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Abstract 

Background  There has been a growing appreciation recently that mutagenic processes can be studied through the 
lenses of mutational signatures, which represent characteristic mutation patterns attributed to individual mutagens. 
However, the causal links between mutagens and observed mutation patterns as well as other types of interactions 
between mutagenic processes and molecular pathways are not fully understood, limiting the utility of mutational 
signatures.

Methods  To gain insights into these relationships, we developed a network-based method, named GeneSigNet that 
constructs an influence network among genes and mutational signatures. The approach leverages sparse partial cor‑
relation among other statistical techniques to uncover dominant influence relations between the activities of network 
nodes.

Results  Applying GeneSigNet to cancer data sets, we uncovered important relations between mutational signatures 
and several cellular processes that can shed light on cancer-related processes. Our results are consistent with previ‑
ous findings, such as the impact of homologous recombination deficiency on clustered APOBEC mutations in breast 
cancer. The network identified by GeneSigNet also suggest an interaction between APOBEC hypermutation and activa‑
tion of regulatory T Cells (Tregs), as well as a relation between APOBEC mutations and changes in DNA conformation. 
GeneSigNet also exposed a possible link between the SBS8 signature of unknown etiology and the Nucleotide Excision 
Repair (NER) pathway.

Conclusions  GeneSigNet provides a new and powerful method to reveal the relation between mutational signatures 
and gene expression. The GeneSigNet method was implemented in python, and installable package, source codes and 
the data sets used for and generated during this study are available at the Github site https://​github.​com/​ncbi/​GeneS​
igNet.
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Background
Traditionally, research in cancer genomics has been 
focused on the identification of cancer driving mutations 
that confer a growth advantage to cancer cells. However, 
since cancer often emerges as a byproduct of various 
mutagenic processes such as UV light or a faulty DNA 
repair mechanism, cancer genomes also accumulate 
numerous mutations with seemingly no direct roles in 
carcinogenesis. Different mutagenic processes often lead 
to distinct patterns of somatic mutations called muta-
tional signatures. This provides an opportunity to lever-
age such signatures for studying interactions between 
mutagenic processes and other cellular process.

Starting from the pioneering work of Alexandrov et al. 
[1], several computational methods have been developed 
to infer mutational signatures. The exposure of a genome 
to a given mutagenic process is measured by the number 
of mutations attributed to the corresponding signature. 
While the relations between some of these computation-
ally-derived signatures and mutational processes caus-
ing them could be established based on prior knowledge 
or association with specific environmental or molecular 
factors [2, 3], the etiology of many signatures remains 
unknown or not fully understood. Mutagenic processes 
can be caused by perturbations of molecular pathways, 
and vice verse, they can disrupt normal cell function. 
Therefore elucidating the relation between mutational 
processes and activities of molecular pathways is of fun-
damental importance for a better understanding of the 
etiology of mutagenic processes and their role in car-
cinogenesis. Gene expression provides the most acces-
sible measurement of the activities of cellular processes. 
Therefore, we reasoned that interrogating the relation 
between gene expression and exposure of a mutational 
signature might provide important clues on both: the 
etiology of mutational signatures and on the impact 
of the corresponding mutational processes on cellular 
functions.

There are several know examples where deficien-
cies in the activities of some genes such as MUTYH [4], 
ERCC2 [5], MSH6 [6], and FHIT [7] have been linked to 
specific signatures. Extending this observation beyond 
individual genes, a recent study successfully linked expo-
sures of mutational signatures to mutated subnetworks 
[8]. In addition, a correlation between the expression of 
the APOBEC family of genes and the exposures of sig-
natures SBS2 and SBS13 (so-called APOBEC mutational 
signatures) has frequently been observed [2, 9]. Finally, 
a perturbation of some cellular processes such as DNA 
replication or repair are known to be mutagenic.

There are also many examples of the reverse relation. 
For instance, tobacco smoking is not only mutagenic 
but it is also believed to activate the immune response 

[10]. Specific mutagenic processes are known to activate 
specific DNA repair pathways. In addition, a mutagenic 
process can cause a cancer-driving mutation [11, 12, 13 
which can, in turn, cause changes in gene expression.

Finally, mutagenic processes themselves have been 
known to interact with each other. For example, homolo-
gous recombination deficiency (HRD) is often accom-
panied by mutational signatures related to APOBEC 
activity [8, 14].

Applying a clustering-based method to genome-wide 
expression and mutational signature data, Kim et  al. 
identified coherently expressed groups of genes associ-
ated with specific combinations of mutational signatures, 
providing interesting insights regarding these signatures 
[8]. However, while such cluster-based analysis can sug-
gest associations between signature exposures and the 
activities of biological processes, it lacks the ability to 
provide more precise explanations.

To fill this gap, we introduce a network-based method, 
named GeneSigNet (Gene and Signature Influence Net-
work Model), aiming to uncover interactions among 
mutagenic and cellular processes, and to provide insights 
into mutagenic processes underlying individual signa-
tures. Utilizing gene expression and mutational signa-
ture data from cancer patients, GeneSigNet constructs 
a Gene-Signature Network (GSN) that represents asym-
metric dependencies among two types of node entities — 
genes and MutStates. MutState nodes are in one-to-one 
correspondence with mutational signatures and each 
MutState represents an abstract (directly unobserved) 
cell state associated with the corresponding mutational 
signature (for a detailed description, see the “Results” 
section: The GeneSigNet method). Both types of nodes 
have patient-specific activities: gene expression for nodes 
corresponding to genes and signature exposure for nodes 
corresponding to MutStates. GeneSigNet utilizes these 
activities to infer directed edges between nodes in the 
GSN (Fig. 1). The interactions represented by these edges 
correspond to potentially indirect dependencies between 
activities of network nodes. Ideally, we would like to infer 
causal relationships between molecular activities and 
mutational signatures. However, in complex molecular 
systems, inferring causality is one of the most challeng-
ing open problems. In some settings, prior information 
about gene function (such as transcription factor ver-
sus potential target gene) or special type of data such as 
response to a perturbation of the expression of a gene 
can be leveraged to infer causality [15, 16, 17, 18]. In our 
setting, however, no perturbation data or prior knowl-
edge is available, requiring GeneSigNet to rely solely 
on the observed activities of nodes and infer network 
edges representing the relations between the nodes and 
their dependency directions. While inferring directed 
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influences without such additional information remains 
challenging, significant efforts have been made to identify 
the conditions where the direction of an influence can 
be inferred with a reasonable level of success. For exam-
ple, independent component analysis-based method 
LiNGAM allows to discover the causal relations between 
non-Gaussian random variables when the number of var-
iables is much smaller than the number of observations 
[19]. A node-ordering heuristic, GeneNet [20] constructs 
a directed acyclic causal network by first computing a 
partial correlation network and subsequently selecting 
directed edges from the network based on a multiple 
testing of standardized partial variances.

Sparse estimation of partial correlations (SPCS) also 
builds on partial correlation relations, which computes a 
sparse asymmetric weight matrix representing directed 
influences among nodes in the network. The sparsity 
constraints ensure that only a small fraction of influential 
edges have nonzero weights while many entries of such 
inferred matrix are set to zero and one-directional [21].

In contrast, the statistical higher moments were used 
as indicators of the direction of dependency between two 
variables [22] under the assumption of absence of con-
founding effects.

The GeneSigNet method builds on the last two 
approaches. First, a sparse partial correlation tech-
nique (SPCS) is used to obtain an initial sparse weighted 
directed network. We opted to infer a sparse network in 
order to focus on strongest trends that are more likely to 
suggest mechanistic explanations. This initial network 
contains bidirectional edges. Next, where applicable, a 
novel partial higher moment strategy is used to resolve 
(orient) bidirectional edges. We note that GeneSigNet 
does not attempt to construct a fully resolved oriented 
graph, leaving many edges as bidirectional. We found 

that this approach compares favorably to the previously 
proposed techniques that can be used for this task.

We applied GeneSigNet to two cancer datasets, breast 
cancer and lung adenocarcinoma, for which sufficient 
numbers of patient samples with gene expression data are 
available and the interactions of mutational signatures are 
partially known. For the network reconstruction, we uti-
lized genes in two GO categories: metabolism and immu-
nity. It is increasingly appreciated that cellular metabolic 
regulation can lead to DNA damage and can impact DNA 
repair, stimulating interest in the understanding of the 
cross-talk between DNA-damage and metabolism [23]. 
In addition, DNA damage response is known to interact 
with immune system and a better understanding of this 
interaction can guide cancer immunotherapy [24]. There-
fore to empower the method to gain more insights into 
these important interactions, we limited the set of nodes 
corresponding to genes to these two categories.

The relations inferred by the GeneSigNet model 
are overall consistent with current knowledge, but also 
include several interesting novel findings. In particular, 
the model suggests a causative relation from the homol-
ogous recombination deficiency signature (SBS3) to a 
clustered APOBEC mutation signature, and also linked 
Signature 8 (SBS8) to nucleotide excision repair (NER) 
pathway. The latter connection is consistent with the 
recent findings based on an experimental study in mouse 
[25]. In addition, GeneSigNet identified a novel rela-
tion between APOBEC hypermutation and the activa-
tion of regulatory T cells which presents an important 
implication in immunotherapy, and captured a relation 
of APOBEC signature (SBS2) with DNA conforma-
tion changes among other findings. Taken together, our 
results demonstrate that GeneSigNet provides novel 
and important insights.

Fig. 1  Gene-Signature Network (GSN). A GSN is a weighted-directed network consisting of two types of nodes: genes (green circles), and 
MutStates (orange ovals) corresponding to signatures. Edges of a GSN represent inferred influences and might be either positive (red) or negative 
(blue). B Edges of a GSN are inferred based on the activities of nodes (gene expression for genes and signature exposures for MutStates (top panel)). 
A directed edge from a gene to a MutState represents a putative influence from the gene to the MutState. Analogously, a directed edge from a 
MutState to a gene represents an inferred effect of the MutState on the gene. The thickness of the arrows reflects the edge weights
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Methods
The GeneSigNet method
Gene‑Signature Network
The main idea behind GeneSigNet is a construction of 
a Gene-Signature Network (GSN) consisting of two types 
of nodes: nodes corresponding to genes, and nodes cor-
responding to mutational signatures (Fig.  1A). Patient-
specific activity of a node corresponding to a gene is 
measured by gene expression. The exposure of a muta-
tional signature can be seen as a measure of the activ-
ity of the corresponding mutagenic process, such as an 
exogenous mutagen, or the activity of a cellular process 
triggered in the response to a mutagen. This motivates 
the concept of MutState defined as an abstract represen-
tation of the process(es) effectuating a mutational signa-
ture. The activity of this state is measured as the exposure 
of the corresponding mutational signature in the given 
patient. Statistical relations on the activities of genes and 
MutStates are likely to shed light on the genes and path-
ways associated with, and potentially contributing to, the 

level of the exposure of the corresponding mutational 
signature. To this end, GeneSigNet infers directed edges 
between both types of nodes, utilizing patient-specific 
gene expression (for genes) and exposures of mutational 
signatures (for MutStates) as described below (Fig.  1B). 
Other than the difference in the definitions of node activ-
ities (and the subsequent interpretation), the network 
inference algorithm does not distinguish between the 
two types of nodes.

A high level description of the GeneSigNet inference method
GeneSigNet method constructs GSN in two main steps: 
(i) constructing a preliminary directed network using a 
sparse partial correlation selection (SPCS), and (ii) revis-
ing the initial network by testing whether the orienta-
tion of bidirectional edges can be decided using a partial 
higher moment strategy adapted to a network setting. 
The workflow of the GeneSigNet method is shown in 
Fig. 2.

Fig. 2  Workflow of GeneSigNet. A Input matrix X of node activities constructed by concatenating gene expression values (for genes) and signature 
exposures (for MutStates) across p samples (patients). B Given the input matrix X, we infer a network of n nodes. For each node, Sparse Partial 
Correlation Selection (SPCS) is used to simultaneously estimate the weights of incoming effects from the other n− 1 nodes. C For each bidirectional 
edge (j, f), the residual vectors rj and rf  corresponding to nodes j and f are obtained by removing effects of the n− 2 nodes other than the two 
nodes of the considered edge. The non-zero weight wkf  obtained by SPCS denotes the strength of the confounding effect on node f coming 
from node k. The direction of a influence effect between the pair of nodes is determined based on the partial higher moment statistics, skewness 
and kurtosis of residuals rj and rf  . If both moments support the same direction with the heavier partial correlation weight (see Additional file 1: 
Equation S5), then the edge corresponding to the opposite direction is removed, otherwise, both edges remain in the network. D Edge weights are 
normalized using an alternative scaling algorithm, and the final weighted-directed network is obtained as the output
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In the first step, given the input matrix describing 
the activities of genes and MutStates across samples, 
GeneSigNet constructs an initial weighted-directed 
graph using a sparse partial correlation selection (SPCS) 
(Fig.  2B). Specifically, considering each node as a tar-
get, GeneSigNet uses SPCS to compute the weights of 
incoming effects from the other n− 1 nodes. This SPCS 
step builds on the fact that partial correlations can be 
approximated by sparse regression coefficients and uti-
lizes a constraint on the l1 norm enforcing the weights 
of the incoming edges to provide a sparse solution while 
avoiding over-fitting (see Additional file 1: Sections S1.1 
and S1.2, for a detailed description). Sparse correlation 
techniques lead to a construction of a “sparse” network 
focusing on the strongest trends that are easier to inter-
pret and are more likely to suggest mechanistic expla-
nations although this is done at the cost of a potential 
loss of some information (for more discussions, see the 
“Discussion” section). We note that since SPCS is applied 
to each node separately, GeneSigNet ensures a locally-
sparse solution, rather than constraining the network 
edges globally.

In the second step, GeneSigNet refines the initial 
network by reducing the number of bidirectional edges 
remaining after the first step. The idea is an adaptation of 
the basic bivariate higher moment strategy to multivari-
ate analysis. Specifically, for any two nodes having poten-
tial effects on each other in the initial network (endpoints 

of a bidirectional edge), we first utilize the partial correla-
tion technique to remove confounding effects due to the 
presence of the other n− 2 variables from the observed 
activities of the two nodes and obtain the residuals rep-
resenting the remaining dependencies between the pair 
[26]. Under the assumption that all confounding effects 
due to the presence of the other n− 2 variables were 
successfully removed by partial correlation, the influ-
ence variable may be distinguished from the affected 
variable by comparing the higher moments of the two 
residual distributions. Specifically, the affected variable 
is expected to be closer to normality than the influence 
factor, and the skewness and kurtosis are the higher 
moment statistics used to measure the close-normality of 
distributions. We refer to this strategy as partial higher 
moment strategy.

We note that the method relies on simplifying assump-
tions which might not be fully satisfied in real biologic 
relations. In particular, the assumption that all confound-
ing effects come from the activities of the remaining 
n− 2 nodes in the network is an oversimplification since 
in such complex systems, potential effects from unob-
served latent factors are likely to be present. Thus, we 
next evaluated the performance of the method on simu-
lated and real data (to the extent possible in the absence 
of the ground truth).

Figure 3 provides a real example illustrating the neces-
sity of removing confounding effects before applying the 

Fig. 3  Basic higher moment statistics (A) versus the partial higher moment strategy (B). The experimentally confirmed regulatory relation is from 
CEBPB to MBD2. Using uncorrected moment statistics, the two higher moment statistics, skewness and kurtosis, support contradictory directions 
(A). The proposed partial higher-moment strategy predicts the correct direction (B). For each case, brown color indicates the higher value for a 
given moment
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higher moment statistics to correctly indicate the influ-
ence direction. Before removing confounding effects, 
the two higher moment statistics supported contradic-
tory directions (Fig.  3A). After removing the confound-
ing effects, both statistics correctly indicate the influence 
direction [27] (Fig. 3B). More examples based on experi-
mentally confirmed regulatory directions [27] are pro-
vided in Additional file 1: Fig. S2.

Finally, alternate scaling [28], a matrix normalization 
algorithm, is used to bring the total incoming and outgo-
ing effects of each node into the same range (for details, 
see Additional file 1: Section S1.4). A detailed description 
of GeneSigNet is provided in Additional file 1: Section 
S1.

Materials
Breast cancer data
The normalized gene expression data for 266 breast can-
cer (BRCA) patients were downloaded from Table S7 in 
[29]. Gene expression profiles for 2,204 genes involved in 
either DNA metabolic or immune response processes of 
the Gene Ontology (GO) database were selected for the 
analysis.

For mutational signatures, somatic mutation data 
were downloaded from the ICGC data portal [30]. The 
3,479,652 point mutations were assigned to mutational 
signatures using SigMa [9]. SigMa divided all muta-
tions into two groups, close-by Clustered and Dispersed 
mutations, and assigned each of these mutations to one 
of 12 COSMIC v2 signatures [31] which were previously 
identified as active in BRCA (Signatures 1, 2, 3, 5, 6, 8, 13, 
17, 18, 20, 26, and 30). From the signatures classified by 
SigMa as described above, signature phenotype profiles 
1D, 2C/D, 3C/D, 5D, 8C/D, and 13C/D that had exposure 
levels of at least 10% within each group were selected for 
further analysis (the numbering refers to the COSMIC 
signature index and C/D denotes signatures attributed to 
clustered and dispersed mutations). Examining their cor-
relation patterns among patients, some of the signatures 
were grouped as follows: Signatures 3C/D and 8D were 
combined into DSB (double-stranded DNA break repair) 
related signatures, and Signatures 2C and 13C/D into 
APOBEC related signatures. The remaining signatures 
are treated separately, resulting in Signature 1, 2D, 5, 
APOBEC, DSB. A log transformation was consequently 
performed on exposures of each signature to make its 
distribution shape closer to a bell curve of normality.

Furthermore, we included binary information of 
homologous recombination deficiency as an additional 
variable in the analysis. The binary alteration informa-
tion was obtained by aggregating functional inactivation 
information for BRCA1/BRCA2 and 16 other HR genes 
as provided in Supplementary Tables 4a and 4b of Davies 

et al. [32]. The positive entries were assigned a real value 
of 4.218 in the SPCS model with the hyperparameter 
search for the best performance in terms of the means 
of minimum least square errors and maximum Pearson 
correlation between responses and predictions over all 
nodes.

Lung adenocarcinoma data
The expression data (RNA-seq) of the lung adenocarci-
noma (LUAD) from The Cancer Genome Atlas (TCGA) 
project were downloaded from the Genomic Data Com-
mons Data Portal on 2020-06-05 [33]. Normalization and 
variance-stabilizing transformation (vst) of HTSeq count 
data were performed using DESeq2. Tumor and normal 
samples were split into different groups and only one 
sample per donor was kept in each group.

The TCGA LUAD exome mutation spectra were down-
loaded from Synapse [34] and decomposed into COSMIC 
v3 signatures SBS1, SBS2, SBS4, SBS5, SBS13, SBS40, and 
SBS45 using the quadratic programming (QP) approach 
available in the R package SignatureEstimation [35]. Only 
signatures predominantly active in lung cancer (signa-
tures that were present in at least 5% of samples and were 
responsible for at least 1% of mutations) were consid-
ered based on the initial sample decomposition provided 
by Alexandrov et  al.  [2, 36]. Signature SBS45 is likely a 
sequencing artifact so it was omitted from further analy-
ses presented in this study. The same log transformation 
used in BRCA analysis was performed on signature expo-
sure data as well.

We analyzed 466 tumor samples that had both gene 
expression and mutational signature exposure data avail-
able. We analyzed 2433 genes belonging to the DNA met-
abolic process and immune system process in GO terms 
(genes that are not expressed in at least 10% of the sam-
ples were omitted). The gene expression and mutational 
signature exposure data were combined to form an input 
data matrix. All the data is available at the Github site 
https://​github.​com/​ncbi/​GeneS​igNet [37].

The numbers of recovered edges and average degrees 
for each of the two cancer networks are summarized in 
Additional file 1: Table S1.

Results
Performance evaluation for GeneSigNet

Evaluation of the method on simulated data
GeneSigNet infers a directed network representing 
information flow between genes’ expression and sig-
natures’ exposure. We compared the performance of 
GeneSigNet to four competing approaches which, simi-
larly to GeneSigNet, strive to predict influence flow 
between network nodes. We compare GeneSigNet 
to the following key approaches: (1) the independent 

https://github.com/ncbi/GeneSigNet
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component analysis-based method LiNGAM [19], (2) the 
partial correlation-based heuristic GeneNet [20] previ-
ously proposed to discover the causal structure in high-
dimensional genomic data [21], (3) the Sparse Partial 
Correlation Selection (SPCS) approach [21] and (4) Elas-
ticNet [38]. Additionally, we included (5) the regression 
tree-based approach used by GENIE3 method [39] for 
the inference of Gene Regulatory Networks (GRN)  [39, 
40, 41]. We note that the task of GRN inference is dif-
ferent from inferring influence graphs considered in this 
study. However, since the method produces a fully con-
nected directed weighted graph we used a procedure that 
reduces bidirectional edges to oriented edges by retain-
ing the heavier edge in the pair. Since GENIE3 is the win-
ning gene expression-based GRN reconstruction method 
[42], this allowed us to test if a basic adaptation of a GRN 
reconstruction method can provide a competitive solu-
tion to our problem.

To generate data, we implemented the data simulation 
schema provided in LiNGAM [19]. This approach starts 
with the construction of a lower triangular weight matrix 
representing the directed weighted interactions among 
the nodes (random variables) in a directed acyclic graph 
(DAG). This matrix is then used as the representation of 

the dependency patterns in the generation of the data set 
(for detailed description of the data generation, see Addi-
tional file  1: Section S1.5). We simulated a set for 100 
random variables (nodes) with 1000 samples from multi-
variate distributions. The weight matrix used in the simu-
lation contains 364 directed edges.

The performances of the methods are summarized in 
Fig.  4. GeneSigNet, GeneNet, LiNGAM, SPCS and 
ElasticNet construct a single network that is the output 
of the method-specific optimization procedure, thus 
their performances are represented by single points in 
Fig.  4A. The outcome of the regression tree approach 
can be defined differently depending on edge-weight cut-
offs and its performance is thus represented by a set of 
points for various cut-offs. The results were similar for 
all cut-offs and for the remaining measures we report a 
representative result corresponding to 520 edges (big 
green triangle in Fig. 4A). GeneSigNet had the highest 
precision in predicting the direction of the influence. The 
F-score (the harmonic mean of precision and recall), was 
also the highest for GeneSigNet although only slightly 
better than the second best method, GeneNet. In addi-
tion, we also evaluated the methods on their ability to 
recover the values of the lower triangular matrix used to 

Fig. 4  Evaluation of the results on simulated data. In A, the horizontal axis denotes the number of selected edges in the prediction. The vertical axis 
denotes the precision of the compared methods. In B, we report comparisons based on F-score, ability to reproduce the influence weight values 
used to generate the simulation data (correlation), and the number of the inferred edges
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simulate the data. This measure was proposed in [19] and 
measures the correlation between edge weights used for 
the simulation and weights recovered by the algorithm. 
Despite inferring a smaller number of edges the Gene-
SigNet’ ability to reconstruct the input matrix was equal 
or better relative to other methods, suggesting that Gen-
eSigNet indeed captured dominating influences using a 
smaller number of edges.

Evaluation of the directionality inference on real cancer data
We also compared the performance of the methods 
on breast cancer (BRCA) and lung cancer (LUAD) 
data sets (for details, see the “Materials” section). The 
LiNGAM method was excluded from this evaluation, 
since it cannot deal with large genome-wide datasets. 
In this setting the true direction of most of the inferred 
edges is, unfortunately, unknown. Therefore, we lever-
age the fact that if a method infers a relation between 
a transcription factor (TF) and a target gene (TG) then 
the edge should be directed from TF to TG (under 
the assumption that TG is not a TF). Leveraging this 

principle, we evaluated the precision of the direction-
ality inference utilising the ChEA database containing 
directed protein-DNA interactions [27]. Specifically, 
for each method, we used the set of ChEA edges that 
overlap with the edges inferred by the method. Since 
the number of edges overlapping with ChEA set was 
different in each experiment, we used the percentage of 
overlap as the reference to ensure fairness of the com-
parison (horizontal axis in Fig.  5). GeneSigNet had 
the highest precision. Surprisingly, GeneNet and the 
regression tree methods resulted in worse than ran-
dom performance in the evaluation on the BRCA data. 
Unfortunately, in the case of real data, the weights of 
the reference edges are unknown so we do not have a 
measure corresponding to the correlation function 
used on simulated data.

Overall the relations between the methods’ perfor-
mances observed in this evaluation were very similar to 
the trends observed on simulated data supporting the 
choice of our network reconstruction strategy.

Fig. 5  Correctness evaluation of directionality inference on real data sets. In A, the horizontal axis denotes the percent of ChEA edges for which a 
method made a prediction (out of all ChEA edges recovered by the method) whereas the vertical axis denotes the fraction of correctly predicted 
directions for these edges. In B, we provide the numerical values of the results visualized in A 
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Finally, we tested the robustness of our new partial 
higher moment strategy used in the second step of Gen-
eSigNet, by performing a bootstrap sampling which is 
described in Additional file 1: Section S1.3. The approach 
was highly reproducible as summarized in Additional 
file  1: Section S1.3 and Fig. S1. GeneSigNet compared 
favorably to the competing approaches.

The GeneSigNet method was implemented in python, 
and installable package, source codes and the data sets 
used for and generated during this study are available 
at the Github site https://​github.​com/​ncbi/​GeneS​igNet 
[37].

Analysis of the relations between mutational signatures 
and molecular pathways in breast cancer
We utilized breast cancer (BRCA) data collection 
obtained from ICGC which includes 266 cancer samples 
providing both whole-genome sequencing data and gene 
expression data (for details, see the “Materials” section: 
Breast cancer data). The breast cancer genomes harbor 
mutations mainly contributed by 6 COSMIC mutational 
signatures — SBS1, 2, 3, 5, 8, and 13. We further refined 

the mutational signatures based on mutation density 
and sample correlations. The mutations in BRCA are 
characterized by occurrences of short highly mutated 
regions whose origin is believed to be different compared 
to sparse mutations [8, 9, 43, 44, 45]. The information 
available from whole-genome sequencing allows for dis-
tinguishing these two types of mutation patterns and to 
treat such dense and sparse mutation regions differently. 
The post-processing of mutational signatures resulted in 
6 signature groups that we use for subsequent analysis to 
construct the GSN – SBS1, APOBEC-C (clustered SBS2 
and SBS13 corresponding to APOBEC hypermutation), 
APOBEC-D (SBS2 corresponding to disperse APOBEC 
mutations), DSB (SBS3 and clustered SBS8), SBS5, and 
SBS8D (dispersed SBS8). In addition to gene expressions 
and exposures of mutational signatures, we included a 
node indicating the binary status of homologous recom-
bination deficiency (HRD) as it is assumed to lead to 
specific patterns of mutational signatures in BRCA [32]. 
We applied GeneSigNet to construct a GSN for genes, 
mutational signatures, and HRD status, and to find rela-
tions between these features.

Fig. 6  Subnetworks of GSN for BRCA centered on (induced by) MutStates associated with Homologous Recombination, APOBEC and SBS8. Edge 
and node colors are as in Fig. 1. In boxes, there are the names of the genes adjacent to a given MutState with edge weight cut-off ( |wij | ≥ 0.01 ). The 
genes in bold are discussed in more detail in the text and the genes having bidirected interactions with MutStates are underlined. If the adjacent 
genes are enriched with specific GO pathways ( q− value < 0.01 ) then only the pathway genes are provided in the box. The HRD status dominantly 
contributes to the mutation strength in the DSB repair MutState. Increased DSB exposure leads to an increase of the exposures of APOBEC-C and 
(indirectly) APOBEC-D MutStates. SBS8 mutations are linked to the deficiency of nucleotide excision repair. The thickness of the arrows represents 
the edge weight (average edge weight if multiple genes are in a box). An extended subnetwork including all MutStates and an extended list of 
genes, and GO-terms are provided in Additional file 1: Fig. S3, Additional file 2: Table S2, and Additional file 3: Table S4

https://github.com/ncbi/GeneSigNet
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Consistency of GeneSigNet results with current knowledge
Many relations uncovered with GeneSigNet are consist-
ent with our current knowledge on mutational signatures, 
confirming the validity of our method. In particular, it is 
well appreciated that homologous recombination (HR) 
plays an important role in the double-strand break (DSB) 
repair mechanism and that HR deficiency is associated 
with the DSB signature [46]. Indeed, our network cor-
rectly predicted a strong positive influence from HRD 
status to the DSB signature (Fig.  6). In addition, Gene-
SigNet identified the known negative impact of BRCA1 
expression on the DSB signature which is also consistent 
with the role of BRCA1 in HRD [46]. Furthermore, Gen-
eSigNet captured the impact of HRD on chromosome 
separation, reflecting the role of homologous recom-
bination in maintaining genomic stability [47, 48], and 
identified the association of APOBEC-D with telomere 
maintenance, consistent with the well recognized role of 
APOBEC mutagenesis in replication [49, 50].

Interestingly, our method linked SBS8 to the nucleo-
tide excision repair (NER) pathway (Fig. 6). The etiology 
of this signature has remained unknown until a recent 
experimental study linked it to the NER pathway as well 
[25]. This demonstrates the power of the GeneSigNet 
method to uncover non-obvious relationships.

Untangling the interactions between APOBEC and DSB 
processes
Previous studies speculated that APOBEC related muta-
tional signatures can arise in multiple different sce-
narios. First, double-strand breaks (DSB) created by the 
homologous recombination deficiency (HRD) provide 
mutational opportunities for APOBEC enzymes to act 
on the ssDNA regions, resulting in clustered APOBEC 
mutations [45, 51, 52]. In another scenario, a recent study 
attributed APOBEC-mediated hypermutations to the 
normal activity of mismatch repair which also involves 
creating ssDNA regions, generating “fog” APOBEC 
mutations [44]. The complex interplay between APOBEC 
activities and other DNA repair mechanisms is yet to be 
elucidated.

Focusing on the interactions of APOBEC signatures 
with the other MutStates and genes, we observe that 
GeneSigNet supports a positive influence of the DSB 
on APOBEC-C MutState, consistent with the assumption 
that double-strand breaks provide an opportunity for 
APOBEC mutations. Additionally, our analysis reveals 
that the expression level of the APOBEC3B enzyme 
is associated with the strength of the DSB signature. 
Indeed, a previous study proposed that APOBEC3 pro-
teins are recruited to DSB sites to participate in the DSB 
repair process [14]. Thus, DSB contributes to an increase 

in APOBEC-C strength by two different mechanisms: 
(i) increased mutation opportunity due to ssDNA cre-
ated by DSB and (ii) increased mutation probability due 
to increased APOBEC3B expression. Note that increased 
APOBEC expression would also increase APOBEC muta-
tions in the “fog” regions proposed in [44].

On the other hand, the activity of APOBEC-D is posi-
tively influenced by APOBEC-C activity, without direct 
relation to DSB. In fact, GeneSigNet inferred a negative 
influence from HR status to APOBEC-D MutState, con-
firming that different mutagenic processes are involved 
in clustered and dispersed APOBEC mutations (Fig. 6).

APOBEC hypermutation activates regulatory T cells — 
implications for immunotherapy
Interestingly, GO enrichment analysis of the genes 
associated with APOBEC mutational signatures (genes 
influenced by APOBEC-C MutState) revealed signifi-
cant enrichment in positive regulation of regulatory T 
cells (Tregs) differentiation (Fig. 6). Tregs, a subtype of 
T cells that suppress the immune response, are impor-
tant for maintaining cell homeostasis and self-toler-
ance but can also interfere with anti-tumor immune 
response [53]. The top three genes (FOXP3, BCL6, and 
LILRB2) positively influenced by APOBEC-C signature 
are all related to such inhibitory mechanism to immune 
response [54, 55, 56]. FOXP3 is a transcriptional regu-
lator playing a crucial role in the inhibitory function of 
Tregs. BCL6 is also essential for the stability of Tregs 
that promotes tumor growth. LILRB2 is a receptor for 
class I MHC antigens and is involved in the down-regu-
lation of the immune response and the development of 
immune tolerance.

Our results help to understand a complicated role of 
APOBEC mutagenesis holds for immunotherapy. For 
example, patients with cancers displaying a high muta-
tion burden are likely to produce tumor-associated neo-
antigens (mutated peptides presented at their surface) 
allowing them to benefit from immunotherapy [57]. In 
particular, the APOBEC mutational signature was identi-
fied as a potential predictive marker for immunotherapy 
response in some cancers [58, 59]. Yet, cells carrying 
a high mutation burden often develop mechanisms of 
immune tolerance involving activation of Tregs to protect 
themselves from the destruction [60, 61]. Consequently, 
observed increased number of Tregs in response to high 
APOBEC mutations may lead to resistance to immune 
checkpoint inhibitors [62, 63]. Thus, our finding suggests 
that a combined strategy targeting Tregs in addition to 
immune checkpoint inhibitors would be most beneficial 
for a better outcome in APOBEC hypermutated breast 
cancer tumors.
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Analysis of the relations between mutational signatures 
and molecular pathways in Lung Adenocarcinoma
We next analyzed lung adenocarcinoma (LUAD) data 
using 466 cancer samples from the TCGA project. The 
exposure levels of 6 COSMIC mutational signatures 
(SBS1, 2, 4, 5, 13, and 40) present in the exome sequenc-
ing data were integrated with the RNAseq expression 
data of 2433 genes belonging to the DNA metabolic 
and immune system processes in Gene Ontology terms 
to uncover influence between signatures and genes (for 
details, see the “Materials” section: Lung adenocarci-
noma data).

GeneSigNet uncovers immune response due to smoking
Two prominent mutational signatures in LUAD, SBS4 
and SBS5, are assumed to result from exogenous causes 
[8]. SBS4 is associated specifically with exposure to ciga-
rette smoking in lungs. SBS5 is known to accompany the 
smoking signature but it is also present in many other 
cancer types. Previous studies suggested that cigarette 
smoking stimulates an inflammatory response [10]. Con-
sistent with these findings, the genes identified by Gen-
eSigNet as influenced by SBS4 and SBS5 MutStates are 
indeed enriched with immune response genes (Fig. 7).

GeneSigNet also identified the influence of the signa-
tures SBS4 and SBS5 on two APOBEC signatures — SBS2 
and SBS13. The APOBEC signatures are associated with 
immune response and this relationship is consistent with 
the previously proposed immune activation due to smok-
ing exposure [64]. In addition, GeneSigNet correctly 

captured the association of SBS13 (consequently SBS2) 
with the expressions of APOBEC3B and APOBEC3A 
enzymes, and also identified the association of SBS13 
with pyrimidine related catabolic processes, potentially 
reflecting the fact that SBS13 involves a pyrimidine to 
pyrimidine mutation (Fig. 7).

Finally, tobacco smoking is known to induce GPR15-
expressing T cells; although the exact role of GPR15 in 
response to smoking is yet to be elucidated [65]. There-
fore, we investigated whether the results of GeneSigNet 
provide additional insights into this relation. Consistently 
with previous studies, GeneSigNet inferred a strong 
association between GPR15 and SBS4 without resolving 
the direction (see also Additional file 1: Fig. S4). Next, we 
analyzed the influence that GPR15 has on other nodes 
of the GSN network. The results of GeneSigNet sug-
gest that GPR15 is involved in the negative regulation 
of several genes related to chemotaxis, including IL10, a 
cytokine with potent anti-inflammatory properties, and 
has a positive impact on lymphocyte migration and leu-
kocyte mediated cytotoxicity (Fig. 8).

GeneSigNet points to the role of DNA geometric changes 
for APOBEC signature SBS2
As discussed earlier, APOBEC can only act on single-
stranded DNA (ssDNA). Interestingly, one of the GO 
terms associated with SBS2 MutState identified by Gen-
eSigNet is DNA geometric change (Fig.  7). DNA geo-
metric changes are local changes of DNA conformation 

Fig. 7  Subnetwork of LUAD GSN centered on MutStates known to be related to smoking and APOBEC. The meaning of colors and boxes is the 
same as in Figs. 1 and 6. An extended subnetwork including all MutStates and an extended list of genes, and GO-terms are provided in Additional 
file 1: Fig. S4, Additional file 2: Table S3, and Additional file 3: Table S5
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such as bulky DNA adducts (a type of DNA damage 
due to exposure to cigarette smoke) or DNA secondary 
structures such as Z-DNA, cruciforms, or quadruplexes. 
Indeed, these structures often involve the formation of 
ssDNA regions which, in turn, provide mutation oppor-
tunities for APOBEC enzymes [66, 67, 68]. The forma-
tion of DNA secondary structures is often associated 
with DNA supercoiling  — a form of DNA stress that is 
resolved by Topoisomerase 1 (TOP1). Interestingly, Gen-
eSigNet identified a negative influence of TOP1 expres-
sion on one of the genes (XPA) contributing to this GO 
term. This suggests a relation between DNA stress medi-
ated by TOP1 and APOBEC activity.

Discussion
Elucidating the nature of mutagenic processes and their 
interactions with cellular processes is of fundamental 
importance for understating cancer etiology and guiding 
cancer therapy. Here, we propose GeneSigNet, a new 
network-based approach that infers the relation between 
gene expression and the strength of mutation patterns 
(signature exposures) allowing us to uncover the relations 
between signatures and processes involved in DNA repair 
and immune response among other cellular processes. 
Recognizing the limitations of the previous approaches, 
GeneSigNet relies on a construction of a sparse directed 
network. For each node (gene or MutState), it selects a 
sparse set of incoming edges representing dominat-
ing incoming effects so that their combination explains 
the activity of the node. Aiming to capture the most 

dominant influences, the method utilizes sparse partial 
correlation coefficients.

In this study we focused on the relations that can be 
inferred based on genes’ expressions and exposures of 
mutational signatures. It is possible to include other fea-
tures as well. We leveraged this flexibility of our method 
to include for breast cancer germline perturbations that 
are known to predispose homologous recombination 
deficiency (HD).

The construction of a sparse network utilized by our 
approach has both advantages and disadvantages. Sparse 
networks are easier to interpret and more likely to sug-
gest mechanistic insights. However, by restricting edge 
set, they might lose some information. In our previ-
ous studies [8, 69] we have developed a clustering based 
approach that leverages gene co-expression. These two 
approaches illustrate the trade-off between a gene-level 
analysis which has the potential for more mechanistic 
explanation (e.g., association of Tregs with APOBEC 
we have identified in this paper) while potentially los-
ing some information and a cluster-level analysis which 
is empowered by the correlations between expression 
of genes but provides GO-term interpretability only. In 
future studies, it could be beneficial to consider a hier-
archical representation that can work on many levels of 
granularity simultaneously, combining the strengths of 
both approaches.

For the biological results, overall the relations discov-
ered by GeneSigNet are consistent with the current 
knowledge, boosting the confidence in the method’s 

Fig. 8  Subnetwork of Lung Adenocarcinoma GSN centered on the node representing GPR15 gene. Expression of the GPR15 gene contributes to 
the activation of immune responses. The meaning of edge and node colors, and boxes is the same as in Figs. 1 and 6. An extended subnetwork 
including all MutStates and an extended list of genes is provided as Additional file 1: Fig. S4
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applicability. In addition, GeneSigNet provided several 
new biological insights concerning the relation between 
mutagenic processes and other cellular processes. For 
example, the uncovered relation between APOBEC 
hypermutation and activation of regulatory T cell can 
have an important implication in immunotherapy.

Conclusions
In this work, we report a computational method, 
named GeneSigNet, for uncovering potentially causal 
relations between gene expression and mutagenic pro-
cesses represented by mutational signatures. The main 
idea of the approach is to construct an influence net-
work representing dependency flow between genes 
and mutational signatures. We opted to infer a sparse 
network in order to focus on the strongest trends that 
are more likely to suggest mechanistic explanations. 
We note that focusing on a sparse set of edges reduces 
the power of GO enrichment analysis and requires 
more specific biological knowledge for interpreting the 
results. Yet, this potential disadvantage is compensated 
by the compelling mechanistic insights provided by the 
method.
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