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Abstract 

Alzheimer’s disease (AD) is a genetically complex and heterogeneous disorder with multifaceted neuropathological 
features, including β-amyloid plaques, neurofibrillary tangles, and neuroinflammation. Over the past decade, emerg‑
ing evidence has implicated both beneficial and pathological roles for innate immune genes and immune cells, 
including peripheral immune cells such as T cells, which can infiltrate the brain and either ameliorate or exacerbate 
AD neuropathogenesis. These findings support a neuroimmune axis of AD, in which the interplay of adaptive and 
innate immune systems inside and outside the brain critically impacts the etiology and pathogenesis of AD. In this 
review, we discuss the complexities of AD neuropathology at the levels of genetics and cellular physiology, highlight‑
ing immune signaling pathways and genes associated with AD risk and interactions among both innate and adap‑
tive immune cells in the AD brain. We emphasize the role of peripheral immune cells in AD and the mechanisms by 
which immune cells, such as T cells and monocytes, influence AD neuropathology, including microglial clearance of 
amyloid-β peptide, the key component of β-amyloid plaque cores, pro-inflammatory and cytotoxic activity of micro‑
glia, astrogliosis, and their interactions with the brain vasculature. Finally, we review the challenges and outlook for 
establishing immune-based therapies for treating and preventing AD.
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Background
Alzheimer’s disease (AD) is a neurodegenerative and 
genetically complex age-related dementia characterized 
by progressive memory loss. The pathogenesis of AD 
involves deposition of β-amyloid plaques, and forma-
tion of neurotoxic oligomers of the amyloid-β (Aβ) pep-
tide. This results in neurofibrillary tangles (NFTs) made 
up of the hyperphosphorylated microtubule-associated 

protein, Tau (p-Tau), neuroinflammation, neuronal and 
synaptic loss, and, ultimately, onset of dementia [1–4]. 
Neuroimaging studies have revealed that β-amyloid 
plaques begin to deposit in the brain a decade or more 
before the onset of cognitive decline [5]. This indicates 
that therapeutics aimed at lowering Aβ, the key com-
ponent of β-amyloid plaques, would be best used pre-
symptomatically, preferably a decade or more before the 
propagation of AD pathologies. This form of prophylactic 
clinical strategy would be analogous to reducing future 
risk for heart disease by managing cholesterol levels [6].

β-amyloid deposition and tauopathy, as assessed by lev-
els of Aβ species and p-Tau (p-Tau 181, 217, 231), respec-
tively, in cerebrospinal fluid (CSF) and plasma as well as 
directly by positron emission tomography (PET), can be 
used to detect Aβ- and Tau-related neuropathology prior 
to the onset of cognitive impairment [7]. Recent studies 
have demonstrated that post-translational alterations of 
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Tau also play a role in the rate of clinical AD progression 
[8] and variability in tauopathies across brain regions of 
patients [9]. Collectively, these studies suggest that AD 
is a heterogeneous neurodegenerative condition with 
respect to both clinical presentation and progression of 
AD pathology. Thus, it is important to consider how dis-
ease heterogeneity and the temporal order of AD neu-
ropathological features impact target identification, the 
timing of treatment, and the development of therapeutics 
to reduce AD pathologies and treat cognitive symptoms.

While aging is the leading risk factor for the onset of 
AD, family history and genetic risk factors play the sec-
ond most prominent role. Genetically, AD pathology is 
a complex and heterogeneous disorder, encompassing a 
spectrum of genetic effect sizes. They range from fully or 
highly penetrant mutations causing familial AD (in the 
AD risk genes, APP, PSEN1, and PSEN2) and the com-
mon APOE ε4 allele with the most substantial impact on 
the risk on sporadic AD to variants with relatively small 
effects on the risk identified in genome-wide associa-
tions studies (GWAS) [1, 2]. GWAS has implicated many 
genes with potential roles in adaptive and innate immune 
systems (Table 1), with CD33 as the first of these genes 
shown to be associated with AD in a family-based GWAS 
[10]. This is followed by identifying other important AD-
associated genes, including TREM2, INPP5D, CLU, CR1, 
SPI1, ABCA7, EPHA1, and the MS4A cluster [3, 10–14], 
with related functions to the immune system. CLU and 
CR1, for example, are well-established AD risk genes 
and components of the complement cascade. CR1 plays 
an important role in the activation of the complement 
system, mediates microglia activity, and promotes the 
phagocytosis of immune complexes, cellular debris, and 
Aβ [15–17]. CR1’s role in AD neuropathogenesis is still 
unknown. However, GWAS variants implicating that the 
CR1 gene may lead to loss of function (LOF), a reduc-
tion of peripheral Aβ clearance by erythrocytes, and 
a dysregulation of the complement cascade, including 
effects on inflammation [16, 17]. Moreover, expression of 
the CR1 gene in several cell types, such as erythrocytes, 
lymphocytes (T and B cells), and astrocytes, indicates 
that CR1’s mechanism of action on AD might be medi-
ated through brain-resident cells and/or both periph-
eral immune cells and brain-specific cell types [18, 19]. 
Leveraging bispecific antibodies to simultaneously bind 
soluble Aβ and erythrocyte CR1 is suggested to rapidly 
decrease circulating Aβ as CR1-associated immune com-
plexes [20]. This strategy might harbor the potential to 
subsequently prevent β-amyloid deposition in AD brains 
by an overall reduction of Aβ concentration in the blood-
stream and other compartments [20]. Overall, the genetic 
heterogeneity of AD carries significant implications for 
drug development, which must be deeply considered in 

developing effective diagnostics and disease-modifying 
therapies for AD [21].

Neuroimmune interactions introduce further hetero-
geneity in the etiology and neuropathogenic course of 
AD. In fact, neuroimmune interactions have increas-
ingly emerged as a major focus in neurodegenerative 
disease research, including AD, Parkinson’s disease (PD), 
and multiple sclerosis (MS) [131]. Crosstalk between the 
brain and the peripheral immune system occurs via either 
the blood-brain barrier (BBB) [132], choroid plexus (CP) 
[133, 134], or from the meninges [135–137]. Emerging 
studies have shown that all these brain interfaces undergo 
structural and/or biological changes during aging and 
AD and can act as gateways for infiltrating peripheral 
immune cells into the brain (Fig.  1). Immunoprofiling 
studies have demonstrated heterogeneity in microglia 
[55, 138, 139] and peripheral immune cells, including 
myeloid cells [140], T cells [141, 142], and B cells [137, 
143] in AD. Recent studies have also begun to elucidate 
the role of peripheral immune cells in brain health and 
neurodegenerative disease. In addition, genes associated 
with the immune system have increasingly been asso-
ciated with AD risk in GWAS, e.g., IGHG1 (Table  1). 
However, studies to explore the disease-modifying role 
of peripheral immune cells in human brain are still at a 
relatively nascent stage. Given the compelling recent evi-
dence for a role of the peripheral immune system in the 
pathogenesis of AD, future studies are clearly required to 
fully understand the contribution of peripheral immune 
cell-related genetics and brain infiltration to brain health 
and neurodegenerative diseases.

In this review, we highlight immune signaling path-
ways and genes associated with AD risk, and interactions 
between innate and adaptive immune cells in AD. We dis-
cuss the complexities of AD at the levels of genetics and 
cellular physiology and their crosstalk with the immune 
system. We mainly delve into the litany of the role of 
peripheral immune cells in AD and the mechanisms by 
which immune cells, such as T cells, influence AD neu-
ropathogenesis (Fig. 1). Lastly, we review the challenges 
and outlook for developing immune-based therapies for 
treating and preventing AD.

Neuroimmune alterations in AD
The healthy brain is an immunologically active organ 
protected by the resident immune cells and by infiltrat-
ing peripheral immune cells [144]. Recent discoveries 
have highlighted alterations in brain-resident (microglia) 
and peripheral immune cells (neutrophils, monocytes, T 
cells, and B cells) as well as crosstalk between innate and 
adaptive immune cells in the development of AD neuro-
pathology [145–151]. Under homeostatic conditions, it 
is now clear that the adaptive immune system is present. 
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Table 1  Genome-wide significant AD-associated genes with potential roles in innate and adaptive immunity

Chr Gene Immune-related function References

1 ADAMTS4 Immunomodulator Jansen et al., 2019 [22]; Redondo-García et al., 2021 [23]

1 AGRN Survival and function of monocytes Mazzon et al., 2012 [24]

1 CR1 Immunity—e.g., microglial phagocytosis and clearance of com‑
plement opsonized molecules

Lambert et al., 2009 [25]; Borucki et al., 2020 [26]

1 PSEN2 Innate immune system Agrawal et al., 2016 [27]; Nam et al., 2022 [28]; Fung et al., 2020 
[29]; Mendez et al., 2017 [30]

1 SORT1 Monocytes and T cells Bellenguez et al., 2022 [31]; Herda et al., 2012 [32]; Mortensen 
et al., 2014 [33]

2 ADAM17 T cell response Lambrecht et al., 2018 [34]

2 BIN1 Pro-inflammatory response; endocytosis and phagocytosis Seshadri et al., 2010 [35], Sudwarts et al., 2022 [36]

2 FHL2 Wound healing and inflammation Nordhoff et al., 2012 [37]; Wixler et al., 2019 [38]

2 INPP5D Immunity and microglia function Efthymiou and Goate, 2017 [19]; Lambert et al., 2013 [39]

2 SPRED2 NK cells; cytokine/chemokine production Itakura et al., 2017 [40]

2 PRKD3 Thymic selection during T cell development Ishikawa et al., 2016 [41]

3 IL17RD Cytokines Brigas et al., 2021 [42]; Girondel et al., 2021 [43]

3 MME Neutrophils Schulte-Schrepping et al., 2020 [44]

4 CLNK Immune cell-specific adaptors Utting et al., 2004 [45]

4 RHOH TCR signaling Gu et al., 2006 [46]

4 SCARB2 IFN-I production and cholesterol regulation Guo et al., 2015 [47]; Heybrock et al., 2019 [48]

5 APC T cell migration Mastrogiovanni et al., 2022 [49]

5 HAVCR2 Viral receptor; T cells Zhai et al., 2021 [50]; Wightman et al., 2021 [51]

5 HBEGF T cells Macdonald et al., 2021 [52]

5 MEF2C B cell proliferation, regulate microglia, and antigen presenta‑
tion

Sao et al., 2018 [53]

5 PFDN1/HBEGF Macrophage-mediated cellular proliferation Higashiyama et al., 1991 [54]

5 RASGEF1C Macrophages; microglia Srinivasan et al., 2020 [55]

5 TNIP1 NF-κB regulation G’Sell et al., 2016 [56]; Gurevich et al., 2011 [57]

6 CD2AP T lymphocyte Raju et al., 2018 [58]; Tao et al., 2019 [59]

6 HLA-DRB5/
HLA-DRB1

Immunity—e.g., antigen presentation Lambert et al., 2013 [39]; Lu et al., 2017 [60]

6 TREM2 Phagocytosis, and cellular metabolism in myeloid cells, micro‑
glia activation as well as binding to Aβ

Griciuc et al., 2019 [61]; Guerreiro et al., 2013 [13]; Jonsson et al., 
2013 [14]; Kunkle et al., 2019 [62]; Bis et al., 2020 [63]; Sims et al., 
2017 [64]

7 EPHA1 Immunity, BBB permeability, and immune cell trafficking Ivanov et al., 2006 [65]; Chen et al., 2018 [66]

7 IKZF1 T/B cell dysregulation Hoshino et al., 2022 [67]

7 PILRA Immunoglobulin receptor; viral receptor Agostini et al., 2019 [68]

7 SEC61G Antigen presentation Zehner et al., 2015 [69]

7 TMEM106B Innate immune system Rhinn et al., 2017 [70]

8 CLU Immunity, binding to Aβ, and inhibition of complement system Tschopp et al., 1993 [71]; Lambert et al., 2009 [25]; Zhao et al., 
2015 [72]

8 CTSB Immune cell infiltration Ma et al., 2022 [73]; Ha et al., 2008 [74]

8 PTK2B Spreading, migration, and function of immune cells Okigaki et al., 2003 [75]; Lambert et al., 2013 [39]

8 SHARPIN Neuroinflammation and NF-κB activation Asanomi et al., 2019 [76]

9 ABCA1 Immune modulation; myeloid cells; dendritic cells Zamanian-Daryoush et al., 2017 [77]; Westerterp et al., 2017 [78]

10 BLNK B cell linker Fu et al., 1998 [79]; Han et al., 2016 [80]

10 ECHDC3 NK, monocyte differentiation, cell infiltration Zhao et al., 2022 [81]

10 TSPAN14 Mast cell function Orinska et al., 2020 [82]

11 MS4A Expressed in immune cells, TREM2 regulation, phagocytosis, 
regulation of complement system

Deming et al., 2019 [83]; Kuek et al., 2016 [84]

11 PICALM Endocytosis and Aβ clearance Zhao et al., 2015 [72]; Harold et al., 2009 [85]

11 SORL1 Microglia, monocyte migration, pro-inflammatory cytokines 
regulation and phagocytosis

Talbot et al., 2018 [86]; Knupp et al., 2020 [87]
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Though low in levels, adaptive immune cells, including 
T cells and B cells, can enter the brain meninges, occupy 
the dura through skull channels—and play crucial roles 
in brain maintenance, including neuronal function, brain 
development, and spatial learning [152], mainly due to 
cytokines released from T cells, including interleukin-4 
(IL-4), IL-17, and IFN-γ [153]. It has been shown that 
a deficiency of IL-4-producing T cells in the meninges 
[154] or an excess of these cells in choroid plexus during 
aging [155] negatively impacts the brain, emphasizing the 
importance of the adaptive immune system contributing 

to brain function and maintenance during homeostatic 
conditions. A recent study on the increased clonal expan-
sion and elevated T cell activation in cytotoxic CD8+ T 
cells in brains of mild cognitive impairment (MCI) and 
AD highlight the potential disease-modifying roles of 
T cells in AD [142]. However, it is yet to be determined 
whether cytotoxic T cells have a pathogenic role in AD 
patients. Another possibility is that under disease con-
ditions, such as AD, subsequential damage to the BBB 
due to the pathological changes may lead to gliosis and 
infiltration of CD8+ T cells from blood and border 

The selected genes were implicated based on independent genetic loci with genome-wide significance in at least one GWAS in AD [12, 22, 25, 31, 39, 51, 85, 127–130] 
and a potential role in the immune system. IFN-I type I interferon; NK cell natural killer cell; TCR​ T cell receptor; MHC major histocompatibility complex; NF-κB nuclear 
factor kappa B; LUBAC linear ubiquitination assembly complex

Table 1  (continued)

Chr Gene Immune-related function References

11 SPI1 PU.1, altered microglia function Jones et al., 2021 [88]

12 TPCN1 Antigen-presenting cells He et al., 2020 [89]

14 FERMT2 Immune cell infiltration Su et al., 2021 [90]

14 IGHG1 Antigen and immunoglobulin receptor binding activity Lekhraj et al., 2022 [91]

14 PSEN1 Microglial hyperactivation Lee et al., 2002 [92]

15 ADAM10 Immune cell function Lambrecht et al., 2018 [34]

15 CTSH Autoimmune inflammation, macrophages and phagocytosis, 
cytokines

Faraco et al., 2013 [93]; Conus et al., 2010 [94]; Zavašnik-Bergant 
et al., 2004 [95], Li et al., 2010 [96]

15 IGF1R Stimulates regulatory T cells, autoimmunity Bilbao et al., 2014 [97]; Andersson et al., 2018 [98]

15 RORA Inflammatory response; lymphoid cell development; T cell 
survival; autoimmunity and chronic inflammatory response

Oh et al., 2019 [99]; Lo et al., 2016 [100]; Chi et al., 2021 [101]; 
Wang et al., 2021 [102]

15 SPPL2A Catalyzes the intramembrane cleavage of the anchored frag‑
ment of shed TNF-α

Fluhrer et al., 2006 [103]

16 IL34 Proliferation, survival and differentiation of monocytes and 
macrophages

Foucher et al., 2013 [104]; Lin et al., 2008 [105]

16 KAT8 Viral immunity Huai et al., 2019 [106]

16 MAF Regulates IL-10 Gabryšová et al., 2018 [107]

16 PLCG2 Involved in multiple pathways in immune cells Sims et al., 2017 [64]; Magno et al., 2021 [108]

16 ZNF423 B cell differentiation Harder et al., 2013 [109]

17 ABI3 Immunity, regulation of actin polymerization, and microglia 
function

Sims et al., 2017 [64]; Satoh et al., 2017 [110]

17 ACE Innate and adaptive immune system Bernstein et al., 2018 [111]

17 SCIMP MHC class II signaling transduction Draber et al., 2011 [112]

17 TSPOAP1 Microglia-associated gene; IFN signaling Bhatt et al., 2020 [113]

19 ABCA7 Microglia Aβ clearance and cholesterol metabolism Hollingworth et al., 2011 [11]; Kim et al., 2006 [114]; Steinberg 
et al., 2015 [115]

19 APOE Lipid metabolism; T cell activation Saunders et al., 1993 [116]; Bonacina et al., 2018 [117]

19 CD33 Immunity, phagocytosis, and transmembrane receptor in 
myeloid cells

Bertram et al., 2008 [10]; Griciuc et al., 2013 [118]; Griciuc et al., 
2019 [61]; Crocker et al., 2007 [119]

19 LILRB2 Immunoglobulin-like receptor; influence immune activation Deng et al., 2021 [120]

20 RBCK1 Immunodeficiency disorders; LUBAC inhibits TNF-α signaling, 
dousing inflammation

Boisson et al., 2012 [121]; Bellenguez et al., 2022 [31]

20 CASS4 Eosinophil asthma response Esnault et al., 2013 [122]

21 ADAMTS1 Immunomodulator Rodríguez-Baena et al., 2018 [123]; Kunkle et al., 2019 [62]

21 APP Antimicrobial peptide Kumar et al., 2016 [124]; Eimer et al., 2018 [125]; Jonsson et al., 
2012 [126]
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zones into the brain parenchyma and subsequent T cell 
receptor (TCR) clonal expansion. However, it is not fully 
known whether peripheral CD8+ T cells can cross the 
BBB and infiltrate into the AD brain parenchyma. In 
addition, reduced levels of circulating IFN-γ-secreting 
T cells were linked with age-related cognitive decline in 
mice [156]. Similarly, lower levels of IFN-γ in the plasma 
of AD patients were associated with progression of cog-
nitive deficiency [157]. While the underlying mecha-
nisms of increased infiltration of adaptive immune cells 
in neurodegenerative diseases and aging remain to be 
elucidated, the role of infiltrating T cells on disease pro-
gression differs extensively depending on the specific 
neurodegenerative disease under investigation and their 

functional programming [153]. In this section, we sum-
marize the current status of research on the role of innate 
and adaptive immunity and crosstalk between these sys-
tems (Fig. 1) in the AD brain.

Microglial activation in AD
Microglia, the primary innate immune cells of the brain 
are crucial for local immune defense, clearing debris 
and toxins, as well as for maintaining brain homeosta-
sis [158]. Microglia are also critical during brain devel-
opment, for maintenance of neuronal networks, and 
for repair following injury or infection [159, 160]. Like 
sentinels, ramified microglia constantly survey their 

Fig. 1   Neuroimmune interactions in AD neuropathology. AD is a heterogeneous and multifactorial complex neurodegenerative disease that is 
characterized by the abnormal aggregation of extracellular β-amyloid plaques and intracellular neurofibrillary tangles. This leads to neuronal cell 
death, synaptic degradation, and gliosis (microglia and astrocytes), further exacerbating neurodegeneration and ultimately leading to dementia. 
Under homeostatic conditions, microglia have a predominantly protective role, including phagocytosis and degradation of Aβ, secretion of 
anti-inflammatory cytokines, and neural network remodeling. However, excessive β-amyloid deposition and neuronal cell death can trigger 
robust pro-neuroinflammatory activation of microglia, leading to the release of pro-inflammatory cytokines and complement. A vicious cycle of 
neuropathology, pro-inflammatory glial activation, and excessive neurodegeneration ensues. This pathological cycle affects the BBB integrity and 
lymphatic drainage, which leads to immune cell infiltration (e.g., T cells) in the brain parenchyma and border zone, immune cell activation, antigen 
accumulation, and TCR clonal expansion. In this neuroimmune axis model, immunopathogenesis changes can therefore serve as a foundation for 
designing and developing of disease-modifying therapies for AD. APC, antigen-presenting cells; TCR, T cell receptor
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environment for detrimental signals and switch rapidly 
to an activated state upon sensing signals indicative of 
damage, infection, and other pathological conditions 
[161]. With regard to AD neuropathogenesis, microglial 
cells play a variety of roles. Conventionally, microglia, 
like macrophages, have been oversimplistically divided 
into M1 type (pro-inflammatory) and M2 type (neuro-
protective) [162, 163]. However, single-cell transcrip-
tomic and detailed proteomic studies have revised this 
simple dichotomy by revealing many functionally distinct 
microglial cell populations covering a spectrum of activi-
ties in the healthy brain and in the progression of AD 
[164]. This includes disease-related microglial cells such 
as disease-associated microglia (DAM) [165], microglia 
neurodegenerative phenotype (MGnD) [166], morpho-
logically activated microglia (PAM) [167], and a multi-
tude of unnamed subsets [164].

DAM are characterized by substantially low expres-
sion of homeostatic genes and upregulated expression of 
genes involved in neurodegenerative diseases, including 
AD and amyotrophic lateral sclerosis (ALS) [165, 166, 
168]. Interestingly, genes upregulated in DAM include 
several known AD-related genes such as APOE [169], 
CTSD [170], LPL [171], TYROBP [172], and TREM2 [13, 
14, 62, 173]. Major players in converting homeostatic 
microglia to MGnD are controlled by the APOE/TREM2/
CD33 pathways [166]. The molecular DAM signature 
is defined by upregulated expression of genes related to 
phagocytosis, chemotaxis, and release of cytokines upon 
neuronal injury and is accompanied by a suppression of 
homeostatic genes [166, 174]. Furthermore, the PAM 
population is associated with Aβ and Tau pathology and 
the progression of cognitive decline [167, 175]. None-
theless, microglia functional and phenotypic conversion 
in AD development and progression has yet to be fully 
understood with regard to distinguishing between pro-
tective and detrimental microglial function.

One of the classic pathological features of AD is 
nebulously referred to as “microglial activation”, which 
can be observed over the course of AD neuropathogen-
esis, possibly even a decade before the onset of clini-
cal symptoms when deposition of β-amyloid plaques 
first takes place [176]. Increased microglial activation 
and the transition to DAM can either lead to a neuro-
protective effect through Aβ clearance in the early and 
asymptomatic stages or, as AD pathology progresses, 
to a persistent inflammatory response leading to neu-
rodegeneration [177]. In mice and AD patients, DAM 
colocalize with β-amyloid deposits. It has also been 
shown that DAM can even form a barrier to reduce fur-
ther deposition of plaques [178, 179] and actively par-
ticipate in the disassembly and digestion of β-amyloid 
plaques [165]. However, this process of colocalization 

can also trigger pro-inflammatory microglial activation 
and release of pro-inflammatory cytokines. The transi-
tion into MGnD is driven by an increase of APOE fol-
lowed by an upregulation of CLEC7A expression and a 
further suppression of homeostatic genes [166]. MGnD 
are induced by phagocytosis of apoptotic neurons and 
colocalize with neuritic plaques, which are a hallmark 
of neurodegeneration in AD [166]. Microglia can also 
exacerbate the propagation of β-amyloid plaques by 
triggering the NLRP3 inflammasome and release of 
apoptosis-associated speck-like protein containing a 
C-terminal caspase recruitment domain (ASC specks), 
which quickly bind and cross-seed Aβ peptides extra-
cellularly [180].

Microglia have also been shown to play a role in phago-
cytosis and propagation, e.g., via exosome secretion of 
p-Tau [181, 182]. For instance, chronic microglial acti-
vation, induced by excessive deposition of β-amyloid or 
by localized events of neurodegeneration, can lead to 
both a maladapted inflammatory response and the intra-
neuronal accumulation of p-Tau [183]. The presence 
of pathogenic p-Tau aggregates can further exacerbate 
pro-inflammatory microglial activation, including gen-
eration and release of pro-inflammatory cytokines [184, 
185]. This can then trigger the activation of neuronal 
p38 mitogen-activated protein kinase (p38 MAPK), and 
further stimulation of Tau hyperphosphorylation [186], 
leading to a vicious cycle of p-Tau formation, neurode-
generation, and pro-inflammatory microglial activation/
neuroinflammation.

Recent studies show that the AD-associated gene, CD33 
[10] promotes pro-inflammatory activation of microglia 
while TREM2 promotes phagocytosis and clearance of 
debris, including Aβ [61, 118]. In addition to this oppos-
ing modulation of microglia activation by CD33 and 
TREM2, the microglial cytosolic protein SHIP1, encoded 
by the AD-associated gene INPP5D is linked to TREM2-
signaling and is more highly expressed in plaque-associ-
ated microglia and during progression of AD. Inhibition 
of Inpp5d in 5XFAD mice revealed that it also regulates 
Aβ pathology and is associated with plaque density [187]. 
TREM2-dependent upregulation of genes related to 
phagocytosis and lipid metabolism results in modulating 
the neuroprotective function of DAM and therefore rep-
resents promising targets for enhancing beneficial micro-
glial function and reducing neuroinflammatory events 
[3]. Moreover, increased CSF soluble TREM2 (sTREM2) 
and reduced AD risk and age-at-onset are associated 
with common variants in the AD-associated MS4A gene 
cluster [83]. Activating TREM2 or inhibiting CD33 with 
humanized antibodies are strategies currently under-
way in AD clinical trials and represent new therapeutic 
approaches to treating and preventing AD.
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In addition to risk gene identification by GWAS, the 
integration of a multi-omic dataset allows fine mapping 
of AD risk loci. For instance, examining the population-
level variation of gene expression and incorporating 
chromatin accessibility could verify previously impli-
cated AD risk genes and identify putative AD genes for 
loci harboring multiple candidate genes (e.g., MS4A4E 
in the MS4A gene cluster) [188]. Such approaches could 
provide support for the microglial PU.1 transcription fac-
tor that has previously been associated with increased 
AD risk [189, 190]. The PU.1 downstream target genes 
have a predominantly immune function, in particular, the 
contributions of myeloid-/leukocyte-related processes 
were strongly highlighted [188]. This resource for human 
microglia-specific regulation of transcription provides 
further evidence for the critical role of microglia in AD. 
The functional phenotypes of microglia and their multi-
dimensional roles in the etiological and neuropathogenic 
processes underlying AD are still not very well under-
stood. However, identification of critical genes and path-
ways continues to be driven by a growing sample size in 
genetic studies, advances in multi-omic data integration, 
and targeted functional follow-up analyses. Eventually, 
these studies will help improve our understanding of 
microglial contribution to AD and pave the way for new 
avenues in developing better therapeutics.

CNS interfaces and peripheral immune cell 
infiltration
Crosstalk between the brain and the peripheral immune 
system occurs via three possible routes: (i) BBB, which 
provides an interface between the brain and circulation; 
emerging studies demonstrate the  BBB breakdown and 
dysfunction in AD [132], (ii) choroid plexus (CP), which 
provides an interface between the blood and the CSF and 
acts as a gateway for bone-marrow-derived immune cell 
entry into the brain [133, 134], and (iii) meninges, an 
immune-blood-brain interface that allows immune cells 
to bypass the BBB and enter to the brain through special-
ized skull bone marrow channels [135, 136]. Changes in 
these CNS borders with advancing age could etiologically 
initiate disease pathology or exacerbate neuropathogen-
esis. CP dysfunction exhibits fibrosis, an increase in type 
I interferons (IFN) and local neuroinflammation, and 
impaired CP transportation function reduces Aβ clear-
ance in the AD brain [134, 156, 191, 192]. Evidence for 
T cell infiltration into the brain parenchyma through 
meningeal lymphatic vessels suggests a broader role for 
peripheral immune cells in both healthy and diseased 
brains [193, 194].

Moreover, recent insights into the functions and com-
munications between the glymphatic system and menin-
geal lymphatics in CNS disorders have recognized new 

important players in neurophysiology [195, 196]. Based 
on the lymphatic system, CSF flows directionally within 
the brain leading to non-selective clearance of metabolic 
wastes, including Aβ and Tau [197–200]. Disturbances in 
glymphatic efflux due to, e.g., sleep disorders or chroni-
cally impaired glymphatic system have been associated 
with neurodegenerative diseases such as AD [195, 201–
204]. Reduction in meningeal lymphatic drainage has 
also been linked with aging-associated cognitive decline 
and an impaired glymphatic system to recirculate CSF 
through the brain [193, 205]. On the basis of these find-
ings, an aging-related deficit in C-C chemokine receptor 
type 7 (CCR7) contributes to a reduction in glymphatic 
influx, cognition, and increased β-amyloid deposits in 
the brain of 5XFAD mice [206]. It is out of the scope 
of this review to delve into the immune cell compart-
mentalization and their changes with brain aging and 
neurodegenerative diseases, which has been recently 
reviewed elsewhere [144]. We, therefore, in the fol-
lowing sections, focused on discussing recent findings 
on infiltrating peripheral immune cells (Table  2), and 
their beneficial/detrimental implications in AD-related 
neurodegeneration.

BBB breakdown during AD pathogenesis
As mentioned above, one possible communication route 
between the CNS and periphery is the BBB, which com-
prises various cell types, including endothelial cells, 
astrocytes, pericytes, and smooth muscle cells [230]. 
The BBB protects the central compartment by selective 
regulation and transportation of neurotoxins and serum 
factors via specialized tight junctions and transporters 
[231]. Vascular contributions to dementia and AD are 
increasingly being elucidated [132, 232–236]. In experi-
mental imaging and pathological and epidemiological 
studies, dysfunction in the BBB and each of the cellular 
components of the neurovasculature have been linked to 
AD. These observations have led to the “AD neurovas-
cular hypothesis,” which suggests that cerebrovascular 
impairment contributes to and perhaps even initiates 
AD pathogenesis and cognitive decline. Vascular dys-
function in AD accelerates BBB breakdown [237–242], 
degeneration of pericytes [237, 240, 243, 244], and reduc-
tion of BBB-associated cells that maintain integrity [239, 
243, 245–251]. The presence of vascular Aβ pathology, 
also called cerebral amyloid angiopathy (CAA), predis-
poses toward neurovascular impairment and, sometimes, 
stroke [252]. Recent studies have suggested that BBB dys-
function is correlated with human cognitive impairment 
[239], including the early clinical stages of AD, and is 
considered as an early biomarker of the disease [132, 235, 
253, 254]. Moreover, the identification of BBB impair-
ment as an aging risk factor has been connected to the 
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presence of peripheral immune cells, e.g., T cells, in the 
brains of the elderly and patients with age-associated 
neurodegenerative diseases [132, 255–259]. Pathogenic 
infiltration of peripheral immune cells into the brain 
parenchyma may lead to exacerbation of AD pathology 
[146, 149, 256]. Thus, reducing BBB breakdown could 
serve as a potentially useful therapeutic approach for lim-
iting the infiltration of detrimental peripheral immune 
cells into the CNS.

Peripheral innate immunity in AD
Neutrophils are considered the first line of defense in our 
body during pathological conditions. Infiltrating neutro-
phils found in the brains of AD patients and transgenic 
animal models (Table 2) [207, 260] have attracted grow-
ing interest in the last few years in MS and AD [261]. In 
the blood, the neutrophil:lymphocyte ratio has been cor-
related with cognitive decline in AD [262, 263]. A limited 
number of studies demonstrated that neutrophils may 
contribute to the early stages of AD by mediating BBB 
damage, intravascular adhesion, and invasion of the CNS 
[207]. Infiltrating neutrophils also induce neurotoxic-
ity by releasing IL-17, a cytotoxic cytokine for neuronal 
cells and mediating BBB breakdown [264], neutrophils 
extracellular traps (NETs), and myeloperoxidase (MPO) 
[207]. Moreover, depletion of infiltrating neutrophils 
using anti–Ly 6G or anti–Gr-1 antibody in two mouse 
models of AD (5XFAD and 3xTg mice) has been shown 
to significantly reduce the amyloid burden and microglial 
activation and improve performance in the Y-maze spon-
taneous alternation task and contextual fear-conditioning 
test [207], suggesting that neutrophils can play an impor-
tant role in the development of AD.

Although a handful of studies suggest that pro-inflam-
matory, CNS-infiltrating neutrophils are detrimental in 
AD, the field would benefit from a deeper understand-
ing of the causal role of neutrophils, their pathological 
pathways and mechanisms of action in the process of 
AD-related neuropathogenesis. A recent study identi-
fied a unique subset of neutrophils that can promote 
neuronal survival in the CNS [265]; the salutary effects 
of this subset of neutrophils could be therapeutically 
employed in various neurological disorders, including 
AD. How neutrophils infiltrate the brain and the factors 
that determine whether they are detrimental or protec-
tive are pivotal questions that need to be explored to gain 
a deeper insight into AD pathogenesis. Moreover, there is 
a dire need to understand the interactions between infil-
trating neutrophils and brain-resident cells, which could 
offer new avenues for treating and preventing AD.

Another innate immune cell population consists of 
monocytes, which are found peripherally and less often 
in the CNS. Circulating monocytes are heterogeneous 

cells divided into multiple subsets with different sur-
face markers, heterogeneous transcriptional profiles, 
and different functions. In AD transgenic mouse models 
(APP/PS1 and 5XFAD), circulating monocytes (CD14+/
CD16−) can infiltrate the brain (Table 2), reduce Aβ bur-
den, and improve cognitive performance [208, 212], sug-
gesting a beneficial disease-modifying role for these cells 
in AD pathology. The C-C motif chemokine receptor 2 
(CCR2) plays a vital role in the recruitment of monocytes 
into the CNS. CCR2 blockade in transgenic mouse mod-
els of AD (Appswe/PS1 and Tg2576) led to detrimental 
effects—increased β-amyloid pathology and exacerbated 
memory deficits [266, 267]. Live two-photon imaging 
studies have shown that patrolling monocytes crawl onto 
luminal walls of Aβ+ veins, internalize Aβ and circulate 
back into the bloodstream, suggesting that monocytes 
play a role in the clearance of vascular Aβ in AD [211]. 
Monocyte-mediated clearance of Aβ may constitute a 
unique therapeutic approach for reducing AD pathology 
using circulating monocytes.

Other studies have shown that blocking transforming 
growth factor-β (TGF-β) signaling on peripheral mac-
rophages results in substantial infiltration and clear-
ance of cerebral Aβ in the Tg2576 mouse model of AD, 
suggesting another potential anti-amyloid therapeutic 
approach [210]. It is important to note that while circu-
lating monocytes can infiltrate the brain and eliminate 
debris such as cerebral deposits of Aβ, these cells are dra-
matically less effective in clearing pathology in AD with 
limited phagocytic ability and phenotypes that have been 
modulated toward pro-inflammatory conditions com-
pared to monocytes of healthy controls [268]. This is in 
line with human studies, in which peripheral monocytes 
reveal reduced capacity for Aβ uptake and phagocytosis 
[268]. Collectively, these results indicate that the impact 
of chronic neuroinflammatory diseases such as AD on 
circulating monocytes is still unclear. Additional stud-
ies are needed to determine the direct role of circulating 
monocytes in AD, which may provide a deeper under-
standing of the underlying mechanisms of AD patho-
genesis and lead to novel therapeutic targets for AD and 
other neurodegenerative diseases.

The contribution of adaptive immunity to AD 
pathogenesis
T lymphocytes are a pivotal part of the adaptive immune 
system, and cumulative evidence suggests that adaptive 
immune cells influence the pathophysiology of neuro-
degenerative diseases such as AD. Post-mortem brains 
from AD patients and corresponding AD-like animal 
models reveal that CD4+ and CD8+ T cells infiltrate the 
AD brain (Table  2) [142, 213–222]. However, their pre-
cise role in AD pathogenesis remains unclear. Although 
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the pathogenic role of infiltrating CD4+ T cells has 
been controversial in different neurological disorders, 
there are only a handful of studies that have revealed a 
beneficial role of infiltrating CD4+ T cells into the brain 
parenchyma that target β-amyloid plaques, promoting 
Aβ clearance and neuronal repair [269]. The mecha-
nisms underlying CD4+ T cell infiltration and activation 
in AD brain are unclear. Additional studies are required 
to identify underlying mechanisms of infiltrating CD4+ 
T cells in the course of AD and whether their infiltration 
has a beneficial impact on the disease pathology. Limited 
observations revealed that α4-integrins on the surface of 
peripheral CD4+ T cells are highly expressed in the 3xTg 
mouse model versus wild type, and these cells infiltrate 
near vascular cell adhesion protein 1 (VCAM-1)+ cer-
ebral vessels [226]. Blockade of α4β1 integrin-VCAM-1 
signaling reduced leukocyte adhesion to cerebral vessels 
and activated microglial cells, and improved memory in 
the 3xTg mouse model, suggesting a detrimental role of 
CD4+ T cells, in contrast to previous studies [226]. The 
harmful effect of CD4+ T lymphocytes in the pathogen-
esis of AD was also demonstrated via infiltration of T 
helper 17 (TH17) cells, a subtype of CD4+ T cells into the 
brain parenchyma, resulting in an increased level of IL-17 
and IL-22 cytokines in the CSF, serum, and hippocampus 
of AD models. Infiltrating TH17 cells also lead to neu-
ronal apoptosis [225]. Interestingly, serum levels of IL-17 
in AD patients have been shown to be elevated [270, 271], 
and similar observations of infiltrating TH17 cells into the 
brain and increased levels of IL-17 in the CSF and blood 
have been reported in MS patients [272–274].

The impact of CD4+ T cells on neurodegeneration 
varies depending mostly on their subsets. Regulatory T 
(Treg) cells have been associated with diverse neuroin-
flammatory and neurodegenerative diseases such as AD 
due to their regulatory characteristics. However, their 
contribution to AD neuropathogenesis remains con-
troversial. Depletion of Treg cells in the APP/PS1 mouse 
model reduced recruitment of β-amyloid plaque-asso-
ciated microglial cells and accelerated cognitive impair-
ment [228]. By contrast, depletion of Treg cells in the 
5XFAD mouse model has been linked with clearance of 
β-amyloid plaques and increased recruitment of immune 
cells through the CP [227]. In this line and to specifi-
cally amplify Treg cell populations, treatment of APP/PS1 
AD mice with low-dose peripheral IL-2 administration 
increased microglia recruitment to β-amyloid plaques 
and restored memory function [228]. Collectively, these 
studies suggest that Treg cells play an important role 
at the early stages of AD in regulating resident micro-
glial cell-mediated clearance of parenchymal deposits of 
β-amyloid. However, additional studies are necessary to 
dissect the precise role of Treg cells in AD etiology, their 

underlying mechanisms and whether therapeutic modu-
lation of Treg cells in AD is beneficial.

Human studies and AD transgenic animal models have 
shown that infiltration of cytotoxic CD8+ T cells cor-
relates with a worsening disease, suggesting a role for 
these cells in AD pathogenesis [213, 214, 216]. Blood 
immune profiling of AD patients and healthy indi-
viduals has revealed a higher percentage of activated 
HLA-DR+ CD8+ T cells and augmented release of 
pro-inflammatory cytokines [142, 275], suggesting that 
circulating cytotoxic T cells are activated in the blood 
of AD patients. Notably, a recent study powerfully dem-
onstrated the clonal expansion of CD8+ T cells in the 
brains/CSF of MCI and AD patients, indicating CD8+ 
T cells may impact neurodegeneration and/or cogni-
tive impairment in AD [142]. Collectively, these findings 
underscore the critical pathogenic roles of infiltrating T 
cells in AD. However, to date, these studies have not yet 
provided direct causative evidence for infiltrating T cells 
playing an etiological or disease-modifying role in AD. 
This is partially due to a lack of a comprehensive disease 
model that recapitulates T cell infiltration and interac-
tion with human brain cells with different human genetic 
backgrounds.

T cells and microglia crosstalk has been shown to help 
maintain homeostasis and shape neuropathology during 
chronic neurodegeneration [276]. Several studies have 
suggested that crosstalk between microglia and infil-
trating CD4+ T cells plays a critical role in orchestrat-
ing immunoregulatory mechanisms in AD pathogenesis 
[223, 224]. For example, Aβ-specific CD4+ T helper 1 
(TH1) cells induce a major histocompatibility complex 
class II (MHC II)+ population of microglia that abrogate 
AD-like pathology in the 5XFAD mouse model, likely due 
to interferon gamma (IFN-γ ) cytokine signaling [223]. In 
contrast, injecting Aβ-specific CD4+ TH1 and TH17 Teff 
cells into the brains of APP/PS1 mice has been shown 
to exacerbate Aβ burden, microgliosis, neuroinflamma-
tion, and cognitive impairment [224]. Given the obser-
vation of Treg deficits in AD, this may be partially due to 
breaking immune tolerance by limiting Treg cells in the 
circulation and CNS, thus compromising Treg immuno-
suppressive functions [228]. These studies underscore a 
critical and complex disease-modifying role for CD4+ 
T cells in AD pathogenesis. Additionally, few other stud-
ies revealed the role of microglia as antigen-presenting 
cells (APCs) to mediate CD8+ T cell infiltration during 
viral infection [218, 277, 278], which might be relevant 
to neurodegenerative diseases, including AD and PD. 
To assess whether age-related T cell infiltration is due to 
passive extravasation or promoted by microglia as APCs 
via MHC II receptors, a study using monkeys found that 
T cell entry into the brain is correlated with activated 
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microglial cells and cognitive impairment [279]. This can 
go in the other direction in which infiltrating T cells pos-
sibly alter microglia phenotypes, neuroinflammation, and 
neurodegeneration. Thus, it will be important to investi-
gate the impact of the peripheral immune cells, including 
infiltrating CD8+ T cells and different subsets of CD4+ 
T cells, as well as other cells, on microglia and their inter-
action consequences on neuronal cells during AD patho-
genesis [280].

In contrast to T cells, the role of B cells and their 
involvement in AD has been relatively less explored. 
Mature B cells have been reported in the brains of AD 
transgenic mice using single-cell RNA sequencing data 
[173]. Consistent with this observation, recent evidence 
reveals infiltration of B cells into the brain parenchyma 
of 3xTg AD mouse model (Table 2), which results in ele-
vated IgG around β-amyloid plaques, activated microglial 
cells, and has been linked to heightened progression of 
AD pathology [229]. Depletion or inactivation of B cells 
at the early stages of AD pathology in transgenic AD 
mice has demonstrated beneficial therapeutic impact by 
restoring TGF-β+ microglia, which have enhanced abil-
ity to clear Aβ oligomers and slow down the progression 
of AD. The loss of B cells has been shown to significantly 
reduce β-amyloid plaque burden and reverse behavio-
ral and memory deficits in the 3xTg AD mouse model 
[229]. This study suggested that while B cells infiltrating 
the brain parenchyma can produce what may be benefi-
cial IgG around β-amyloid plaques, they also exacerbate 
the manifestation of AD-like pathology. Although the 
exact role of B cells in AD neuropathogenesis is still in 
its infancy, depletion of a specific subset of infiltrating 
B cells may offer a unique disease-modifying treatment 
similar to the use of anti-CD20 antibodies in relapsing-
remitting and primary progressive MS [281, 282]. The 
dominant mode of action of most of these antibodies is 
through selective immunosuppression of pathogenic 
immune cells (B cells and a small population of T cells), 
for instance, by blocking α4β1 integrins to halt infiltra-
tion of these immune cells to the CNS [283, 284]. Of note 
that these immunotherapies are effective in controlling 
inflammation in MS patients with ongoing inflammation, 
but they fail to halt the disease progression, and their 
effects are often short-lived [285]. Decelerating the mul-
tifaceted vicious cycle of AD neuropathology will be even 
more challenging.

Role of systemic inflammation in AD
Aging has been linked to alterations in the systemic 
immune system associated with an increased frequency 
of inflammation and infection [149]. Emerging evi-
dence suggests that manifestations beyond the brain 
include systemic inflammatory events (e.g., circulating 

pro-inflammatory cytokines and chemokines or common 
cold), early-life or long-life exposure to infection agents 
(e.g., herpes simplex virus and Chlamydophila pneumo-
nia), or critical disease (e.g., sepsis) have been associated 
with an increased risk of developing AD and cognitive 
decline [286]. Investigating this periphery-brain interac-
tion may provide new insights into the understanding of 
AD pathogenesis. It could offer great promise for novel 
therapeutic and diagnostic approaches. Studies have sug-
gested that even a single recent infection can modulate 
peripheral immune-brain communication and accelerate 
cognitive decline in AD patients and elderly adults [287–
289]. For example, increased serum levels of pro-inflam-
matory cytokines tumor necrosis factor–α (TNFα) and 
IL-6 are directly linked with neuropsychiatric features 
in AD [289], suggesting that such systemic inflamma-
tory events may further promote the disease progression. 
TNFα and vascular endothelial growth factor (VEGF) 
in combination with Aβ1-42 were also found to reduce 
viability of neurons in culture [290]. A study performed 
in the Han Chinese population found increased serum 
levels of IL-18, IL-23, and IL-17 in AD patients com-
pared to healthy controls [271]. This observation also 
confirmed in APP/PS1 mice, where it was found that 
increased level of IL12/IL23 subunit p40 correlates with 
reduced amyloid burden in APP/PS1 mice lacking IL-12 
and IL-23 [291]. Furthermore, a significant linear correla-
tion of cognitive performance and CSF p40 values in AD 
and control subjects were observed [291], indicating that 
IL12/IL23 signaling plays a crucial role in regulating not 
only the amount of β-amyloid plaques, but also cognitive 
impairment.

In contrast to the results from previous observations 
regarding TNFα, IL-6, and IL-12, we have recently shown 
that increased plasma levels of the pro-inflammatory 
cytokines, IL-12, and IFN-γ have been associated with a 
healthier cognitive trajectory in normal non-demented 
elderly, particularly in those with β-amyloid-positive 
brains [157]. Increased levels of these two cytokines 
would be expected to ramp up T cell-macrophage inter-
actions leading to enhanced defense against infection. 
Given our recent findings showing that Aβ is an antimi-
crobial peptide, this is particularly interesting in view 
of the antimicrobial protection hypothesis of AD [292], 
which posits Aβ aggregation and subsequent β-amyloid 
deposition can be triggered by microbial infection in 
the brain. Perhaps, by affording enhanced protection 
from peripheral infection, higher levels of plasma IL-12 
and IFN-γ may also reduce entry of pathogens into the 
brain, which would otherwise trigger the antimicrobial 
response of Aβ to form plaques [157]. Along similar lines, 
recent studies have also shown that various types of vac-
cination, from influenza to bacillus Calmette-Guérin 
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(BCG), protect against AD risk [293–298], further sug-
gesting that protection against common infections may 
help reduce AD neuropathology, along the lines of the 
antimicrobial protection hypothesis [292].

Recent studies also have attempted to determine 
whether acute episodes of systemic inflammation influ-
ence the risk for AD. In one study, short-term systemic 
inflammatory attacks were linked with increased serum 
levels of TNFα cytokine and an enhanced rate of cogni-
tive decline in AD subjects [299]. Another recent study 
demonstrated that a history of severe infections requir-
ing hospital admission and treatment was associated 
with an increased long-term risk of vascular dementia 
and AD [300]. These infections were not limited to CNS 
infections and covered a variety of hospital-treated viral 
and bacterial infections, suggesting that exposure to sys-
temic inflammation is sufficient to affect the brain and 
increase the risk of dementia. These studies collectively 
underscore the potential roles of infections and systemic 
inflammatory events in the etiology of dementia and AD. 
Moreover, they raise the question of whether practices 
and strategies to improve infection control and general 
inflammation might mitigate or delay AD risk. There is, 
of course, a caveat to note that hospitalization per se (and 
not the infection itself ) could also be associated with 
greater dementia or AD risk [301–303].

AD therapeutics: challenges and opportunities
Providing millions of people living with a debilitating dis-
ease like AD with effective treatment is a monumental 
challenge that clinicians and scientists have faced since 
the first description of the disease by Alois Alzheimer in 
1906. Moreover, preventing AD is of equal importance as 
our population ages at a dramatic rate thereby increasing 
the prevalence of AD. Thus far, efforts to treat the disease 
have been marginally successful in managing symptoms, 
but with essentially no impact on modification of disease 
progression. Because of the heterogeneity of AD and 
complex nature of the brain, effective drug discovery and 
development will require well-coordinated investigations 
of the molecular, cellular, and genetic factors involved in 
AD neuropathogenesis as well as crosstalk between the 
brain and peripheral immune system.

The development of potential therapeutics to treat and 
prevent AD has been enormously challenging over the 
past decades, leading to no disease-modifying drugs. The 
investigational drugs and proposed targets of AD that 
have progressed to Phase 2 or 3 clinical trials in the U.S. 
are summarized in Fig. 2. Although the recent U.S. Food 
and Drug Administration (FDA) approval of aducanumab 
and its clinical impact is highly controversial [304, 305], it 
is a promising sign that we can target specific pathologi-
cal hallmarks of AD. Aducanumab is an immunotherapy 

(Biogen) derived from memory B cells developed initially 
by the Swiss company, Neurimmune. The search for an 
Aβ immunotherapy at Neurimmune was based on iden-
tifying naturally occurring protective human antibodies 
targeting Aβ oligomers, originally inspired by the find-
ings of Moir et al. [306]. The controversy regarding FDA 

Fig. 2  Investigational drugs and proposed targets for the treatment 
of Alzheimer’s disease and related dementia (ADRD), focusing on 
those that have been approved or progressed to Phase 2/3 or 
beyond in U.S. clinical trials. This up-to-date dataset was obtained 
from alzforum.org, a resource provided by FBRI LLC
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approval of aducanumab was initially ignited by the Bio-
gen company as they halted two phase III trials of aduca-
numab as the interim analysis showed that the drug was 
unlikely to improve cognition of mild AD patients. How-
ever, re-evaluation of the data revealed a subset of people 
that might have benefited, which lead to submission of 
aducanumab for FDA approval. This is further fueled by 
the unusual route of an “accelerated approval” pathway of 
the FDA, which is reserved for treatments that are “rea-
sonably likely,” to help patients, but not certain.

Several other forms of disease-modifying therapeutics 
are under development for AD or being clinically tested, 
e.g., small molecules that target γ-secretase enzyme to 
reduce Aβ peptide production. γ-secretase modula-
tors selectively decrease the level of Aβ42 over Aβ40 
and potentiate formation of nonfibrillar and shorter Aβ 
peptide species, including Aβ37 and Aβ38 [307]. Since 
β-amyloid deposition begins one to three decades before 
symptoms [308], anti-Aβ therapies, e.g., Aβ immunother-
apy and γ-secretase modulators [307] would be best used 
pre-symptomatically as a prophylactic or means of sec-
ondary prevention following a positive test for Aβ accu-
mulation in the brain, e.g., by PET or blood test. While 
most of attempts to improve cognitive symptoms in AD 
patients by reducing Aβ levels in the brain have largely 
failed, owing to a number of reasons that have been com-
prehensively discussed elsewhere [309–311], but new 
promising results from Biogen and Eisai clinical trial ear-
lier this year bring new hopes to people afflicted with this 
memory-robbing neurodegenerative disease [312]. This 
anti-amyloid monoclonal antibody, called lecanemab, 
showed 27% slower progress in cognitive decline in peo-
ple with early-stage AD compared to placebo, which 
might likely be due to its mechanism of action in target-
ing “protofibrils” strands at earlier stages of the disease 
before they consolidate into β-amyloid plaques and the 
length of the trial (i.e., 18 months) that allowed showing 
a meaningful impact on cognition. Moreover, develop-
ment of bispecific antibodies by linking them to a BBB 
transporter moiety may facilitate BBB passing into the 
brain and improve antibody design, which enables target-
ing soluble Aβ aggregates with a wide range of sizes in a 
mouse model [313]. Even though the beneficial effects of 
Aβ immunotherapy on AD are still uncertain, increasing 
delivery through the BBB and enhancing antibody bind-
ing as well as selectivity to the toxic Aβ aggregates could 
potentially pave the way to promising therapeutic appli-
cations [313].

The identification of AD risk genes by GWAS (Table 1) 
and whole genome/exome sequencing has progressively 
expanded our current understanding of AD and empha-
sized the key role of immune genes involved in AD 
pathophysiology [3]. New opportunities are emerging 

for the development of genetic risk scores used to assess 
the impact of genetic susceptibility factors in risk pre-
diction models. AD and its genetically heterogeneous 
nature include subtypes that may not homogeneously 
respond to a specific intervention. Comprehensive risk 
profiling provides the opportunity to categorize patient 
subgroups for gene-specific therapeutics, personalized 
medicine, and translational genomics [31, 314, 315]. 
The association between Alzheimer’s β-amyloid deposi-
tion and sTREM2 [316] points to the notion that one can 
leverage treatments of microglia-modulating and anti-
amyloid therapeutics by targeting, e.g., TREM2 or CD33. 
Recent studies showed the promising effects of increas-
ing TREM2 in a mouse model using an agonistic anti-
body design [317]. However, the temporal component 
is crucial and a beneficial effect of increasing TREM2 
is observed, especially in the early stage of AD develop-
ment, highlighting the dynamic role of TREM2 in modu-
lating β-amyloid deposition and neuritic dystrophy in AD 
pathogenesis [317, 318]. We previously demonstrated 
the therapeutic potential of targeting CD33 leveraging 
an adeno-associated virus vector-based knockdown and 
observed reduced amyloid accumulation and neuroin-
flammation in an APP/PS1 mouse model [319].

Additionally, given that the APOE  ε2 allele is associ-
ated with decreased risk of late-onset AD and has been 
shown to modulate the immune response of microglia, 
therapeutic strategies aimed at mimicking the protec-
tive effects of the APOE  ε2 allele are now being consid-
ered as disease-modifying interventions for AD [320]. 
A viral-mediated overexpression of APOE ε2 in amyloid 
mouse model brains led to a reduction of the Aβ burden, 
which might be attributed to an increased Aβ clearance 
in APOE  ε2 expressing animals [321]. Gene delivery of 
APOE ε2 may halt or lessen Aβ burden in the brain and 
subsequent neuritic plaques and inflammatory processes. 
However, long-term APOE  ε2 overexpression in human 
brains should be carefully evaluated and raises concerns 
since the APOE ε2 allele is associated with a higher risk 
for other diseases like CAA [322] and stroke [320, 323]. 
Another limiting factor is that in order to be a success-
ful therapy, APOE  ε2 overexpression would need to be 
established before the onset of β-amyloid deposition long 
before the onset of symptoms in patients, which poses its 
own challenges [324].

The heterogeneity of the disease carries signifi-
cant implications for drug development, which must 
be deeply considered in developing effective disease-
modifying therapies for AD. A great deal of study is still 
needed to better understand the clinical and neuropatho-
logical heterogeneity in AD and its impact on the devel-
opment of more effective diagnostics and therapies for 
treatment and prevention [325]. The complexity of AD 
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heterogeneity suggests that individualized treatments or 
a combination of multiple targets at different stages of 
the disease progression from pre-symptomatic to pro-
dromal to clinical manifestation of cognitive impairment 
will be needed. Another important aspect is the hetero-
geneity of the immune response, both spatially and tem-
porally [326–328]. The immune system’s plasticity, driven 
by cellular heterogeneity, allows it to adopt various phe-
notypes and genotypes in response to internal and exter-
nal signaling, which could be instrumental to the disease 
onset, and progression. A combination of environment 
and genetics shape the heterogenous immune system 
and response [329]. The environment can play an impor-
tant role in shaping the composition of the immune cells 
present in individuals, e.g., by exposure to infection and 
the microbiota. For instance, the microbial status can be 
transferred from the mother to the baby during birth and 
fetal development. In this context, children delivered by 
cesarean section can have significantly lower levels of 
CXCL10 and CXCL11 chemokines in their blood [330]. 
Shortly after birth, diet (first by milk components and 
then solid food) shapes the microbial community and 
development of the immune system, including effec-
tor and Treg cells, which could have strong impacts later 
in life [331]. Moreover, genetics is another key factor 
in determining the level of cytokines produced by the 
immune cells in response to stimuli.

In addition, given the extreme complexity and hetero-
geneity of AD, it will be necessary to stratify AD patient 
groups through deep phenotyping and genotyping along 
with the application of algorithms that incorporate com-
prehensive clinical, imaging, biomarker, and pathology 
data to limit misclassification bias and enable more pre-
cise and predictive models for drug discovery and per-
sonalized treatment. Successful therapeutics aimed at 
prevention of AD would require targeting the earliest 
signs of pathology in the earliest stages of the disease, e.g., 
early detection of β-amyloid deposition, NFT formation, 
and neuroinflammation. Recently, substantial advances 
have been made in efforts to identify the pre-sympto-
matic stages of AD using CSF and blood-based biomark-
ers, including Aβ42/40 ratio, p-Tau phosphorylated at 
threonine-181, 217, or 231, and neurofilament light (NfL) 
[308]. These early events of abnormal proteostasis and 
glial activation initiate the disease process pre-symp-
tomatically and drive widespread neuroinflammation, 
further modified by peripheral immune cell infiltration, 
which can either ameliorate or exacerbate neuronal 
cell death leading to dementia. Detecting and targeting 
peripheral immunity could initiate an exciting new era in 
the discovery and development of neuroimmune treat-
ments to treat and prevent neurodegenerative disorders, 
such as AD [332, 333]. Therapeutic strategies focusing on 

pathogenic or protective peripheral immune cells could 
enable new immune-based therapeutic opportunities 
for neurodegenerative diseases, including immunosup-
pressive drugs that directly target specific populations 
of brain-infiltrating T cells and other immune cells, such 
as anti-CD3 antibodies, TNF antagonists, or calcineurin 
inhibitors [334]. Moreover, mammalian target of rapa-
mycin (mTOR) inhibitors such as rapamycin may help 
promote beneficial Treg cells while inhibiting detrimental 
TH17 cells in AD [334].

The role of specific T cell subsets in AD pathophysiol-
ogy remains to be fully elucidated. Other new immune-
based therapeutic approaches, including depletion of B 
cells at the early stages of the disease, have already shown 
promise in delaying AD progression in animal mod-
els [229]. Future studies are now necessary to explore 
whether therapeutics targeting beneficial peripheral 
immune cells, e.g., monocytes, Treg cells, or detrimental 
cells such as TH17 cells, by cell-specific immunotherapies 
or other strategies will be helpful in treating and prevent-
ing AD. For instance, IL-17-producing T cells have been 
shown as crucial players in promoting BBB disruption 
and disease progression in multiple neurodegenerative 
diseases, including AD, PD, and MS [42, 264, 335]. Most 
importantly, neutralization of IL-17 cytokine was shown 
to prevent cognitive impairments, synaptic dysfunction, 
and rescue neuroinflammation in AD animal models 
[42, 336]. These findings indicate that tuning the exacer-
bated levels of IL-17 cytokine in AD might be an impor-
tant therapeutic target to prevent its deleterious effect 
on disease progression. Conversely, it is known from 
several investigations that depletion of Treg cells in AD 
mouse models exacerbates disease progression. In this 
line, treatment of AD mice with low-dose IL-2 cytokine 
to specifically amplify Treg cell populations rescued cog-
nitive function [337]. Moreover, the recent CNS-specific 
gene delivery of IL-2 provides a critical and important 
therapeutic method for an effective IL-2 delivery sys-
tem in preclinical models [338]. Although presence of 
Treg cells in the brain parenchyma is mostly beneficial, 
a higher level of Treg cells in peripheral blood is associ-
ated with immune aging and chronic systemic inflamma-
tion [339]. This amplifies the complexity of the immune 
system and sheds light on the importance of not only 
the immune cells’ function but also their location, which 
can dictate different outcomes and inform future studies 
for designing more efficient therapeutics, e.g., amplifica-
tion of Treg cells in individuals without inducing systemic 
immune inflammation.

While immune system heterogeneity has long been 
acknowledged, limitations of conventional experimen-
tal models have constrained our ability to systematically 
dissect the underlying mechanisms and causes. Recent 
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advances in microfluidic technology, single-cell omics, 
molecular biology, and imaging now enable the profiling 
and tracking of immune cells at a single-cell resolution 
[327]. Single-cell RNA sequencing technologies have had 
a substantial impact and allow for a better understanding 
of the immune system heterogeneity and immune func-
tion [329]. Also, simultaneous readouts using multi-omic 
profiling, including cell surface proteins, gene expres-
sion, and receptor sequences, provided new insights into 
a highly heterogeneous immune system. Moreover, more 
physiologically relevant models (mouse and multicel-
lular in  vitro) are needed to accurately predict immune 
responses to drug treatments in preclinical models of dis-
ease. These new advancements will undoubtedly refine 
our understanding of the highly heterogeneous immune 
cells and expedite the search for better therapies. Along 
these lines, patterns of immune response change during 
the (long) course of progression in neurodegenerative 
diseases. Interventions that might be beneficial in the 
early stages of disease could be detrimental in the late 
stages. Another level of complexity to consider is that this 
temporal sequence might not be only observed longitu-
dinally but also at a single time point in a patient’s brain 
since pathology possibly affects the brain in a stage-wise 
fashion leading to the coexistence of early and late stages 
of the inflammatory response in different brain regions at 
a given point in time. New knowledge derived from the 
heterogeneity of the immune system will accelerate the 
development of novel and effective immune-based treat-
ments that skew the balance between detrimental and 
reparative effects to beneficial for AD patients.

Additionally, with the high complexity and phenotypic 
variability, as well as a high rate of failures from clinical 
trials of AD, precision medicine has the potential to not 
only improve the success of the clinical trials but also 
reduce financial costs and sample sizes [340]. In this line, 
studying the disease systematically by considering sex 
differences, risk factors, blood-based biomarkers, disease 
progression, and responses to therapeutic treatments are 
a few pillars that are critical for the implementation of 
precision medicine in finding a cure and increasing diag-
nostic accuracy for AD.

Concluding remarks
AD pathology begins a decade or more prior to the 
onset of cognitive decline. However, existing therapeu-
tics targeting pre-symptomatic “initiating” pathologies 
of abnormal proteostasis—β-amyloid aggregation and 
deposition and induction of p-Tau by Aβ oligomers—
are most often applied at the onset of clinical symp-
toms when neuroinflammation has already inundated 
affected brain regions. As such therapeutics targeting 
AD-related proteinopathy have largely failed to improve 

cognitive symptoms and would best be applied when 
β-amyloid plaque and tangle pathology and glial activa-
tion first begin, usually a decade or more before symp-
toms, in a form of prophylaxis or secondary prevention. 
Human resilient brains, those revealing abundant levels 
of plaques and/or tangles, in the absence of cognitive 
deficits at death, have revealed that excessive neurode-
generation leading to clinical dementia requires robust 
events of neuroinflammation, e.g., microglial activa-
tion, pro-inflammatory cytokine release, and reac-
tive astrocytes [341]. With the advent of dozens of AD 
genes emerging from GWAS that implicate immune 
cells, e.g., microglia and innate immune mechanisms, 
novel therapeutics aimed at attenuating neuroinflam-
mation have entered into clinical trials, e.g., targeting 
CD33 and TREM2 [3]. The major question now remain-
ing to be answered is whether therapies aimed at abat-
ing neuroinflammation and neurodegeneration owing 
to neuroinflammation will be more successful at effec-
tively treating the symptoms of AD than those targeting 
abnormal proteostasis—plaques and tangles—which 
may be better suited for prevention.

The precise mechanisms by which infiltration of 
peripheral immune cells such as T cells is mediated dur-
ing age-associated neurodegenerative diseases remain to 
be elucidated. Knowledge gained from studies of other 
neuroinflammatory conditions may be useful in this 
regard. For example, in patients with MS, TH17 cells dis-
rupt the BBB, infiltrate the brain parenchyma, and pro-
mote neuroinflammation through IL-17 and IL-22 [264]. 
Understanding the causative roles (protective or detri-
mental) of resident immune cells, particularly micro-
glia, and infiltrating peripheral immune cells such as T 
cells in AD will hopefully guide therapeutic avenues to 
target the immune system at different stages of the dis-
ease from pre-symptomatic onset of pathology to clinical 
symptoms.

Dissecting the roles of immune cells in AD pathogen-
esis has been challenging, and much of the work dis-
cussed in this review have been conducted using mouse 
models. This field would benefit from model systems that 
recapitulate the roles of peripheral immune cells and 
vascularization, e.g., in  vitro three-dimensional models 
with increased cellular complexity, incorporating periph-
eral immune cells and vascular elements, single-cell 
level imaging and interactions, and patient-derived cells. 
Advances in microfluidics, multicellular human models, 
and generating iPSC-derived microglia (microglia-like 
cells) offer a new toolset to dissect immune signaling and 
complex cell interactions that go awry in neurodegenera-
tion. The elaboration of such models will be essential for 
designing future therapeutic strategies targeting immune 
pathways.
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Taken together, AD progression is an outcome of a 
complex interplay of several key players, from dysfunc-
tional neurons to resident immune cells, microglia to the 
peripheral immune system, and dissecting this entan-
gled and highly heterogenous circuit will take time. The 
emerging neuroimmune axis of AD emphasizes the need 
to, someday, additionally classify patients according to 
their AD-related immunogenetic status (Table 1) together 
with deep genotyping/phenotyping of innate and adap-
tive immune cells (Table 2), both inside and outside of the 
brain, to assess effects on AD risk and pathogenesis and 
to guide the most effective therapies for treatment and 
prevention. Ultimately, the successful implementation of 
multidisciplinary studies among experts with disparate 
and complementary areas of expertise across neurosci-
ence (including computational neuroscience), genetics, 
immunology, neurology, and bioengineering will be nec-
essary to engender the paradigm shift needed to success-
fully develop effective treatments aimed at modifying, 
halting, or reversing AD neuropathogenesis.
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