into later Bc 
stages. Because of limited applicability of RNA veloc-
ity in cancer, such as absence of ancestral cells and 
aberrant splicing caused by mutations [38], the results 
should be interpreted with caution. Combining the 
results of the chromosomal aberration (Fig. 2E, F) with 
the developmental paths (Fig.  3B, C), it is noticeable 
that some chromosomal aberrations are not shared 
between different stages of the same development 
path (e.g., gain of chromosome 1 is present in mBc3, 
but not in the presumed progenitor cells of mBc1) 
(Figs. 2E,F and 3B,C). This might be caused by a clonal 
evolution of the malignant cells with the emergence of 
subclones with distinct chromosomal aberrations [39]. 

Collectively, we provide evidence for developmental 
intratumoral heterogeneity of PCNSL.

Hyperexpanded B cell clones are shared between biopsy‑ 
and CSF‑ but not blood‑derived cells
To further study clonal relationships between tissues, 
we extracted single-cell B cell receptor (scBCR) infor-
mation from the V(D)J-supplemented scRNA-seq 
(“Methods”) and identified 4259 cells with a heavy and 
a corresponding light chain that could be matched to 
scRNA-seq. Most cells in the malignant clusters mBc1-4 
were hyperexpanded clones, while the non-malignant 
cluster nmBc1-2 predominantly harbored unexpanded 
cells (single clones) (Fig.  3D–F). Of note, the hyperex-
panded clones are spread across all malignant Bc clusters 
(Fig. 3D–F). The biopsy material showed hyperexpansion 
of a single malignant clone in each patient (p1_biopsy: 
~98% of all cells; p2_biopsy: ~82% of all cells) (Fig.  3G, 
Additional file 9: Table S7). The CDR3 sequences of the 
hyperexpanded clones were not related between both 
patients (Additional file 9: Table S7). All other expanded 
clones in biopsy were closely related to the hyperex-
panded clone with single-nucleotide substitutions within 
each patient (Additional file  9: Table  S7). Notably, we 
could identify the same hyperexpanded clone in the CSF 
of patient 1 approximately 1 year after the biopsy dur-
ing relapse (Fig. 3G, Additional file 9: Table S7). In con-
trast, we could not identify the hyperexpanded clone 
in the blood in both patients and there was no relevant 
clonal expansion in the blood (Fig.  3E,G, Additional 
file 9: Table S7). We detected a single non-expanded clo-
notype, located in mBc3, that was shared between the 
blood and the biopsy material in patient 2 (Additional 
file 9: Table S7). This might represent a malignant B cell 
that emigrated from the CNS into the peripheral blood 
compartment but did not expand. Altogether, promi-
nent hyperexpansion of malignant B cells was restricted 
to the brain and the CSF. We thus provide evidence that 

Fig. 3  Biopsy- and CSF-derived cells but not blood cells share hyperexpanded B cell clones. A Geneset feature plot of G2/M and S phase with the 
UMAP embeddings of C. Color encodes gene expression. B Feature plots of two lineages of pseudotime analysis. Pseudotime is color-coded and 
the UMAP embeddings refer to C. C RNA velocity analysis of mBc1-4 clusters (Fig. 2A). Streamlines represent vector velocity fields, which show the 
developmental pathways. D UMAP plot of all B cell clusters (45,890 cells) from 5 samples (patient 1: biopsy, blood, CSF; patient 2: biopsy, blood) 
with color-coded frequency of B cell clones. Cells colored in transparent grey represent cells with missing BCR information. E, F Proportions of B 
cells with BCR information split by sample (E) or cluster (F) and colored by frequency. Frequency was defined by the number of B cells expressing a 
unique clone (paired BCR heavy and light chains). G Alluvial plot shows the origin tissue and cluster of the hyperexpanded clones. H, J Volcano plots 
of the differentially expressed (DE) genes of the hyperexpanded clones versus all remaining clones (H) and DE genes of the hyperexpanded clone 
of patient 1 after treatment at relapse (CSF-derived) versus before treatment (biopsy-derived) (I). The threshold for the log2 fold change was set to 
1 and the threshold for the negative log10p-value to 30. I Significantly enriched terms of DE genes based on the NCI-Nature Pathway Interaction 
Database corresponding to H. Size encodes the significance and color encodes whether the term was enriched in genes with elevated or reduced 
gene expression. K Correlation coefficients between gene expression of mBc1-4 clusters (row) and different lymphomas (column) from Roider et al. 
[15] including four follicular lymphoma (FL1-4), four GC-derived DLBCLs, of which two were transformed from FLs (DLBCL1, DLBCL2, tFL1, and tFL2) 
and one non-GC-derived DLBCL (DLBCL3), visualized in a heatmap. High correlation coefficients, colored in yellow, indicate a high transcriptional 
overlap. Abbreviations: mBc - malignant B cells; nmBc - non-malignant B cells; p1 - patient 1; p2 - patient 2; Bc - B cells; CSF - cerebrospinal fluid; NS 
- not significant; FC - fold change; p val - p-value; DLBCL - diffuse large B cell lymphoma; FL - follicular lymphoma (FL); tFL - transformed FL

(See figure on next page.)
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malignant clones are shared between the brain and the 
CSF, but not between the brain and peripheral blood in 
PCNSL.

Hyperexpanded B cell clones show a loss of maturity
Differential expression analysis of the hyperexpanded 
clones compared to all other clones revealed an elevated 

expression of tumor promoting factors/oncogenes 
(HSPA5, PDIA4, MANF, PPIB) and a gene associated 
with malignant B cell clones (CD63) [40]. In contrast, 
BCR activation and signal transduction genes (BANK1, 
CD37) and maturity genes (CD52, IGHD, MS4A1) 
were reduced in the hyperexpanded clones compared 
to all other clones. CD37, whose expression is related 

Fig. 3  (See legend on previous page.)
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to improved patient survival in peripheral DLBCL, 
while its loss is a risk factor for therapy resistance with 
rituximab [41], was also reduced in the hyperexpanded 
clones (Fig.  3H, Additional file  10: Table  S8). Enrich-
ment analysis showed that BCR, RAC1, CXCR4, and 
ErbB1 signaling pathways were enriched in the genes 
downregulated in the hyperexpanded clones, while 
tumor- and cell proliferation-associated pathways 
(c-Myc, c-Myb, Aurora A, nuclear estrogen receptor 
alpha pathways) were enriched in upregulated genes 
of the malignant clones (Fig.  3I, Additional file  11: 
Table  S9). This suggests loss of mature B cell features 
and increased cell proliferation of the hyperexpanded 
clones.

Signs of altered migration in the relapsed clone
To characterize transcriptional changes between the 
hyperexpanded clone at initial diagnosis and relapse in 
patient 1 (after high-dose chemotherapy and autolo-
gous stem cell transplantation), we performed differ-
ential expression analysis (Fig.  3J, Additional file  12: 
Table S10). The relapsed clone showed an upregulation 
of S100A4, a driver of tumor cell invasion and metas-
tasis [42] and enhanced expression of CD81, a tetras-
panin molecule, which is crucial for the formation 
and activation of the B cell coreceptor (CD19–CD21–
CD81) complex and has recently been proposed as a 
novel therapeutic target in B cell lymphomas [43]. We 
also observed increased expression of CCL5, associated 
with tumor recurrence [44], and an increase of CCR7, 
which controls migration of lymphoma cells into niches 
[45] (Fig. 3J). As CCL19, the ligand of CCR7, promotes 
the development of PCNSL through the retention of 
CCR7 expressing lymphoma cells in the brain [46], the 
CCR7-CCL19 axis might also play a role in the evasion 
of malignant B cells from the brain to the CSF. Moreo-
ver, we observed a reduced expression of HLA class 
II molecules (CD74, HLA-DRA, HLA-DRB1, HLA-
DMA), which might affect the number and function of 

CD4+ T lymphocytes in the tumor microenvironment 
[47] (Fig.  3J). In summary, the differentially expressed 
transcripts of the malignant relapsed clone indicated 
altered migration promoting malignancy compared to 
the clone before therapy.

Transcriptional similarity of PCNSL with peripheral B cell 
lymphomas
We next systematically compared the PCNSL transcrip-
tome with available single-cell data from peripheral Bc 
lymphomas [15]. We found higher transcriptional cor-
relation between malignant Bc clusters in our data-
set (mBc1-4) and published DLBCLs (GC: DLBCL1, 
DLBCL2; Non-GC: DLBCL3) and GC DLBCL trans-
formed from follicular lymphomas (tFL1, tFL2) and lower 
correlation between mBc1-4 and follicular lymphomas 
(FL) (Fig. 3K). In line with previous microarray data [48], 
this provides evidence for substantial transcriptional 
overlap between peripheral and central DLBCL. In addi-
tion, we systematically compared the chemokine expres-
sion between DLBCL and PCNSL (Additional file 4: Fig. 
S6). We observed that chemokine expression varies con-
siderably between DLBCL and PCNSL, but also between 
DLBCL samples (GC-derived and non-GC-derived 
DLBCLs) and within our clusters. Therefore, we could 
not identify a clear common chemokine pattern that is 
shared between all PCNSL or all DLBCL and that likely 
determines the tropism and site specificity of these cells.

Broad expression of immune checkpoints in the PCNSL 
microenvironment
Based on our FACS data with upregulated PD-1 expres-
sion on biopsy-derived Tc, we aimed to further evaluate 
the expression of immune checkpoints in our scRNA-
seq data set. We observed that Tc formed gradients 
with overlapping signatures rather than distinct sub-
clusters, as we had previously reported [49]. We identi-
fied seven sub-clusters (Fig.  4A): NK cells (NK: KLRF1, 
CD160, NCAM1), CD8+ Tc with a naive- and memory-
like phenotype (naive/memCD8: CD8A, KLRG1, CD44, 

(See figure on next page.)
Fig. 4  Increased expression of regulatory and T cell exhaustion molecules in the PCNSL microenvironment. A UMAP plot of all T cell subclusters, 
including 17,175 single-cell transcriptomes from 5 samples (patient 1: biopsy, blood, CSF; patient 2: biopsy, blood). B Dot plot of T cell markers 
in T cell subclusters. Color encodes average gene expression and dot size shows the percentage of cells expressing the gene with the threshold 
of percentage of cells expressing the gene set to 10%. C Proportion of T cells split by sample and colorized by cluster name. D Comparison of T 
cell subcluster abundances between biopsy and blood by plotting the log2 fold change. E,F Gene expression heatmaps of canonical immune 
checkpoints (D), exhaustion profiles from Singer et al. [50], Tirosh et al. [51], Chihara et al. [52] (F), and regulatory T cell markers (G) in T subclusters. 
Values were scaled row-wise and color encodes gene expression. Exhaustion signatures are listed in Additional file 14: Table S12. H Gene expression 
heatmap of immune checkpoint ligands in B cell clusters, scaled gene-wise, color encodes gene expression. I,J Biopsy-derived T cells (I) and 
blood-derived T cells (J) were projected on the latent space of a reference T cell dataset [24]. Gene name - alias: HAVCR2 - TIM3; PDCD1 - PD1; IRF4 
- MUM1; PDCD1LG2 - PD-L2; LGALS9 - Galectin9. Abbreviations: NK - natural killer cells; memCD4/CD8 - memory-like CD4+/CD8+ T cells; naiveCD4/
CD8 - naive-like CD4+/CD8+ T cells; actTc - activated T cells; exhTc - exhausted T cells; TregCD4 - regulatory CD4+ T cells; p1 - patient1; p2 - patient2; 
CSF - cerebrospinal fluid; mBc - malignant B cells; nmBc - non-malignant B cells; Tex -terminally-exhausted; Tpex - precursor-exhausted; Tfh - CD4+ 
follicular-helper cells



Page 12 of 19Heming et al. Genome Medicine          (2022) 14:109 

Fig. 4  (See legend on previous page.)



Page 13 of 19Heming et al. Genome Medicine          (2022) 14:109 	

CD69), proliferating Tc (prolTc: MKI67, TOP2A), Tc 
with an activated phenotype with an interferon sig-
nature (IFNG, IFI27, STAT1), Tc with an exhausted 
phenotype (CD27, PDCD1, LAG3, TNFRSF9), CD4+ 
Tc with a naive- and memory-like phenotype (naive/
memCD4: CD4, CCR7, SELL, CD44, CD69), and regula-
tory CD4+ Tc (TregCD4: CD4, IL2RA, FOXP3, CTLA4) 
that also expressed markers of T cell exhaustion (TIGIT) 
(Fig.  4B, Additional file  13: Table  S11). Biopsy-derived 
cells featured an increase of prolCD8, actTc, and exhTc 
and a reduction of NK and naive/memCD4/CD8 com-
pared to blood-derived cells (Fig.  4C,D). This indicated 
an increase of T cells with proliferating, activated, and 
exhaustive phenotype in biopsy-derived leukocytes. In 
line with flow cytometry, nearly all canonical exhaustion 
molecules, including TIGIT, HAVCR2/TIM-3, LAG3, 
CTLA4, and PDCD1/PD-1, were expressed at higher lev-
els in biopsy- or CSF- than in blood-derived cells (Fig. 4E, 
Additional file 4: Fig. S3). Interestingly, the expression of 
most markers was divergent between CSF and biopsy, 
suggesting site specificity in the milieu induced by the 
tumor cells. By evaluating the expression of several pub-
lished exhaustion signatures [50–52], we confirmed that 
biopsy-derived cells showed a higher exhaustion score 
than blood-derived cells (Fig.  4F, Additional file  14: 
Table  S12). In accordance with flow cytometry, biopsy- 
and CSF-derived cells also exhibited a stronger regula-
tory Tc phenotype (FOXP3, IL2RA, CTLA4, IRF4) than 
blood-derived cells (Fig.  4G). We identified several cor-
responding immune checkpoint ligands in our malignant 
Bc clusters (e.g., NECTIN2 and NECTIN4 bind TIGIT; 
CEACAM1 binds HAVCR2/TIM-3; FGL1 binds LAG3; 
CD80 binds CTLA4; CD274/PD-L1 and PDCD1LG2 bind 
PDCD1/PD-1) (Fig.  4H). Of note, most of these ligands 
were expressed highest in the mBc4 cluster, indicating 
that mBc4 induces a particularly immunosuppressive 
TME.

When projecting biopsy-derived T cells and blood-
derived T cells on a recent reference atlas of tumor-
infiltrating T cells [24], we observed a large overlap 
of biopsy-derived T cells with exhausted CD8 T cells 
(CD8_Tex) (Fig.  4I), which was absent in blood-derived 
T cells (Fig. 4J). Collectively, we confirmed and extended 
our flow cytometry findings that showed elevated expres-
sion of immune checkpoints in the TME of PCNSL. This 
suggests a potential of checkpoint inhibitors (CPI) in the 
treatment of PCNSL and suggests TIGIT, TIM-3, PD-1, 
CTLA-4, and LAG-3 as promising targets.

Cellular interactions between PCNSL and its 
microenvironment reveal immune evasion signaling
To better understand signaling pathways within the 
tumor micro-milieu, we predicted ligand-receptor pair 

expression from transcriptome data of biopsy-derived 
malignant Bc to Tc and myeloid cells (Fig. 5). We identi-
fied significant predicted interactions between malignant 
Bc and immune cells of the TME, e.g., molecules asso-
ciated with angiogenesis and invasion, including interac-
tion of NRP1 to VEGFA and VEGFB between myeloid1 
and malignant Bc clusters. Signaling between malignant 
Bc clusters and their microenvironment also included 
cell adhesion interactions (e.g., CD6-ALCAM, ICAM1-
ITGAL, PECAM1-CD38, and CEACAM1-CD209). We 
identified several immunomodulatory signaling path-
ways. CD47 (mBc1-4) and SIRPA (myeloid1, mDC1) 
showed significant interaction, indicating a potential 
mechanism that protects tumor cells from phagocyto-
sis [53]. Further immunosuppressive signaling between 
mBc1/3 and myeloid1/mDC1 clusters included interac-
tions between LILRB2 and HLA-G. Blocking of LILRB2 
promotes anti-tumor immunity of myeloid cells [54]. We 
also identified several known immune checkpoint signal-
ing molecules between Tc and mBc1-4 clusters including 
TIGIT-NECTIN2, CTLA4-CD80, and HAVCR2/TIM-
3-LGALS9. Moreover, we observed significant interac-
tions between KLRB1 (Tc) and CLEC2D (mBc1-4), which 
has recently been described to inhibit killing of glioma 
cells by T cells [55]. In summary, cellular crosstalk could 
potentially prevent immune cells from attacking the 
tumor, thus allowing its immune evasion.

Transcriptional heterogeneity of malignant B cell clusters 
is reflected as spatial heterogeneity across patients
We aimed to correlate the observed transcriptional het-
erogeneity with spatial information. We therefore car-
ried out spatial transcriptomics of the brain biopsy 
tissues from four patients, including patients 1 and 2 with 
available matching scRNA-seq data (Additional file  1: 
Table  S1). We obtained an average of 1151 spots per 
sample with 6925 median genes per spot. In accordance 
with scRNA-seq and flow cytometry, the biopsy sam-
ples showed a broad expression of CD19, MS4A1/CD20, 
CD79B, and CD27 across the entire tissue (Additional 
file 4: Fig. S7A-D). T cell transcripts (CD3E, NKG7) were 
mostly located in close proximity to the B cells (Addi-
tional file  4: Fig. S7A-D), and immunohistochemical 
stainings of CD20 and CD3 confirmed these findings 
(Additional file 4: Fig. S7E-G).

In the next step, we computationally integrated our 
scRNA-seq data with spatial transcriptomics. The malig-
nant B cell clusters, which had been defined by scRNA-
seq, displayed areas of focal spatial enrichment in all 
patients (Fig.  6A–D). Canonical exhaustion markers 
(LAG3, PDCD1, HAVCR2, TIGIT) showed increased 
expression in tissue areas that were dominated by the 
mBc4 cluster (Fig.  6E–H). We thus assume that mBc4 
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induced a stronger immunosuppressive TME than the 
other malignant B cell clusters. This is in line with our 
scRNA-seq data of enhanced expression of immune 
checkpoint ligands, including the ligands of PDCD1, 
HAVCR2, and TIGIT, in the mBc4 cluster (Fig. 4H). Col-
lectively, we found that transcriptional heterogeneity was 
replicated as spatial heterogeneity within the tissue and 
spatially associated one highly malignant B cell cluster 
with areas of increased immunosuppression.

Discussion
Conventional histopathology and immunohistochemistry 
remain the gold standard for the diagnosis and classifica-
tion of PCNSL. Here, we demonstrate that hematopoietic 
cells released from CNS biopsy material by the “Whis-
key Method” are available for fast-track analysis of sus-
pected PCNSL by flow cytometry and are amenable to 
high-resolution characterization. DLBCL-type PCNSL 
was confirmed by histopathology, IgH clonality analysis, 
and exclusion of extracerebral lymphoma manifestation 
by bone marrow aspirates in all cases (Additional file 1: 

Fig. 5  Cellular crosstalk between PCNSL and its microenvironment feature immune evasion signaling. A Selected predicted cellular interactions 
between malignant B cell clusters (mBc1-4) and the immune cell clusters of the tumor microenvironment based on CellPhoneDB [28] (see 
“Methods”). Circle size represents the p-value and color encodes the logarithmic mean of the gene expression of the interacting pairs
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Table  S1). Our study confirms previous reports investi-
gating brain biopsies after mechanical disaggregation 
of tissue samples or pure analysis of the rinse fluid with 
increased proportion of malignant B cells (60–96% of 
CD45+ cells), Ig Kappa, or Lambda light chain restriction 
(69 - 83%) and high concordance rates of PCNSL diagno-
sis between flow cytometry and immunohistochemistry 
(>90%) [56–58]. Due to differences in the study protocols 
and tissue preparation, direct comparisons with previ-
ous approaches are difficult. However, our “Whiskey 
Method” does not reduce or damage the available tissue 
material for immunohistopathology and generates suffi-
cient numbers of individual cells for in-depth phenotypi-
cal and molecular analysis.

In our cohort, malignant Bc from biopsies displayed an 
activated memory phenotype characterized by upregula-
tion of CD38 and co-expression of CD27. During B cell 
differentiation, both CD27 and CD38 are upregulated 
after activation of Bc in the germinal center (GC) in 
response to antigen, accompanied by isotype switching 
recombination and synthesis of immunoglobulins [59, 60]. 

As the majority of B cells in GCs are usually eliminated 
during their selection process, the expression of CD27 and 
CD38, but absence of CD138 suggests that PCNSL cells 
arise from antigen-experienced late or post GC stages and 
are prevented from apoptotic cell death, as postulated in 
earlier studies [23, 36]. Increased CD27 expression could 
be found in several human B cell malignancies [34] and 
elevated levels of soluble CD27 were detected in CSF of 
PCNSLs compared to other brain tumors [35]. Therefore, 
we propose that CD27 and CD38 should be incorporated 
into staining protocols for the detection of primary CNS 
lymphoma. Nevertheless, we note that further markers 
must be included in clinical practice and validated for a 
precise classification and differentiation among Bc neo-
plasms by flow cytometry only [61].

In accordance with a recent scRNA-seq study that ana-
lyzed the CSF of PCNSL [62], we detected a transcrip-
tional intratumor heterogeneity of malignant B cells, 
including differential chemokine expression, and multi-
ple developmental trajectories by using single-cell tran-
scriptomics. As has been described for systemic DLBCL 

Fig. 6  Spatial patterns of malignant B cell clusters reflect their transcriptional heterogeneity across patients. A–D Spatial feature plots of the 
integrated malignant B cell clusters of patients 1 (A), 2 (B), 3 (C), and 7 (D). The transcriptional expression is overlaid on top of the tissue histology. 
The gene expression of the integrated clusters is encoded by color and transparency. E–H Spatial feature plots of canonical T cell exhaustion 
markers of patients 1 (E), 2 (F), 3 (G), and 7 (H). The gene expression is encoded by color and transparency. Gene name - alias: HAVCR2 - TIM3; PDCD1 
- PD1. Abbreviations: mBc - malignant B cells; nm - non-malignant B cells
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[14], intratumor heterogeneity and subsequent selection 
of treatment-resistant clones seem to be a driving factor 
for therapy resistance in PCNSL. We observed altered 
gene expression in the hyperexpanded clone at relapse, 
including increase of CCR7, which might play a role in 
the emigration of malignant B cells from the brain to the 
CSF [46], and CD81, which has been identified as a novel 
immunotherapeutic target for B cell lymphomas [43]. This 
underscores that single-cell transcriptomics can identify 
potential new targets for salvage therapies. We also pro-
vide evidence that downregulation of HLA class II mol-
ecules, which is associated with chromosomal aberrations 
and copy-number loss at chromosome 6 [12], represents 
another mechanism of immune evasion in PCNSL.

In line with growing evidence for CPI in PCNSL [13], 
we discovered broad expression of immune checkpoint 
molecules in the TME and most of the corresponding 
ligands in the malignant B cell clusters. The computa-
tional prediction of cellular interactions between PCNSL 
and the TME displayed multiple immunosuppressive 
interactions. This indicates that PCNSL mediates signals 
to immune cells in the TME that permit tumor immune 
evasion. Integration of scRNA-seq data with spatially 
transcriptomics and immunohistochemistry of tumor 
tissues revealed distinct and heterogeneous patterns of 
spatial organization of malignant B cell clusters. We also 
demonstrate that the topological composition and distri-
bution of different malignant B cell clusters impact the 
immune micro milieu, facilitating the formation of tumor 
cell niches with locally enhanced immunosuppression 
and tumor therapy resistance. These data might help to 
guide treatment decisions and to develop individualized 
treatment protocols for patients. Our data support the 
potential of CPI in the treatment of PCNSL and suggest 
several immune checkpoint molecules, including CTLA-
4, TIGIT, HAVCR2/TIM-3, and LAG-3, as promising 
targets that should be evaluated in future prospective 
clinical studies in the treatment of PCNSL for synergis-
tic effects with new B cell targeting approaches including 
anti-CD79b antibody-drug conjugates, bispecific T-cell 
engagers, or CAR T-cell therapies [39].

It remains controversial how malignant cells of lym-
phoid origin reach the nervous tissue. It has been specu-
lated that tumor cells develop in an extracerebral site and 
migrate to the CNS [40–42]. Although we found a high 
transcriptional overlap between malignant Bc clusters in 
peripheral and central DLBCL, our findings do not sup-
port a peripheral development of PCNSL since the prom-
inent hyperexpansion of B cells was present in brain- and 
CSF-derived leukocytes, but not in peripheral blood. 
We also did not identify a distinct chemokine profile 
that would favor the migration of peripheral malignant 
B cells to the CNS. Instead, we speculate that malignant 

Bc of PCNSL develop within the CNS and that the TME 
itself fosters the expansion of malignant B cell clones. We 
detected distinct expressions of chemokines in malignant 
Bc clusters, which attract a wide range of immune cells, 
including immunosuppressive leukocytes. This indicated 
that next to the tumor stroma and resident macrophages/
microglia, proliferating neoplastic Bc themselves are 
heavily shaping their TME.

Our study is limited by the sample size. Therefore, sta-
tistical analyses between patients and generalizations 
entail elements of uncertainty.

Conclusions
In conclusion, we demonstrate that cells directly released 
from the biopsy material can support a fast-track detection 
of PCNSL and a full description of intratumor heteroge-
neity and the TME at the transcriptional level. Integration 
of single-cell and spatial transcriptomics can provide fur-
ther information on the architecture of the intratumor het-
erogeneity and the PCNSL-TME interface. Expanding this 
approach to larger patient cohorts will help to design tai-
lored and personalized treatment protocols and to stratify 
and select more efficacious drug combinations.
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