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Abstract 

Background  Very low-coverage (0.1 to 1×) whole genome sequencing (WGS) has become a promising and afford‑
able approach to discover genomic variants of human populations for genome-wide association study (GWAS). 
To support genetic screening using preimplantation genetic testing (PGT) in a large population, the sequencing 
coverage goes below 0.1× to an ultra-low level. However, the feasibility and effectiveness of ultra-low-coverage WGS 
(ulcWGS) for GWAS remains undetermined.

Methods  We built a pipeline to carry out analysis of ulcWGS data for GWAS. To examine its effectiveness, we bench‑
marked the accuracy of genotype imputation at the combination of different coverages below 0.1× and sample sizes 
from 2000 to 16,000, using 17,844 embryo PGT samples with approximately 0.04× average coverage and the standard 
Chinese sample HG005 with known genotypes. We then applied the imputed genotypes of 1744 transferred embryos 
who have gestational ages and complete follow-up records to GWAS.

Results  The accuracy of genotype imputation under ultra-low coverage can be improved by increasing the sample 
size and applying a set of filters. From 1744 born embryos, we identified 11 genomic risk loci associated with gesta‑
tional ages and 166 genes mapped to these loci according to positional, expression quantitative trait locus, and chro‑
matin interaction strategies. Among these mapped genes, CRHBP, ICAM1, and OXTR were more frequently reported 
as preterm birth related. By joint analysis of gene expression data from previous studies, we constructed interrelation‑
ships of mainly CRHBP, ICAM1, PLAGL1, DNMT1, CNTLN, DKK1, and EGR2 with preterm birth, infant disease, and breast 
cancer.
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Conclusions  This study not only demonstrates that ulcWGS could achieve relatively high accuracy of adequate 
genotype imputation and is capable of GWAS, but also provides insights into the associations between gestational 
age and genetic variations of the fetal embryos from Chinese population.

Keywords  Ultra-low-coverage whole genome sequencing, Imputation, Single-nucleotide polymorphisms, Genome-
wide association study, Gestational age, Preterm birth

Background
Detection and characterization of genetic variants asso-
ciated with traits and diseases are fundamental to the 
study of human genetics. Genome-wide association study 
(GWAS) is an approach widely used in genetic research 
that aims to decode the associations of specific genetic 
variations with particular diseases or traits in sample 
populations. In the past decade, GWAS has facilitated 
discovery of over one hundred thousand variants asso-
ciated with complex traits in human [1]. Whole genome 
sequencing (WGS) has emerged as a dominant technol-
ogy in GWAS because it enables one to generate a com-
prehensive view of the genomic variation landscape for 
not only a specific trait but also for common diseases. 
Thus, WGS-based approaches hold a significant advan-
tage over genome-wide genotyping arrays or exome 
sequencing in the analysis of complete genetic variations. 
However, with a fixed budget, the high cost of sequenc-
ing many DNA samples is a limitation for GWAS [2–4]. 
Recently, to reduce the cost of sequencing, a number 
of low (0.5–1×) or extremely low-coverage (0.1–0.5×) 
WGS have been carried out as an alternative method of 
genotyping [2, 5, 6]. It is, however, unclear whether ultra-
low-coverage WGS (ulcWGS) below 0.1× data can cap-
ture enriched genetic variations across the entire allele 
frequency (AF) spectrum. When considering a balance 
between number of samples sequenced and sequencing 
read coverage, effective genotype imputation could pro-
vide more authentic single-nucleotide variants (SNVs) 
that would be helpful for genetic research.

Genotype imputation can be used to infer missing 
genotypes and to increase the accuracy of detecting 
genetic variants, such as SNVs. In general, performance 
of genotype imputation is largely affected by sample 
size, sequencing coverage, analysis methods, and other 
parameters [7]. A main challenge to use very low-cover-
age WGS is how to achieve an adequately accurate impu-
tation for downstream analyses. Previous attempts have 
shown the efficiency of low-coverage WGS, for exam-
ple, a high r2 of imputation accuracy observed by using 
10 low-coverage WGS (~0.5×) as compared to known 
genotypes [6]. Pasaniuc et  al. reported that the GWAS 
signals obtained from using 909 whole-exome sequenc-
ing (~0.24×) are comparable to using genotyping array 
[2]. Gilly et  al. found that more true association signals 

were identified by WGS (~1.0×) than the traditional 
array-based study [5]. Using ulcWGS (0.06×–0.1×) with 
141,431 samples from a Chinese genomic study, the accu-
racy of imputed genotypes reached 0.71 [8]. Even though 
the distribution of genetic background from large num-
ber of samples is expected to compensate for the low 
sequencing coverages, it has never been determined 
how many samples are needed to achieve a relatively 
high accuracy. More importantly, lack of comparative 
data with coverages less than 0.05× results in the limited 
application of ulcWGS to GWAS.

Gestational age is an important complex trait associ-
ated with biological processes and human disease. Bio-
logically, gestational duration plays a vital role in both 
mental and physical health of children at an age of 5 years 
old [9]. Gestational age shorter than 37 weeks is catego-
rized as preterm birth (PTB). Previous studies found the 
contribution of both the maternal and fetal genomes 
to variation of gestational ages [10–12]. However, they 
focused on European and African samples by involv-
ing few samples from Chinese ancestries. Overall, bio-
logical mechanisms underlying variation of gestational 
durations remain unclear, primarily because insufficient 
maternal or fetal genotypes with widespread gestational 
ages have been collected [13]. Recently, preimplanta-
tion genetic testing (PGT) with trophectoderm biopsy 
for embryo aneuploidy screening has become a common 
practice in in vitro fertilization [14, 15], and poses as an 
expectant source of genotypes for GWAS. However, if the 
average sequencing coverage of PGT is even lower than 
the lowest levels that have been reported in GWAS so far, 
it is necessary to examine whether such PGT datasets are 
appropriately applied to GWAS.

In this study, we devised a pipeline for analyzing and 
applying the ulcWGS of 17,844 embryo samples for 
GWAS. Our result shows that a large sample size is effec-
tive to increase the accuracy of genotype imputation even 
at an ultra-low coverage. Furthermore, using the imputed 
genotypes of 1744 embryos that were successfully trans-
ferred and born with a widespread of gestational ages, 
we demonstrate the power of using ulcWGS in GWAS 
and provides insights into understanding genetic asso-
ciation of gestational age in embryos acquired from Chi-
nese population. Refreshing the lowest coverage used 
in GWAS, our finding also provides a foundation for 
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exploring the utilization of an even lower coverage for 
dissecting genotype-phenotype associations.

Methods
Samples and sequencing coverage
The whole PGT dataset of 17,844 embryos (1744 
embryos in the dataset were transferred and given birth 
with complete clinical records) was from the Clini-
cal Research Center for Reproduction and Genetics in 
Hunan Province, Reproductive and Genetic Hospital 
of China International Trust Investment Corporation - 
Xiangya. The samples used in this study were not used in 
any previous studies. The protocol of embryo culture and 
biopsy was published in a related study [16]. Three WGA 
kits were applied to the biopsied TE cells by following 
the manufacturer’s guides, including QIAGEN REPLI-g 
Mini Kit (called MDA), GenomePlex WGA4 Single Cell 
Whole Genome Amplification Kit (called dop-PCR), and 
Rubicon Genomics PicoPlex Single Cell Whole Genome 
Amplification Kit (called PicoPlex). A 1–2 μg of the 
WGA product was subjected to library construction and 
sequencing on the four platforms, including BGI-Seq 
500, Illumina MiSeq, Ion Proton, Ion Torrent (Additional 
file 1: Table S2).

Study design
We developed a three-step pipeline to carry out genotype 
imputation using ulcWGS data and to perform GWAS 
(Fig.  1). Firstly, the raw reads of the 17,844 embryo 
samples were aligned to the hs37d5 reference genome. 
Sequencing coverage of these embryo samples displays 
a distribution with an average coverage 0.04× (Addi-
tional file 2: Fig. S1). To our best knowledge, it is below 
the coverage of any dataset used previously for genotype 
imputation. After removing potential PCR duplicates, the 
aligned reads were used to call population SNVs. Sec-
ondly, we conducted genotype imputation on each indi-
vidual sample at the called population SNVs and assessed 
the genotyping accuracy based on the standard Chi-
nese sample HG005 with known genotypes from GIAB 
(Genome in a Bottle, NIST) [17, 18]. Last, we applied the 
imputed genotypes from 1744 born embryos with com-
plete follow-up records to GWAS and explored biological 
associations between the genetic variants detected in the 
born embryos and their gestational ages.

Sequencing read processing and alignment
In the first step of Fig. 1, the raw reads of the PGT sam-
ples were delivered in two types, fastq or BAM. For BAM 

Fig. 1  An overview of the analysis and benchmarking pipeline for ultra-low-coverage WGS
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data, we used bedtools [19] to extract the raw reads into 
single-end fastq files. The raw reads of each sample were 
then aligned to the hs37d5 reference genome using BWA 
[20]. BWA-mem was applied to samples sequenced by 
the Ion Torrent with longer reads and “bwa aln” was 
used for the rest of the samples with shorter reads. Sam-
tools rmdup [21] was used to remove the potential PCR 
duplicates.

Population SNV calling
In the population SNV calling stage, we modified the 
method of Liu et al. [8]. The first stage is to use log-likeli-
hood estimation for AF estimation, and the second stage 
is to use log-likelihood ratio test for determining allelic 
types. More details are described in Additional file  3: 
Supplementary Methods.

SNV calls of the raw population were filtered follow-
ing the rules, (1) calls that overlapped with the 35-kmer 
problematic alignment regions in hs37d5 were removed 
[22, 23]; (2) calls that overlapped with regions with 
ENCODE mappability uniqueness score unequal to 1 
were removed [24, 25] (tool “bigWigToBedGraph” used 
afterward to convert the bigwig into bed format) [26, 27].

Genotype imputation
We used STITCH [28] version 1.5.7 for genotype impu-
tation. The ancestral haplotypes number k were set as 
20, the assumed number of generations nGen was set 
to 2000, and the reads were binned into windows with 
gridWindowSize 10000. The diploid mode in STITCH 
was used. Although using a reference panel is optional 
in STITCH, we used the IMPUTE2 1000 genome hap-
lotypes phase 1 reference panel [29] as it improves the 
accuracy of imputation when the sample size is small. 
With sample size larger than 10,000, the improvement 
was not significant. We noted that the embryos used 
in the PGT were related family-based sibling samples 
according to the clinical protocol. Because our PGT data 
have ultra-low coverage (~0.04×), these related samples 
will monotonically increase the percentage of covered 
bases (Fig. S1d). Thus, the relatedness of the samples 
will have positive impact on the genotype imputation. 
All parameters were optimized by maximizing the r2 of 
the estimated AFs between imputation and population 
SNV calling in a randomly chosen 5 Mbp genomic region 
(chr3:180–185Mbp). When applying STITCH to the 
whole genome, we divided the genome into 5-Mbp win-
dows with a 500-kbp overlap between two windows.

For benchmarking, seqtk was used to subsample 
the HG005 Illumina WGS raw reads to 0.01×–0.1× 
(Paired-end 250bp, 300-fold) [30]. We aligned the reads 
to hs37d5 by using the same pipeline as used in the 
embryo samples. Because a computer takes a few years 

to impute whole genome with tens of thousands of sam-
ples, we worked on only chromosome 1, the longest one 
in human. The genotype imputation was benchmarked 
according to 80 combinations of the 10-scale coverages of 
HG005 with 8 sizes of our samples from 2000 to 16,000, 
respectively.

All bi-allelic SNPs with MAF ≥ 0.01 found in chromo-
some 1 with the population SNV calling from the 17,844 
samples are included for genotype imputation. We used 
the 167,814 SNPs both in our SNP callset and HG005 
known genotypes for benchmarking. The imputed geno-
types were compared to the truth released by GIAB for 
estimating the imputation accuracy. Then, genotype 
imputation was applied to all 17,844 embryo datasets at 
the 31,622,332 bi-allelic sites with MAF ≥ 0.01 found in 
population SNV calling. The entire imputation process 
spent 19 days and used 15 machines with 16 cores (two 
8-core Intel Xeon Silver 4108 CPU). Two filters “INFO 
score ≥ 0.4 and HWE p-value >1e−6” were applied to 
select the imputed genotypes.

Genome‑wide association study (GWAS)
To conduct GWAS, we used score statistics [31] that is 
implemented in ANGSD [32]. Variants satisfying four 
conditions were selected as inputs, including (1) known 
in dbSNP150, (2) MAF ≥ 0.01, (3) INFO score ≥ 0.4, and 
(4) HWE p-value > 1e−6. To remove biases, we specified 
16 covariates for ANGSD, 8 most significant principal 
components calculated from the inputs of PCA (Addi-
tional file  3: Supplementary Methods), and 8 clinical 
records including maternal age, maternal BMI, fetal sex, 
either parent with single-gene disease, either parent with 
chromosome abnormality, multiple pregnancy, preec-
lampsia, and gestational diabetes of mellitus. Except the 
default parameters, we set minHigh to 15 (requiring at 
least 15 high credible genotypes from the input) instead 
of 10 to achieve better accuracy with a large sample size. 
ANGSD did not create an output beta-coefficient, so 
we followed the ideas of Skotte et al. [31] by incorporat-
ing the genotype probabilities and all 16 covariates into 
a linear regression model, with the gestational age as a 
response variable. The effect size was calculated by the 
coefficient of genotypes.

Independent SNPs and genomic risk loci
The significant SNPs from our GWAS were mapped to 
genomic risk loci using FUMA pipeline [33] and the LD 
information of 1000G EAS variants [34]. We first defined 
“independent significant SNP,” a SNP that meets genome-
wide significance level (p-value ≤ 4.515e−8) and is inde-
pendent of other significant SNPs (with LD r2 < 0.6). 
FUMA also generated a set of lead SNPs with low LD 
and with other (r2 < 0.1) from the independent significant 
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SNPs. The genomic risk loci were identified by starting 
from these lead SNPs and through iteratively merging 
related genomic regions to them according to FUMA’s 
rules.

Also, the FUMA pipeline sorted out a set of candidate 
SNPs from our inputs that meets one of two conditions, 
(1) the independent significant SNPs and (2) SNPs that 
are linked to the independent significant SNPs (with 
LD r2 ≥ 0.6). For condition 2, the SNPs can be from our 
imputed genotypes if p-value is below 0.05 or from the 
reference panel of 1000G EAS. ANNOVAR was used to 
annotate the candidate SNPs [35].

Functional annotation of the mapped genes
DAVID online tool [36] was used to analyze the enrich-
ment of Gene Ontology (GO) biological processes and 
KEGG pathways for the coding genes mapped to the risk 
loci.

Gene mapping
We used three gene-mapping strategies provided by 
FUMA [33], including positional, expression quantita-
tive trait locus (eQTL) and chromatin interaction. For 
positional mapping, ANNOVAR annotations were used. 
The candidate SNPs were mapped to the nearest genes 
within a maximum 10-kbp distance. For eQTL mapping, 
expression data of all tissue types in GTEv6, GTEv7, and 
GTEv8 [37] were used. We required false discovery rate 
(FDR) < 0.05 and p-value <0.001 for a valid eQTL map-
ping. All chromatin interaction data in FUMA were used 
[38–41]. The promoter was set to upstream 2000 bp to 
downstream 500 bp of transcriptional starting sites. We 
required FDR < 1e−6 for a valid chromatin interaction 
mapping.

Analysis of genome‑wide mRNA expression data
We first extracted the genome-wide microarray and 
RNA-seq data of human mRNA expression from GEO 
database [42]. The mRNA data includes maternal PTB, 
infant PTB, infant disease, and breast cancer (Additional 
file  1: Table  S8). Based on the normalized expression 
data provided by the database, we analyzed differentially 
expressed genes (DEGs) between different conditions, 
including (1) PTB vs. normal term, (2) BPD or sepsis vs. 
infant without BPD or sepsis, and (3) breast cancer vs. 
control samples. For microarray platform-based data, we 
used the limma package in R programming language and 
conducted empirical Bayes moderated t-test [43]. DEGs 
were detected with a fold change above 1.5 and p-value 
below 0.05. For RNA-seq data with raw counts, we uti-
lized the edgeR method to identify DEGs [44]. The DEGs 
are listed in Additional file 1: Table S9.

Results
Benchmarking genotype imputation using 
the ultra‑low‑coverage sequencing data of 17,844 embryos 
and HG005
We estimated the accuracy of the imputed genotypes 
from the SNPs of chromosome 1 both called in our 
17,844 samples and the known genotypes in HG005. The 
genotype imputation was benchmarked according to 80 
combinations of the 10-scale coverages of HG005 with 8 
sizes of our samples. A monotonic increase in accuracy 
with sequencing coverage was observed (Fig. 2a), consist-
ent with previous studies [2, 28]. The accuracy for sample 
size of 2000 stayed at around 0.48 under all sequenc-
ing coverages. But for a larger sample size of 16,000, its 
accuracy increased from 0.48 at 0.01× to 0.66 at 0.1×. 
This result suggests that at ultra-low coverages, increase 
in sample size could obtain higher accuracy (Additional 
file 1: Table S1). In general, a lower coverage with a larger 
sample size results in better performance than a higher 
coverage with a smaller sample size. For example, the 
genotype accuracy at 0.05× with 14,000 samples versus 
0.1× with 4000 embryos was 0.61 versus 0.55. A larger 
sample number is therefore more efficient in optimizing 
genotype imputation than increasing sequence coverage. 
It is also noticed that at the two lowest coverages in our 
experiments, the contribution of increasing sample size 
was not significant and the accuracy plateaued at 0.52 
(0.01×) and 0.55 (0.02×). Using the same datasets, we 
evaluated allele accuracy that relaxed zygosity correct-
ness from genotype accuracy. The corresponding accura-
cies were much better (increased to 0.7 and higher) while 
maintaining the same trend with increasing sample size 
and coverage (Fig. 2b). Therefore, when the genotypes are 
incorrectly imputed for some SNPs, the non-reference 
allele could be correctly detected.

We next examined several important quality metrics 
that are widely used to filter falsely imputed genotypes. 
The INFO score of IMPUTE2 style [45] denotes the cer-
tainty of an imputed genotype and has been accepted as a 
quality metric of imputation. For a combination of 0.04× 
coverage with 16,000 samples, we benchmarked ten dif-
ferent INFO score thresholds from 0.1 to 1.0 and detected 
corresponding SNPs. As increase in the INFO scores, we 
observed a consistent increase in genotype accuracy from 
~0.60 to 0.99, but a rapid decrease in number of SNPs 
that meet these thresholds (Fig.  3a). Thus, INFO score 
could act as an effective metric to evaluate the accuracies 
at ultra-low coverage, but its thresholds should be metic-
ulously chosen in order to retain sufficient SNPs. Effect 
of MAF scores on genotype accuracy of HG005 was then 
tested as a potential metric. We divided the genotyping 
results at different sequencing coverages (sample size 
fixed to 16,000) into bins of MAF ranges (0.01 MAF a 
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bin) and calculated the genotype accuracy each bin. The 
genotype accuracy increased rapidly from MAF 0 to 0.05 
and reached a turning point at 0.05. After this point, the 
accuracy became slow increasing (Fig.  3b). However, 
even for the most common SNPs (MAF 0.4~0.5), the 
accuracy was converged at ~70%. The accuracy of the 
two lowest coverages 0.01× and 0.02× fluctuated espe-
cially at low MAF cutoffs. Because such fluctuation was 
not observed during INFO testing, MAF might not be a 
reliable metric to change genotype accuracy at ultra-low 
coverage. In subsequent analyses, we followed the com-
mon practice to use SNPs with MAF ≥ 0.01 for GWAS. 
Finally, we combined HWE p-values with INFO scores as 
a filter but without losing too many SNPs. HWE p-val-
ues could evaluate the probability of the imputed geno-
type at a certain SNP that is significantly different from 
the expectations by HWE. We summarized the genotype 

accuracy of different combinations of INFO scores and 
HWE p-value cutoffs in Table 1. When INFO scores were 
set above 0.4, the accuracies of genotype and allele were 
70.0% and 83.4%, respectively, with 48,176 SNPs left. The 
“INFO score ≥ 0.4 and HWE p-value >1e−6” resulted in 
an increased accuracy 71.5%, with 28,773 SNPs left. Thus, 
our GWAS utilized this setting, “INFO score ≥ 0.4 and 
HWE p-value >1e−6” as filtering criteria.

To summarize our benchmarking results for future 
study on ulcWGS, we built a regression model (Eq.  1) 
to calculate the expected genotype accuracy using 
sequencing coverage and sample size as inputs.

where acc is the expected genotype accuracy, c denotes 
the sequencing coverage, and s denotes the sample size. 
The model has a r2 of 0.874 (Additional file 2: Fig. S2).

(1)acc = 2.227 × c + 8.937e
−6 × s + 0.494 (c ≥ 0.01, s ≥ 4000)

Fig. 2  Imputation accuracy at different coverages and sample sizes. The accuracies of imputed genotype or allele were obtained by comparing 
with the known genotypes in HG005 (a). After using filter “INFO score ≥ 0.4 and HWE p-value > 1e−6”, the accuracies of imputed genotype or allele 
(b)
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GWAS of gestational ages using 1744 born embryos
With the solid foundation laid out in the previous sec-
tion, we have obtained sufficient good-quality SNPs for 
GWAS. Among the 17,844 sequenced embryos, 1744 
were transferred and gave birth to a baby. The gestational 

age of all 1744 born embryos are well documented and 
thus were chosen for biological associated study. We 
revised the population SNV calling method used in Liu 
et al. [8]. A total of 151,793,444 SNVs were detected and 
of 141,718,305 are bi-allelic. The MAF spectrum bi-allelic 

Fig. 3  Performance of different imputation result filters. The accuracies of our samples were calculated against the known genotypes in HG005. 
a Effect of INFO score filtering cutoffs on genotype and allele accuracies. The imputation was conducted by using 0.04× sequencing coverage 
of HG005 and with 16,000 embryo samples. b Effect of MAF bins on genotype accuracy at multiple sequencing coverages. The imputation was 
conducted through different sequencing coverages of HG005 with 16,000 embryo samples
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novel and known variants in dbSNPv150 [46], 1000G 
[34], and gnomAD [47] is shown in Additional file 2: Fig. 
S3a. The transitions/transversions ratios for “all bi-allelic 
SNVs” and “bi-allelic SNVs known in dbSNPv150” were 
3.05 and 3.58, respectively. The Pearson correlation coef-
ficient of the non-reference AFs between the 301 Chinese 
samples in 1,000G (so-called 1000G CHN [34]) and the 
corresponding SNVs obtained in our dataset was 0.986 
(Additional file 2: Fig. S3b). This result supports a strong 
correlation between the two datasets, and high confi-
dence of the known variants used in our analysis. We also 
performed genotype imputation at bi-allelic population 
SNPs with MAF ≥ 0.01. The Pearson correlation coef-
ficient was 0.985, showing a high consistency between 
the estimated AFs in population SNV calling and in 
imputation.

Three different whole genome amplification (WGA) 
methods and four different sequencing platforms were 
used in the PGT dataset (Additional file 1: Table  S2). It 
is not uncommon that large number of samples may use 
multiple sequencing platforms and WGA. Removing 
these unrelated covariates from GWAS as much as pos-
sible is essential especially when the sequencing cover-
age is ultra-low. Such covariates should be detected and 
disregarded in GWAS. We applied principal component 
analysis (PCA) to the imputed genotypes of SNPs with 
MAF ≥ 0.05 among all 17,844 embryo samples (Addi-
tional file  3: Supplementary Methods, Additional file  2: 
Fig. S4a). The first and second principal components dis-
tinguish the differences of sequencing platforms (Addi-
tional file 2: Fig. S4b) and of WGA methods (Additional 
file 2: Fig. S4c). Therefore, we used the top eight principal 
components and eight other clinical records as covariates 

in GWAS. PCA was also applied to the GWAS sam-
ples and the top principal components were included in 
the subsequent analyses as covariates for removing the 
biases.

We used the state-of-the-art one-stage GWAS strategy 
[48] to analyze the 1,107,198 imputed SNPs in the 1744 
transferred and born embryo samples with complete 
follow-up records. The distribution of gestational ages 
shown in Additional file  2: Fig. S5 include 162 preterm 
deliveries (gestational age < 37 weeks), 42 early preterm 
deliveries (gestational age <34 weeks), and 8 very early 
preterm deliveries (gestational age <28 weeks). The ges-
tational ages were standardized by z-score and incorpo-
rated as a quantitative trait.

A total 1,107, 198 SNPs with imputed genotypes were 
selected for GWAS that are in accord with the following: 
(1) MAF ≥ 0.01, (2) known in dbSNPv150, and (3) passed 
the filter “INFO score ≥ 0.4 and HWE p-value >1e−6”. 
The Q-Q plot shows a large deviation of the observed 
p-values from the null hypothesis (Additional file 2: Fig. 
S6). The linkage disequilibrium score regression (LDSC) 
software package [49] with 1000G EAS reference was 
used to estimate λGC = 0.992, mean χ2 = 1.012. The LD 
score regression intercept was 0.952, standard error = 
0.021, indicating that the population stratification and 
other factors were well-controlled. We identified 40 sig-
nificant SNPs satisfying Bonferroni-corrected signifi-
cant levels of 4.515e−8. The Manhattan plot shows the 
distribution of the detected SNPs cross all chromosomes 
(Fig. 4a, Additional file 1: Table S3).

We used FUMA [33] pipeline for GWAS downstream 
analysis. First, FUMA generated a set of candidate 
SNPs and the 11 independent SNPs (Additional file  1: 

Table 1  Genotype imputation performance with different filtering criteria

Totally 16,000 samples with an average of 0.04× sequencing coverage were used for imputation

Filtering criteria SNP number Genotype accuracy Allele accuracy

None 167,814 0.584 0.758

Known SNP in 1000G reference panel 141,161 0.578 0.751

INFO score ≥ 0.1 156,835 0.591 0.771

INFO score ≥ 0.2 126,331 0.618 0.794

INFO score ≥ 0.3 84,932 0.656 0.815

INFO score ≥ 0.4 48,176 0.7 0.834

MAF ≥ 0.05 162,788 0.597 0.777

HWE p-value > 1e−9 84,237 0.595 0.695

HWE p-value > 1e−6 77,419 0.596 0.692

HWE p-value > 1e−3 65,561 0.599 0.687

HWE p-value > 1e−6 and INFO score ≥ 0.1 68,505 0.610 0.713

HWE p-value > 1e−6 and INFO score ≥ 0.2 55,972 0.646 0.751

HWE p-value > 1e−6 and INFO score ≥ 0.3 42,202 0.681 0.786

HWE p-value > 1e−6 and INFO score ≥ 0.4 28,773 0.715 0.818
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a

b

c

e

d

Fig. 4  SNP-based genome-wide association on gestational age. a Manhattan plot of the SNPs in GWAS. The red dash line represents the 
genome-wide significance level 4.515e−8. The SNP “rs946934582” with p-value of 2.764e−144 is beyond the scale, thus hereby listed alone. The 
genes shown are linking with the candidate SNPs and position of the corresponding genomic risk loci. b Functional annotation and enrichment 
test result of the candidate SNPs in FUMA. c A Venn diagram of the 166 genes that could be mapped to the 11 genomic risk loci by positional, 
eQTL and chromatin interaction strategies. d A Circos plot of the chromatin interactions and eQTL mapping in the 11 genomic risk loci from 
eight chromosomes. The outer ring is chromosomes, the regions in blue denote genomic risk loci. The middle ring represents the mapped genes. 
The color of the gene symbols shows how they were mapped, eQTL in green, chromatin interaction in orange, and both eQTL and chromatin 
interaction in black. The inner ring shows the linking edges, eQTL in green, and chromatin interaction in orange. e A summary of the 11 genomic 
risk loci
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Table  S4). By annotation, most of the SNPs are located 
and enriched in intergenic and intronic regions (Fig. 4b), 
which is similar to the previous study [50]. Specifically, 
there are 11 SNPs located in exons (0.8% of total), and 
4 of them are nonsynonymous SNPs (Additional file  1: 
Table  S5). Additionally, we observed the distribution of 
regulatory elements and chromatin states with the can-
didate SNPs (Additional file  2: Fig. S7). According to 
RegulomeDB scores assigned to each candidate SNP, 
1.09% SNPs were classified as likely to affect regulator 
binding (score 2a and 2b) and 0.21% as likely to affect 
regulator binding and linked to expression of a gene tar-
get (score 1d and 1f ). These proportions of SNPs hold 
a relatively high likelihood to affect the regulatory ele-
ments along noncoding regions. Second, we identified 
11 leading SNPs from their corresponding genomic risk 
loci by FUMA. Figure 4e shows the DNA length, number 
of SNPs, and mapped genes of these risk loci. The zoom 
in locus plot of the 11 risk loci are shown in Additional 
file 2: Fig. S8. Four risk loci were reported to be associ-
ated with refractive astigmatism, adolescent idiopathic 
scoliosis, glomerular filtration rate, among others, indi-
cating a possible connection of these diseases or traits 
with PTB (Additional file 1: Table S6).

By integrating strategies positional, eQTL, and chro-
matin interaction mappings, we identified a total of 166 
genes mapped to the 11 risk loci, including 48 and 19 
genes from two and three strategies, respectively (Fig. 4c, 
Additional file 1: Table S7). There were 24 genes detected 
within or less than 10 kbp from the candidate SNPs and 
7 of them are shown in Fig. 4a based on the location of 
the genomic risk loci. Importantly, CNTLN was reported 
as a PTB-related gene [51], and PIN1 involves inhibition 
of breast cancer [52]. A Circos plot shows the graphic 
distribution of the mapped genes via eQTL and chroma-
tin interaction, and their links with the genomic risk loci 
(Fig. 4d). The breakdown of each chromosome is shown 
in Additional file 2: Fig. S9. Even though not within any 
risk loci, CRHBP was linked through chromatin interac-
tion mapping to two loci, chr5:75101342-75164623 and 
chr5:78251511-78271282. Enrichment analysis of DEGs 
in 30 tissue types in GTEx v8 [53] exhibits significant 
overexpression of the mapped genes in both ovary and 
uterus (Additional file 2: Fig. S10a). The gene set enrich-
ment analysis also indicates their association with the 
immune system, breast cancer, and transcriptional regu-
lation (Additional file 2: Fig. S10b).

Association of the 166 mapped genes from GWAS 
with preterm birth, infant disease, and breast cancer
GWAS of gestational age related PTB has been impli-
cated in biological functions that include immune 
response, inflammatory response, and coagulation 

factors [11, 54–56]. We compared our 166 mapped genes 
with reported PTB markers by collection of 8 published 
resources, here classed to 3 PTB sets, including dbPTB 
from Sheikh et al. [57] and Uzun et al. [58], PTB-merged 
from 5 data resources [10], and PNAS-identified DEGs of 
PTB in 2019 [10]. We found that CRHBP, EMR1, ICAM1, 
MBL2, OXTR, and THBS4 have been reported in at least 
2 PTB sets. Specifically, ICAM1 was present in all 3 sets 
and 6 data resources, and both CRHBP and OXTR in 5 
resources (Additional file 1: Table S7). In addition, there 
were 8 genes overlapped with 1 PTB set (Fig.  5a). This 
result pinpoints a relationship of the detected risk loci 
with PTB, and possible roles of the overlapped genes 
in PTB. There are totally 1930 genes reported as PTB-
related; however, only 50 were frequently recognized by 
at least 5 data resources, hereafter referred to as PTB 
marker genes (Additional file  1: Table  S7). The 50-PTB 
marker set was significantly enriched with inflamma-
tory and immune response-related processes or pathways 
(Fig. 5b). Similarly, those PTB genes that overlapped with 
3 or 4 resources mainly participate in the same biological 
functions. The PTB-related genes listed at Fig. 5a involve 
immune response (EMR1, ICAM1, PTPRZ1, and MBL2), 
inflammatory response (CRHBP, ICAM1, PTPRZ1, and 
MBL2), coagulation (MBL2), apoptosis (PLAGL1), and 
cell adhesion (ICAM1 and THBS4), emphasizing their 
associations with PTB.

To determine the relationship between the mapped 
genes and PTB, we first analyzed the DEGs between 
maternal PTB and normal term birth based on six 
published datasets of genome-wide gene expression 
(Additional file  1: Tables S8 and S9). Significant over-
expression of CRHBP and OXTR were identified in 
two datasets, while overexpressed (ICAM1, EGR2, and 
PLAGL1) and underexpressed (THBS4) genes were pre-
sent in one dataset (Table  2). Another DKK1 expressed 
higher levels above 2.0-fold in two datasets, suggesting 
its importance in PTB. Then, we analyzed four infant 
PTB datasets of gene expression and found differen-
tially increased expression of ICAM1, CRHBP, DKK1, 
EGR2, and PLAGL1, consistent with maternal PTB. In 
contrast, significantly underexpression of THBS4, PIN1, 
and GCNT4 was commonly detected by maternal and 
infant subgroups (Table 2). It is also noticed that DNMT1 
shows increased expression in both fetal and maternal 
groups (Table  2). DNA methylation was suggested to 
involve generation of early PTB [10]; however, the role 
of DNMT1 as a DNA methyltransferase in PTB has not 
been determined yet. This analysis provides evidence 
that these mapped DEGs above including DNMT1 are 
associated with both maternal and infant PTB. Rela-
tively, OXTR seems to be related to only maternal factor. 
A heatmap of mRNA expression shows clustering of 6 
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expression profile cross PTB and normal term conditions 
(Fig. 5c). Two clusters display distinct expression patterns 
of these PTB genes.

It is well known that bronchopulmonary dysplasia 
(BPD) is the most common respiratory disorder among 
children born preterm [59, 60]. The pathogenesis of 
BPD involves multiple prenatal and postnatal mecha-
nisms affecting the development of immature lung. Also, 
neonatal sepsis is associated with severe morbidity and 
mortality during the neonatal stage. The incidence of 
late-onset sepsis increases with increase in survival rate 

of preterm and low weight babies [61]. Thus, we exam-
ined the possible relationship of the 166 genes with 
infant BPD and sepsis by analyzing gene expression data 
derived from samples of preterm infants (Additional 
file 1: Table S8). We first identified differentially increased 
expression of CRHBP, ICAM1, and EGR2 under PTB 
of maternal and infant and BPD conditions, but differ-
entially decreased expression of DKK1 (Table  2). Under 
sepsis condition, differentially overexpressed CNTLN, 
ICAM1, and PLAGL1 in PTB were consistently observed. 
By contrast, GCNT4 expression was always significantly 

Fig. 5  Comparison of the 166 genes mapped to 11 genomic risk loci with PTB and infant disease. a The 166 mapped genes were compared with 
3 sets of reported PTB genes including dbPTB from Sheikh et al. [57] and Uzun et al. [58], PTB-merged from 5 resources [10], and PNAS-identified 
DEGs in 2019 [10] (see Additional file 1: Table S7). b A bar graph showing significantly enriched GO biological processes and KEGG pathways based 
on the 50 PTB marker genes (see Additional file 1: Table S7). c,d Heatmaps showing expression profiling and clusters of the PTB genes predicted 
from GWAS under maternal PTB (c) and PTB infant with BPD and sepsis (d). The gene expression data was extracted from the listed GSE accession 
numbers of NCBI/GEO



Page 12 of 18Li et al. Genome Medicine           (2023) 15:10 

decreased under maternal and infant subpopulations. 
The gene clustering shows diversity of gene expression 
across different samples with infant PTB; however, these 
upregulated genes were grouped together (Fig. 5d), sup-
porting the idea that BPD or sepsis induces the change in 
these PTB genes.

Breast cancer is one of the most frequently diagnosed 
malignancies observed during pregnancy. It often pre-
sents characteristics of high malignancy and is hor-
mone receptor negative like Estrogen receptor (ER)−, 
HER2+, or triple-negative breast cancer (TNBC). We 
collected gene expression data mainly presenting three 
subtypes of breast cancer, TNBC, HER2+, and ER or 
progesterone receptor (PR) (Additional file 1: Table S8). 
By analysis of DEGs, we detected the expression of PTB-
related genes DKK1, ICAM1, DKK1, EGR2, PLAGL1, 
GCNT4, and THBS4 in all three subtypes. Increased 
ICAM1 and decreased PLAGL1 were consistently identi-
fied in these datasets (Table 2). In fact, ICAM1 has been 
reported as TNBC markers [62] and acts as prognostic 
molecule of breast cancer [63]. Both ICAM1 and DKK1 
could increase expression in TNBC cells [64]. However, 
other PTB-related genes do not display similar changes 

in expression under the cancer subtypes. For exam-
ple, OXTR was detected by only one dataset of ER+/−, 
while CRHBP, EMR1, PIN1, and MBL2 were not found 
among any of the subtypes. Conversely, underexpression 
of PLAGL1 and GCNT4 were found in all three types of 
breast cancer. In addition, overexpression of DNMT1 was 
observed in TNBC and HER2+ subtypes that validates 
its oncogenic roles in breast cancer and drug target of 
TNBC [65, 66].

To identify further interactions between the selected 
PTB genes from Table 2 and the top 50 PTB markers, we 
calculated Pearson correlation coefficient by comparing 
their gene expression of maternal and infant PTB, BPD, 
and sepsis subsets, respectively. We built the correspond-
ing co-expression networks of the PTB genes (Addi-
tional file  2: Fig. S11). Clearly, the co-expressed genes 
involve immune and inflammatory responses, coagu-
lation, and apoptosis and angiogenesis, among others. 
We then constructed the networks cross different sub-
populations. As shown in Fig.  6a, the PTB genes could 
involve both maternal and infant PTB processes, espe-
cially ICAM1, PLAGL1, EGR2, and CRHBP that link to 
TLR4, a known preterm marker associated with immune 

Table 2  Main mapped genes differentially expressed in PTB, infant disease, and breast cancer

PTB-related genes identified in our GWAS were compared with DEGs identified in published gene expression datasets (Additional file 1: Table S9). “up” and “down” 
indicate differentially overexpressed and underexpressed gene, respectively

Genes 
mapped to 
risk loci

Overlapped 
no. with the 
reported
PTB datasets

No. of DEGs detected in gene expression data

Maternal PTB Infant PTB Infant BPD Infant sepsis Breast cancer 
ER, PR

Breast cancer 
TNBC

Breast cancer 
HER2+

ICAM1 6 1(up) 2(up) 1(up) 1(up) 1(up),2(down) 2(up) 1(up)

CRHBP 5 2(up) 1(up) 1(up)

OXTR 5 2(up) 1(up) 1(down)

THBS4 3 1(down) 1(down) 1(up) 1(up) 2(down) 1(up),1(down)

EGR2 2 1(up) 1(up) 1(up) 1(up) 2(down) 2(down)

CNTLN 1 1(up) 1(up),1(down) 1(up) 1(down) 1(down)

MBL2 4 1(up)

EMR1 2 1(up)

PLAGL1 1 1(up) 2(up) 1(up) 2(down) 2(down) 2(down)

DKK1 2(up) 1(up) 1(down) 2(down) 3(up),1(down) 1(up),1(down)

GCNT4 1(down) 2(down) 1(down) 2(down) 1(up),2(down) 1(down) 1(down)

DNMT1 1(up) 1(up) 1(up) 1(up)

PIN1 1(down) 1(down)

Fig. 6  Associated analysis of the PTB-related genes in maternal and infant subtypes. a A gene co-expression network merging maternal and infant 
PTB subtypes. b A gene co-expression network merging maternal PTB and BPD of preterm infant. In a and b, oval nodes represent PTB-related 
genes predicted from GWAS using the 1744 born embryo samples, rectangle nodes refer to the 50 top PTB markers summarized from previously 
studies (Additional file 1: Table S7), involving immune or inflammation (blue), apoptosis (yellow), angiogenesis (green), coagulation (purple), and 
other biological processes (gray). Co-expressive edges (the Pearson correlation p-value < 0.01) linking nodes represent maternal (red), infant (blue), 
and both maternal and infant (black). c A graphic summary to illustrate gestational age’s association with PTB, infant disease, and breast cancer

(See figure on next page.)
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Fig. 6  (See legend on previous page.)
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and inflammatory processes [67]. Similarly, co-expres-
sion interactions of these genes with the top PTB mark-
ers were observed under maternal PTB and infant BPD 
(Fig.  6b). Both OXTR and PIN1 only display gene cor-
relations under maternal PTB, whereas MBL2 only cor-
relates under infant PTB. This analysis indicates that the 
predicted PTB-related genes including ICAM1, CRHBP, 
PLAGL1, EGR2, CNTLN, and DKK1 play an important 
role in preforming biological activities associated with 
PTB, infant disease, and possibly breast cancer, due to 
the gestational age-induced.

Discussion
Low- or very low-coverage sequencing data have been 
increasingly used in discovery of genetic variation and 
GWAS. However, if the coverage is further decreased to 
below 0.1×, how many samples are needed in imputa-
tion for obtaining a satisfying genotype accuracy and 
can ultra-low-coverage samples be properly applied to 
GWAS? To address this challenge, we used a PGT dataset 
of 17,844 embryo samples with an average of 0.04× cover-
age and achieved satisfying genotype imputation perfor-
mance comparable. We first demonstrate that increasing 
in number of ulcWGS samples is more efficient than 
changing sequencing coverages and indicates the ability of 
such ultra-low-coverage PGT samples to obtain adequate 
accuracy of genotypes. Furthermore, we found that INFO 
score and HWE p-value are effective to act as filters to 
improve the accuracy at ultra-low coverages while mean-
while keeping enough SNPs for downstream analyses. 
In addition, it is noted that the biases induced by differ-
ent sequencing platforms and WGA kits exist in ulcWGS 
data. To eliminate these biases, we selected the top PCs 
as their representations which were substantially incorpo-
rated as covariates in GWAS. Our results show the poten-
tial for this approach in processing similar effects derived 
from other PGT data. To our best knowledge, the samples 
used in this study hold the lowest average WGS coverage 
for GWAS so far, and our study provides a framework for 
guiding other researchers who work on ulcWGS data.

Gestational age is a multi-factor phenotype involved 
in maternal and fetal biological activities [68]. To inves-
tigate effects of the fetal genome on gestational age, we 
used the imputed genotypes of 1744 born embryo sam-
ples, a cohort of samples who successfully gave birth 
after in vitro fertilization. From the 166 genes mapped to 
the 11 genomic risk loci, we identified a set of the PTB-
related genes that were previously reported [12, 68]. 
CRHBP, ICAM1, and OXTR are primary representative 
genes showing evidence of genetic association with ges-
tational age among our samples. CRHBP is an important 
gene in maternal and fetal gestation that could regulate 

the pregnancy length by increasing/decreasing the con-
centration of CRH [69, 70]. ICAM1 involves disease 
induced PTB during pregnancy [71–73]. Oxytocin sign-
aling is mediated by oxytocin receptor (OXTR), which is 
related to gestational age [74]. We validated these pre-
dicted PTB genes by analysis of DEGs from maternal and 
infant PTB subpopulations.

PTB is neonatal birth occurring before 37 weeks of ges-
tation age and is a leading cause of infant morbidity and 
mortality. Understanding of genetic and molecular mech-
anisms of PTB and its association with gestation duration 
is currently insufficient. Recently, Zhang et  al. reported 
replicable loci in six genes (EBF1, EEFSEC, AGTR2, 
WNT4, ADCY5, and RAP2C) associated with gesta-
tional duration [12]. This study identified 3 genes (EBF1, 
EEFSEC, and AGTR2) strongly associated with PTB in a 
European ancestry cohort of 43,568 women. However, we 
did not detect such 6 genes from the reported PTB mark-
ers and only identified them as DEGs from few published 
datasets of PTB. This could be due to the heterogeneous 
sources of samples used in different PTB studies or be 
explained in part by the genetic complexity of incomplete 
gestation-induced PTB complications. Here, we collected 
almost 2000 PTB-related genes from previous PTB stud-
ies. The differences in study design, source and subtype 
of samples, and statistical methods would be important 
factors that could account for the diversity of PTB vari-
ants and genes among the various studies. Consider-
ing the possible association of PTB with other traits, we 
compared differential gene programs on multiple phe-
notypes between mother and infant reported in previous 
studies, and demonstrated a high risk of CRHBP, ICAM1, 
DNMT1, CNTLN, PLAGL1, DKK1, and EGR2 with PTB 
among our sample cohorts of Chinese ancestry. To sup-
port this finding, we reconstructed co-expressive net-
works linking the PTB-related genes in GWAS with the 
reported PTB markers. Indeed, the correlated PTB genes 
are mainly involved in immune and inflammation-related 
processes and signaling pathways, as well as coagulation 
factors. Thus, these findings have biological implications 
for dissecting genetic associations of gestational factors 
with disease or traits in different human ancestries.

Pregnancy is possibly associated with an increased 
risk of developing breast cancer [75]. Although several 
reports indirectly described relationship between breast 
cancer and PTB [76], evidence is still lacking. To deter-
mine whether a correlation exists between PTB women 
and breast cancer pathogenesis, we compared differential 
expression of the PTB-related genes in PTB samples and 
three subtypes of hormone receptor-related breast cancer 
samples. Although several DEGs were found in both PTB 
and cancer subtypes, their expression patterns are not 
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consistent. It perhaps is because of different subtype of 
samples derived from heterogeneous populations, as well 
as different phenotypes involved in the analyses. Never-
theless, our data provides additional evidence that PTB 
might be related with breast cancer hormone-related 
subtypes. A graphic overview of our results is summa-
rized in Fig.  6c. We proposed interplays of gestational 
age with PTB, fetal disease, and breast cancer. The repre-
sentative PTB genes CRHBP, ICAM1, THBS4, DNMT1, 
CNTLN, PLAGL1, DKK1, and EGR2 are likely associated 
with these phenotypes by targeting immune and inflam-
matory response, coagulation, and cell adhesion.

GWAS proved useful in past decades in identifying 
phenotype-genotype associations, but the findings were 
not causal factors [77, 78]. Our findings provide insight 
into understanding the genetic basis of gestational age. 
The reported risk factors are not supported for clinical 
decision-making before more validated supporting data 
are provided. There are three possible reasons. First, ges-
tational age is a complex trait involving genetic and envi-
ronmental factors. Even if some non-genetic factors are 
included, additional variables are related to PTB, such 
as nutrition, physical activity, and psychological factors 
[79]. Applying the results to the risk profiling could lead 
to inaccurate predictions because of potential ignorance 
of gene-environment interactions. Second, most detected 
variants are enriched in noncoding regions, suggesting 
that further studies must illuminate the regulatory net-
work. Third, applying it to embryo selection to decrease 
the risk of PTB could lead to an increased risk of other 
diseases [80]. Therefore, there is a gap between the 
GWAS discoveries and clinical practice. Another limita-
tion of this study is the lack of high-quality sequencing 
data. We are interested in obtaining new high-quality 
sequencing data and providing updated results for com-
parative analysis in our future work.

Conclusions
This study benchmarked the ability of ulcWGS to be 
used for genotype imputation. As the first study using a 
large cohort of human embryo samples with ulcWGS, we 
demonstrate its power and effectiveness in GWAS. We 
detected 40 significant SNPs and 11 genomic risk loci 
that contain independent significant SNPs and are asso-
ciated with gestational age. From 166 genes mapped to 
the risk loci. We establish interrelationships between the 
mapped genes and maternal or infant diseases and pro-
vide insights into understanding the genetic associations 
of gestational ages. Our findings should expand current 
GWAS related to gestational duration and preterm trait 
by including Chinese samples and would therefore be 
helpful to future research.

Abbreviations
WGS	� Whole genome sequencing
NGS	� Next-generation sequencing
GWAS	� Genome-wide association study
bp	� Base pair
SNV	� Single-nucleotide variant
SNP	� Single-nucleotide polymorphism
PTB	� Preterm birth
PGT	� Preimplantation genetic testing
MAF	� Minor allele frequency
LD	� Linkage disequilibrium
HWE	� Hardy-Weinberg equilibrium
WGA​	� Whole genome amplification
PCA	� Principal component analysis
eQTL	� Expression quantitative trait locus
FDR	� False discovery rate
GO	� Gene ontology
BPD	� Bronchopulmonary dysplasia
ER	� Estrogen receptor
PR	� Progesterone receptor
HER2	� Human epidermal growth factor receptor 2
TNBC	� Triple-negative breast cancer
DEG	� Differentially expressed gene
AF	� Allele frequency
GIAB	� Genome in a Bottle
BWA	� Burrows-Wheeler Aligner
GEO	� Gene Expression Omnibus
NCBI	� National Center for Biotechnology Information

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s13073-​023-​01158-7.

Additional file 1: Table S1. Genotype imputation performance at dif‑
ferent ultra-low coverages and sample sizes. Table S2. WGA methods 
and sequencing platforms used in the PGT experiments. Table S3. The 
summary of 40 significant SNPs satisfying Bonferroni-corrected significant 
level of 4.526e-8. Table S4. The list of candidate SNPs. Table S5. Nonsyn‑
onymous candidate SNPs. Table S6. The reported genomic risk loci from 
GWAS catalog that were detected in our dataset. Table S7. A list of 166 
mapped genes by positional, eQTL, and chromatin interaction mappings. 
Table S8. Data sources of genome-wide mRNA expression in Preterm 
birth, infant disease and breast cancer. Table S9. A list of the 166 mapped 
genes that were also identified by differentially expressed genes (DEGs) 
derived from analyzing the genome-wide gene expression datasets listed.

Additional file 2: Figure S1. Sequencing coverage statistics of the 17,844 
embryos. Figure S2. Visualizing the linear regression model for genotype 
accuracy prediction. Figure S3. Quality control of SNV calling. Figure S4. 
Principal component analysis of all 17,844 embryo samples. Figure S5. 
Distribution of gestational age in the 1,744 born embryo samples. Figure 
S6. Quantile-Quantile plot of the 1,107,198 studied SNPs. Figure S7. Pie 
charts of the candidate SNPs. Figure S8. Zoom in locus plots of the 11 
genomic risk loci. Figure S9. Circos plots of chromatin interactions and 
eQTL mapping. Figure S10. Gene set analysis of the 166 mapped genes. 
Figure 11. Co-expression network of PTB-related genes in maternal and 
infant subtypes.

Additional file 3: Supplemental Methods.

Acknowledgements
Not applicable.

Authors’ contributions
SL, RL, and BY developed the computational pipeline and the algorithms. RL, 
GL, YW, TKL, and TL designed the experiments. PX, YG, FG, and YT contributed 
to the clinical data collection. SL, BY, JL, YG, and FG performed data processing 
and analysis. RL, GL, SL, BY, PX, and YW participated in drafting the manuscript. 
All authors read and approved the final manuscript.

https://doi.org/10.1186/s13073-023-01158-7
https://doi.org/10.1186/s13073-023-01158-7


Page 16 of 18Li et al. Genome Medicine           (2023) 15:10 

Funding
The study was supported by the Early Career Schema (27204518) of the Hong 
Kong Research Grants Council for RL, partially by General Research Funding 
of Hong Kong Research Grants Council (17113721) for RL and (17117918) for 
BY, by the University Grants Committees Fund from the University of Hong 
Kong for RL, partially by National Key Research and Developmental Program 
of China (2018YFC1004900) for YT, by the Innovation and Technology Fund 
(ITF/331/17FP) of Innovation and Technology Commission of the Hong Kong 
SAR government for TL. Publication made possible in part by support from the 
HKU Libraries Open Access Author Fund sponsored by the HKU Libraries.

Availability of data and materials
The sequencing data supporting the current study have not been deposited 
in a public repository because of restrictions in the patient consent. The 
significant SNPs and candidate SNPs are listed in Additional file 1: Tables S3 
and S4, respectively. The genome-wide mRNA expression dataset in preterm 
birth, infant disease, and breast cancer can be accessed at Gene Expression 
Omnibus (GEO): https://​www.​ncbi.​nlm.​nih.​gov/​geo/ (The dataset descriptions 
and accession numbers are listed in Additional file 1: Table S8).

Declarations

Ethics approval and consent to participate
Blastocyst samples used in this study have been reviewed and approved by 
the Institutional Review Board (IRB) of China International Trust Investment 
Corporation - Xianngya (IRB Reference No. LL-SC-2020-004). The experimental 
methods were in compliance with the Helsinki Declaration. All participating 
patients provided written informed consent. Following the regulations of 
the Human Genetic Resources Administration of China, all genetic materials 
involved in this study have been reviewed and approved by Ministry of Sci‑
ence and Technology of the People’s Republic of China (Approval No. [2022] 
GH1831).

Consent for publication
Not applicable

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Computer Science, The University of Hong Kong, Hong Kong, 
China. 2 Department of Obstetrics & Gynecology, Queen Mary Hospital, The 
University of Hong Kong, Hong Kong, China. 3 NHC Key Laboratory of Human 
Stem Cell and Reproductive Engineering, School of Basic Medical Science, 
Institute of Reproductive and Stem Cell Engineering, Central South University, 
Changsha 410008, Hunan, China. 4 Clinical Research Center for Reproduc‑
tion and Genetics in Hunan Province, Reproductive and Genetic Hospital 
of CITIC-Xiangya, Changsha 410013, Hunan, China. 5 Hunan Normal University 
School of Medicine, Changsha 410013, Hunan, China. 6 National Engineering 
and Research Center of Human Stem Cell, Changsha, Hunan, China. 7 College 
of Computer Science and Technology, Zhejiang University, Hangzhou, China. 

Received: 15 June 2022   Accepted: 26 January 2023

References
	1.	 Visscher PM, Wray NR, Zhang Q, Sklar P, McCarthy MI, Brown MA, et al. 

10 Years of GWAS discovery: biology, function, and translation. Am J 
Hum Genet. 2017;101(1):5–22.

	2.	 Pasaniuc B, Rohland N, McLaren PJ, Garimella K, Zaitlen N, Li H, et al. 
Extremely low-coverage sequencing and imputation increases power for 
genome-wide association studies. Nat Genet. 2012;44(6):631.

	3.	 Wang Z, Chatterjee N. Increasing mapping precision of genome-wide 
association studies: to genotype and impute, sequence, or both? 
Genome Biol. 2017;18(1):118.

	4.	 Quick C, Anugu P, Musani S, et al. Sequencing and imputation in GWAS: 
Cost‐effective strategies to increase power and genomic coverage across 
diverse populations[J]. Genetic epidemiology. 2020;44(6):537–49.

	5.	 Gilly A, Southam L, Suveges D, Kuchenbaecker K, Moore R, Melloni GEM, 
et al. Very low-depth whole-genome sequencing in complex trait asso‑
ciation studies. Bioinformatics. 2019;35(15):2555–61.

	6.	 Homburger JR, Neben CL, Mishne G, Zhou AY, Kathiresan S, Khera AV. 
Low coverage whole genome sequencing enables accurate assessment 
of common variants and calculation of genome-wide polygenic scores. 
Genome Med. 2019;11(1):74.

	7.	 Marchini J, Howie B. Genotype imputation for genome-wide association 
studies. Nat Rev Genet. 2010;11(7):499–511.

	8.	 Liu S, Huang S, Chen F, Zhao L, Yuan Y, Francis SS, et al. Genomic 
analyses from non-invasive prenatal testing reveal genetic associa‑
tions, patterns of viral infections, and Chinese population history. Cell. 
2018;175(2):347–59.e14.

	9.	 Cronin FM, Segurado R, McAuliffe FM, Kelleher CC, Tremblay RE. Gesta‑
tional age at birth and ’Body-Mind’ Health at 5 years of age: a population 
based cohort study. PLoS One. 2016;11(3):e0151222.

	10.	 Knijnenburg TA, Vockley JG, Chambwe N, Gibbs DL, Humphries C, Hud‑
dleston KC, et al. Genomic and molecular characterization of preterm 
birth. Proc Natl Acad Sci U S A. 2019;116(12):5819–27.

	11.	 Liu X, Helenius D, Skotte L, Beaumont RN, Wielscher M, Geller F, et al. Vari‑
ants in the fetal genome near pro-inflammatory cytokine genes on 2q13 
associate with gestational duration. Nat Commun. 2019;10(1):3927.

	12.	 Zhang G, Feenstra B, Bacelis J, Liu X, Muglia LM, Juodakis J, et al. Genetic 
associations with gestational duration and spontaneous preterm birth. N 
Engl J Med. 2017;377(12):1156–67.

	13.	 Wadon M, Modi N, Wong HS, et al. Recent advances in the genetics of 
preterm birth. Ann Hum Genet. 2019;84(3):205–13.

	14.	 Brezina PR, Kutteh WH, Bailey AP, Ke RW. Preimplantation genetic screen‑
ing (PGS) is an excellent tool, but not perfect: a guide to counseling 
patients considering PGS. Fertil Steril. 2016;105(1):49–50.

	15.	 Huang L, Bogale B, Tang Y, Lu S, Xie XS, Racowsky C. Noninvasive 
preimplantation genetic testing for aneuploidy in spent medium may 
be more reliable than trophectoderm biopsy. Proc Natl Acad Sci U S A. 
2019;116(28):14105–12.

	16.	 Tan Y, Yin X, Zhang S, Jiang H, Tan K, Li J, et al. Clinical outcome of 
preimplantation genetic diagnosis and screening using next generation 
sequencing. GigaScience. 2014;3(1):30.

	17.	 Zook JM, Chapman B, Wang J, Mittelman D, Hofmann O, Hide W, et al. 
Integrating human sequence data sets provides a resource of benchmark 
SNP and indel genotype calls. Nat Biotechnol. 2014;32(3):246–51.

	18.	 NIST. Genome in a Bottle. [Internet]. 2012. Available from: https://​www.​
nist.​gov/​progr​ams-​proje​cts/​genome-​bottle. Accessed Jan 26, 2020.

	19.	 Quinlan AR. BEDTools: the Swiss-army tool for genome feature analysis. 
Curr Protoc Bioinformatics. 2014;47:11.2.1-34.

	20.	 Li H, Durbin R. Fast and accurate short read alignment with Burrows–
Wheeler transform. Bioinformatics. 2009;25(14):1754–60.

	21.	 Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The 
Sequence Alignment/Map format and SAMtools. Bioinformatics. 
2009;25(16):2078–9.

	22.	 Li H. FermiKit: assembly-based variant calling for Illumina resequencing 
data. Bioinformatics. 2015;31(22):3694–6.

	23.	 Li H. Problematic alignment regions in hs37d5 [Internet]. Github. 2016. 
Available from: https://​github.​com/​lh3/​sgdp-​fermi/​relea​ses/​downl​oad/​
v1/​um35-​hs37d5.​bed.​gz. Accessed 19 Dec, 2019.

	24.	 Rosenbloom KR, Sloan CA, Malladi VS, Dreszer TR, Learned K, Kirkup VM, 
et al. ENCODE data in the UCSC Genome Browser: year 5 update. Nucleic 
Acids Res. 2013;41(Database issue):D56–63.

	25.	 Rosenbloom KR, Sloan CA, Malladi VS, Dreszer TR, Learned K, Kirkup VM, 
et al. Encode mappability uniqueness score [Internet]. UCSC Genome 
Browser 2010. Available from: http://​hgdow​nload.​cse.​ucsc.​edu/​golde​
nPath/​hg19/​encod​eDCC/​wgEnc​odeMa​pabil​ity/​wgEnc​odeDu​keMap​abili​
tyUni​quene​ss35bp.​bigWig. Accessed 19 Dec 2019.

	26.	 Kent WJ, Zweig AS, Barber G, Hinrichs AS, Karolchik D. BigWig and 
BigBed: enabling browsing of large distributed datasets. Bioinformatics. 
2010;26(17):2204–7.

	27.	 Kent WJ, Zweig AS, Barber G, Hinrichs AS, Karolchik D. bigWigToBedGraph 
[Internet]. The UCSC Genome Browser. 2018. Available from: http://​
hgdow​nload.​soe.​ucsc.​edu/​admin/​exe/​linux.​x86_​64.​v369/​bigWi​gToBe​
dGraph. Accessed 19 Dec 2019.

	28.	 Davies RW, Flint J, Myers S, Mott R. Rapid genotype imputation from 
sequence without reference panels. Nat Genet. 2016;48(8):965–9.

https://www.ncbi.nlm.nih.gov/geo/
https://www.nist.gov/programs-projects/genome-bottle
https://www.nist.gov/programs-projects/genome-bottle
https://github.com/lh3/sgdp-fermi/releases/download/v1/um35-hs37d5.bed.gz
https://github.com/lh3/sgdp-fermi/releases/download/v1/um35-hs37d5.bed.gz
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeMapability/wgEncodeDukeMapabilityUniqueness35bp.bigWig
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeMapability/wgEncodeDukeMapabilityUniqueness35bp.bigWig
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeMapability/wgEncodeDukeMapabilityUniqueness35bp.bigWig
http://hgdownload.soe.ucsc.edu/admin/exe/linux.x86_64.v369/bigWigToBedGraph
http://hgdownload.soe.ucsc.edu/admin/exe/linux.x86_64.v369/bigWigToBedGraph
http://hgdownload.soe.ucsc.edu/admin/exe/linux.x86_64.v369/bigWigToBedGraph


Page 17 of 18Li et al. Genome Medicine           (2023) 15:10 	

	29.	 Howie B, Marchini J, Stephens M. 1000 genome haplotypes phase 1 
reference panel [Internet]. IMPUTE2. 2012. Available from: https://​mathg​
en.​stats.​ox.​ac.​uk/​impute/​ALL_​1000G_​phase​1inte​grated_​v3_​impute.​tgz. 
Accessed 18 Dec 2019.

	30.	 Zook JM, Catoe D, McDaniel J, Vang L, Spies N, Sidow A, et al. Benchmark 
SNP, small indel, and homozygous reference calls for the Genome in a 
Bottle (GIAB) sample HG005 [Internet]. GIAB. 2018. Available from: ftp://​
ftp-​trace.​ncbi.​nlm.​nih.​gov/​giab/​ftp/​relea​se/​Chine​seTrio/​HG005_​NA246​
31_​son/​NISTv3.​3.2/​GRCh37/. Accessed 26 Jan 2020.

	31.	 Skotte L, Korneliussen TS, Albrechtsen A. Association testing for next-
generation sequencing data using score statistics. Genet Epidemiol. 
2012;36(5):430–7.

	32.	 Korneliussen TS, Albrechtsen A, Nielsen R. ANGSD: Analysis of Next Gen‑
eration Sequencing Data. BMC Bioinformatics. 2014;15:356.

	33.	 Watanabe K, Taskesen E, van Bochoven A, Posthuma D. Functional map‑
ping and annotation of genetic associations with FUMA. Nat Commun. 
2017;8(1):1826.

	34.	 Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, Korbel 
JO, et al. A global reference for human genetic variation. Nature. 
2015;526(7571):68–74.

	35.	 Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic 
variants from high-throughput sequencing data. Nucleic Acids Res. 
2010;38(16):e164.

	36.	 Sherman B T, Hao M, Qiu J, et al. DAVID: a web server for functional 
enrichment analysis and functional annotation of gene lists (2021 
update)[J]. Nucleic acids research. 2022;50(W1):W216-W221.

	37.	 Lonsdale J, Thomas J, Salvatore M, et al. The genotype-tissue expression 
(GTEx) project[J]. Nat Genet. 2013;45(6):580–5.

	38.	 Schmitt AD, Hu M, Jung I, Xu Z, Qiu Y, Tan CL, et al. A compendium of 
chromatin contact maps reveals spatially active regions in the human 
genome. Cell Rep. 2016;17(8):2042–59.

	39.	 Giusti-Rodríguez P, Lu L, Yang Y, et al. Using three-dimensional regula‑
tory chromatin interactions from adult and fetal cortex to interpret 
genetic results for psychiatric disorders and cognitive traits[J]. BioRxiv, 
2018:406330.

	40.	 Akbarian S, Liu C, Knowles JA, Vaccarino FM, Farnham PJ, Crawford GE, 
et al. The PsychENCODE project. Nat Neurosci. 2015;18(12):1707–12.

	41.	 Noguchi S, Arakawa T, Fukuda S, Furuno M, Hasegawa A, Hori F, et al. 
FANTOM5 CAGE profiles of human and mouse samples. Sci Data. 
2017;4:170112.

	42.	 NCBI. Gene Expression Omnibus [Internet]. GEO DataSets. 2002. Available 
from: https://​www.​ncbi.​nlm.​nih.​gov/​geo/. Accessed 22 Sept 2020.

	43.	 Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers dif‑
ferential expression analyses for RNA-sequencing and microarray studies. 
Nucleic Acids Res. 2015;43(7):e47.

	44.	 Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package 
for differential expression analysis of digital gene expression data. Bioin‑
formatics. 2010;26(1):139–40.

	45.	 Howie BN, Donnelly P, Marchini J. A flexible and accurate genotype 
imputation method for the next generation of genome-wide association 
studies. PLoS Genet. 2009;5(6):e1000529.

	46.	 Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, et al. 
dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 
2001;29(1):308–11.

	47.	 Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, Wang Q, et al. 
The mutational constraint spectrum quantified from variation in 141,456 
humans. Nature. 2020;581(7809):434–43.

	48.	 Skol AD, Scott LJ, Abecasis GR, Boehnke M. Joint analysis is more efficient 
than replication-based analysis for two-stage genome-wide association 
studies. Nat Genet. 2006;38(2):209–13.

	49.	 Bulik-Sullivan BK, Loh PR, Finucane HK, Ripke S, Yang J, Patterson N, 
et al. LD Score regression distinguishes confounding from polygenicity 
in genome-wide association studies. Nat Genet. 2015;47(3):291–5.

	50.	 Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, Wang H, 
et al. Systematic localization of common disease-associated variation 
in regulatory DNA. Science. 2012;337(6099):1190–5.

	51.	 Enquobahrie DA, Williams MA, Qiu C, et al. Early pregnancy peripheral 
blood gene expression and risk of preterm delivery: a nested case 
control study[J]. BMC pregnancy and childbirth. 2009;9:1-16.

	52.	 Wulf G, Ryo A, Liou Y-C, Lu KP. The prolyl isomerase Pin1 in breast 
development and cancer. Breast Cancer Res. 2003;5(2):76–82.

	53.	 Consortium GT. The GTEx Consortium atlas of genetic regula‑
tory effects across human tissues. Science (New York, NY). 
2020;369(6509):1318–30.

	54.	 Vora B, Wang A, Kosti I, Huang H, Paranjpe I, Woodruff TJ, et al. Meta-anal‑
ysis of maternal and fetal transcriptomic data elucidates the role of adap‑
tive and innate immunity in preterm birth. Front Immunol. 2018;9:993.

	55.	 Strauss JF 3rd, Romero R, Gomez-Lopez N, Haymond-Thornburg H, Modi BP, 
Teves ME, et al. Spontaneous preterm birth: advances toward the discovery 
of genetic predisposition. Am J Obstet Gynecol. 2018;218(3):294–314.e2.

	56.	 Velez DR, Fortunato SJ, Thorsen P, Lombardi SJ, Williams SM, Menon R. 
Preterm birth in Caucasians is associated with coagulation and inflamma‑
tion pathway gene variants. PLoS One. 2008;3(9):e3283-e.

	57.	 Sheikh IA, Ahmad E, Jamal MS, Rehan M, Assidi M, Tayubi IA, et al. Spon‑
taneous preterm birth and single nucleotide gene polymorphisms: a 
recent update. BMC Genomics. 2016;17(Suppl 9):759.

	58.	 Uzun A, Sharma S, Padbury J. A bioinformatics approach to preterm birth. 
Am J Reprod Immunol. 2012;67(4):273–7.

	59.	 Siffel C, Kistler K D, Lewis J F M, et al. Global incidence of bronchopulmo‑
nary dysplasia among extremely preterm infants: a systematic literature 
review[J]. J Matern Fetal Neonatal Med. 2021;34(11):1721–31.

	60.	 Cai Y, Ma F, Qu L, Liu B, Xiong H, Ma Y, et al. Weighted gene co-expression 
network analysis of key biomarkers associated with bronchopulmonary 
dysplasia. Front Genet. 2020;11:539292.

	61.	 Villamor-Martinez E, Lubach GA, Rahim OM, Degraeuwe P, Zimmermann 
LJ, Kramer BW, et al. Association of histological and clinical chorioamnio‑
nitis with neonatal sepsis among preterm infants: a systematic review, 
meta-analysis, and meta-regression. Front Immunol. 2020;11:972.

	62.	 Rosette C, Roth RB, Oeth P, Braun A, Kammerer S, Ekblom J, et al. Role 
of ICAM1 in invasion of human breast cancer cells. Carcinogenesis. 
2005;26(5):943–50.

	63.	 Schroder C, Witzel I, Muller V, Krenkel S, Wirtz RM, Janicke F, et al. Prognos‑
tic value of intercellular adhesion molecule (ICAM)-1 expression in breast 
cancer. J Cancer Res Clin Oncol. 2011;137(8):1193–201.

	64.	 Xu WH, Liu ZB, Yang C, Qin W, Shao ZM. Expression of dickkopf-1 and 
beta-catenin related to the prognosis of breast cancer patients with triple 
negative phenotype. PLoS One. 2012;7(5):e37624.

	65.	 Shin E, Lee Y, Koo JS. Differential expression of the epigenetic methyl‑
ation-related protein DNMT1 by breast cancer molecular subtype and 
stromal histology. J Transl Med. 2016;14:87.

	66.	 Wong KK. DNMT1: A key drug target in triple-negative breast cancer. 
Semin Cancer Biol. 2020;72:198-213.

	67.	 Robertson SA, Hutchinson MR, Rice KC, Chin PY, Moldenhauer LM, Stark 
MJ, et al. Targeting Toll-like receptor-4 to tackle preterm birth and fetal 
inflammatory injury. Clin Transl Immunol. 2020;9(4):e1121.

	68.	 Zhang G, Srivastava A, Bacelis J, Juodakis J, Jacobsson B, Muglia LJ. 
Genetic studies of gestational duration and preterm birth. Best Pract Res 
Clin Obstet Gynaecol. 2018;52:33–47.

	69.	 Petraglia F, Imperatore A, Challis JR. Neuroendocrine mechanisms in 
pregnancy and parturition. Endocr Rev. 2010;31(6):783–816.

	70.	 Majzoub JA, McGregor JA, Lockwood CJ, Smith R, Taggart MS, Schulkin J. 
A central theory of preterm and term labor: putative role for corticotro‑
pin-releasing hormone. Am J Obstet Gynecol. 1999;180(1 Pt 3):S232–41.

	71.	 Díaz-Pérez FI, Hiden U, Gauster M, Lang I, Konya V, Heinemann A, 
et al. Post-transcriptional down regulation of ICAM-1 in feto-placental 
endothelium in GDM. Cell Adhes Migr. 2016;10(1-2):18–27.

	72.	 Chen X, Scholl TO. Maternal biomarkers of endothelial dysfunction and 
preterm delivery. PLoS One. 2014;9(1):e85716.

	73.	 Labarrere CA, Bammerlin E, Hardin JW, Dicarlo HL. Intercellular adhe‑
sion molecule-1 expression in massive chronic intervillositis: implica‑
tions for the invasion of maternal cells into fetal tissues. Placenta. 
2014;35(5):311–7.

	74.	 Kim SC, Lee JE, Kang SS, Yang HS, Kim SS, An BS. The regulation of oxy‑
tocin and oxytocin receptor in human placenta according to gestational 
age. J Mol Endocrinol. 2017;59(3):235–43.

	75.	 Polyak K. Pregnancy and breast cancer: the other side of the coin. Cancer 
Cell. 2006;9(3):151–3.

	76.	 Froehlich K, Schmidt A, Heger JI, Al-Kawlani B, Aberl CA, Jeschke U, et al. 
Breast cancer, placenta and pregnancy. Eur J Cancer. 2019;115:68–78.

	77.	 Tam V, Patel N, Turcotte M, Bossé Y, Paré G, Meyre D. Benefits and 
limitations of genome-wide association studies. Nat Rev Genet. 
2019;20(8):467–84.

https://mathgen.stats.ox.ac.uk/impute/ALL_1000G_phase1integrated_v3_impute.tgz
https://mathgen.stats.ox.ac.uk/impute/ALL_1000G_phase1integrated_v3_impute.tgz
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/ChineseTrio/HG005_NA24631_son/NISTv3.3.2/GRCh37/
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/ChineseTrio/HG005_NA24631_son/NISTv3.3.2/GRCh37/
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/ChineseTrio/HG005_NA24631_son/NISTv3.3.2/GRCh37/
https://www.ncbi.nlm.nih.gov/geo/


Page 18 of 18Li et al. Genome Medicine           (2023) 15:10 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	78.	 Klein RJ, Xu X, Mukherjee S, Willis J, Hayes J. Successes of Genome-wide 
Association Studies. Cell. 2010;142(3):350–1.

	79.	 Granese R, Gitto E, D’Angelo G, Falsaperla R, Corsello G, Amadore D, et al. 
Preterm birth: seven-year retrospective study in a single centre popula‑
tion. Ital J Pediatr. 2019;45(1):45.

	80.	 Forzano F, Antonova O, Clarke A, de Wert G, Hentze S, Jamshidi Y, et al. 
The use of polygenic risk scores in pre-implantation genetic testing: an 
unproven, unethical practice. Eur J Hum Genet. 2022;30(5):493–5.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.


	Ultra-low-coverage genome-wide association study—insights into gestational age using 17,844 embryo samples with preimplantation genetic testing
	Abstract 
	Background 
	Methods 
	Results 
	Conclusions 

	Background
	Methods
	Samples and sequencing coverage
	Study design
	Sequencing read processing and alignment
	Population SNV calling
	Genotype imputation
	Genome-wide association study (GWAS)
	Independent SNPs and genomic risk loci
	Functional annotation of the mapped genes
	Gene mapping
	Analysis of genome-wide mRNA expression data

	Results
	Benchmarking genotype imputation using the ultra-low-coverage sequencing data of 17,844 embryos and HG005
	GWAS of gestational ages using 1744 born embryos
	Association of the 166 mapped genes from GWAS with preterm birth, infant disease, and breast cancer

	Discussion
	Conclusions
	Acknowledgements
	References


