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Abstract 

Background  The crosstalk between cancer and the tumour immune microenvironment (TIME) has attracted sig‑
nificant interest in the latest years because of its impact on cancer evolution and response to treatment. Despite this, 
cancer-specific tumour-TIME interactions and their mechanistic insights are still poorly understood.

Methods  Here, we compute the significant interactions occurring between cancer-specific genetic drivers and five 
anti- and pro-tumour TIME features in 32 cancer types using Lasso regularised ordinal regression. Focusing on head 
and neck squamous cancer (HNSC), we rebuild the functional networks linking specific TIME driver alterations to the 
TIME state they associate with.

Results  The 477 TIME drivers that we identify are multifunctional genes whose alterations are selected early in cancer 
evolution and recur across and within cancer types. Tumour suppressors and oncogenes have an opposite effect on 
the TIME and the overall anti-tumour TIME driver burden is predictive of response to immunotherapy. TIME driver 
alterations predict the immune profiles of HNSC molecular subtypes, and perturbations in keratinization, apoptosis 
and interferon signalling underpin specific driver-TIME interactions.

Conclusions  Overall, our study delivers a comprehensive resource of TIME drivers, gives mechanistic insights into 
their immune-regulatory role, and provides an additional framework for patient prioritisation to immunotherapy. The 
full list of TIME drivers and associated properties are available at http://​www.​netwo​rk-​cancer-​genes.​org.

Keywords  Cancer driver genes, Cancer immunology, Computational biology, Head and neck cancer, Functional 
networks

Background
Cancer evolves within a stromal microenvironment with 
whom it engages in a dynamic crosstalk whereby genetic 
alterations in the cancer cells modulate the microenvi-
ronment and, in turn, the microenvironment sculpts the 
cancer genome [1–3]. Besides shaping cancer evolution, 
tumour-stroma interactions, especially with the tumour 
immune microenvironment (TIME), impact on overall 
prognosis and response to treatments including immu-
notherapy [4, 5]. Unravelling cancer-TIME interactions is 
therefore crucial to fully understand cancer biology.
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Tumour-TIME interactions often involve genes that 
drive cancer evolution (cancer drivers). For example, 
loss-of-function (LoF) alterations in TP53 reduce the 
anti-tumour infiltration of natural killer  (NK) cells 
[6] while gain-of-function (GoF) alterations in KRAS 
promote pro-tumour infiltration of myeloid-derived 
suppressor cells [7]. Moreover, deregulations of the 
WNT and PI3K-AKT cancer pathways result in CD8+ 
T cell exclusion [8] and regulatory T cells increase [9], 
respectively.

Recently, systematic genetic screens have expanded 
the repertoire of genes that can modulate cancer 
immune response. A preferential loss of tumour sup-
pressors has been observed in mice with a functional 
immune system where they likely promote immune 
escape [10]. Moreover, genome-wide CRISPR screens 
in co-cultures of cancer and cytotoxic T cells have 
identified gene losses conferring resistance to T cell-
mediated killing [11]. Although these screens enable 
identification of TIME-interacting genes beyond can-
cer drivers, they rely on cell or animal models rather 
than human samples and have so far assessed the 
TIME role of LoF alterations neglecting that of GoF 
alterations.

Large cancer genomic and transcriptomic datasets 
allow to compute tumour-TIME associations in pan-
cancer cohorts and are unbiased towards the altera-
tion type. These studies have reported a prevalence 
of PDL1 amplifications in immune-hot tumours [12, 
13] as opposed to a high occurrence of APC, KRAS, 
IDH1 or FGFR3 mutations in immune-cold tumours 
[12–15]. They have so far focused mostly on anti-
tumour immunity relying on the same list of drivers 
applied to the whole pan-cancer cohort. However, 
only very few drivers are shared across cancers and the 
absence of any further filtering on the actual cancer-
specificity of the driver activity likely led to false-pos-
itive associations. Moreover, very little is still known 
about the molecular mechanisms of the tumour-TIME 
associations.

To overcome these limitations, here we have com-
puted the interactions between manually curated and 
cancer-specific lists of drivers and five anti- and pro-
tumour immune features of 6921 samples in 32 solid 
cancers. We have then investigated the properties 
of the resulting genes and their potential to predict 
response to immunotherapy. Taking head and neck 
squamous cancer (HNSC) as an example, we have 
rebuilt the tumour-TIME functional networks in the 
three HNSC subtypes. This enabled us to unravel the 
mechanisms linking driver alterations to the TIME 
modifications at the individual sample level.

Methods
Sample cohorts
A dataset of 7730 samples with quality-controlled 
mutation (single nucleotide variants, (SNVs) and 
indels), copy number and gene expression data in 32 
solid cancer types from The Cancer Genome Atlas 
(TCGA) was assembled from the Genomic Data Com-
mons portal (GDC, https://​portal.​gdc.​cancer.​gov/). 
Oesophageal cancer was divided into squamous cell 
carcinoma (OSCC) and adenocarcinoma (OAC) using 
TCGA annotation. Colon adenocarcinoma (COAD) 
was split into COAD-MSS and COAD-MSI accord-
ing to the level of microsatellite instability (MSI) [16]. 
These samples were used to identify and characterise 
pan-cancer TIME drivers.

For the analysis of HNSC TIME drivers and their TIME 
drivers – TIME TFs functional networks, a dataset of 
109 HNSC samples from the Clinical Proteomic Tumour 
Analysis Consortium (CPTAC) [17] with mutation, copy 
number and gene expression data was downloaded from 
GDC. These samples were added to the TCGA HNSC 
cohort for a total of 562 HNSCs.

Data curation
SNVs and indels were annotated with ANNOVAR [18] 
(April 2018) and dbNSFP [19] v3. 0 and only those identi-
fied as damaging were retained. These included truncat-
ing (stopgain, stoploss, frameshift) mutations, hotspot 
mutations, missense mutations and splicing mutations 
predicted as damaging as described in [20]. Copy Num-
ber Alteration (CNA) segments, sample ploidy and 
sample purity were obtained using ASCAT [21] v. 2. 
5. 2.   CNA segments were intersected with the exonic 
coordinates of 19,641 unique human genes in hg19 and 
CNA genes were identified as those with ≥ 25% of tran-
script length was covered by a CNA segment. RNA-Seq 
data were used to filter out CNAs with no effect on gene 
expression. Damaging gene gains were defined as CNA >2 
times sample ploidy and significantly higher gene expres-
sion as compared to baseline expression. Expression dis-
tributions were compared using a Wilcoxon rank-sum 
test and corrected for multiple testing using Benjamini–
Hochberg correction. Only gene gains with false discov-
ery rate (FDR) < 0.05 were retained. Homozygous gene 
losses were defined as copy number = 0 and expression 
values <1 FPKM over sample purity. Heterozygous gene 
losses were defined as copy number = 1 or 0 and expres-
sion values >1  FPKM over sample purity. This resulted 
in 2,163,756 redundant genes damaged in 7730 TCGA 
samples. Of these, 511,048 genes acquired LoF alterations 
(homozygous deletions, truncating, missense damaging, 
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or splicing mutations, double hits), while 1,652,708 genes 
were considered to acquire GoF alterations (hotspot 
mutations or damaging gene gains).

For the CPTAC cohort, damaging SNVs and indels 
were identified as described above. CNAs were derived 
using AscatNGS [22]. Sample ploidy was calculated as 
the average copy number of all segments weighted by 
segment length [22]. Sample purity was measured from 
gene expression data using ESTIMATE [23]. Gene gains, 
heterozygous and homozygous gene losses were defined 
as described above. In total, 26,450 redundant damaged 
genes were identified, for a total of 7891 LoF and 18,559 
GoF alterations, respectively.

Driver annotation
The cancer drivers for each of 32 TCGA cancer types 
were retrieved from the Network of Cancer Genes (NCG, 
http://​www.​netwo​rk-​cancer-​genes.​org), which collects 
preferentially mutational drivers [20]. To add drivers 
altered through CNAs, focal amplifications and deletions 
in each cancer type were gathered from the FireBrowse 
portal (http://​fireb​rowse.​org) [24]. Amplification and 
deletion segments were intersected with 256 canonical 
and 1,405 candidate oncogenes and 254 canonical and 
1318 candidate tumour suppressors [20], respectively. 
Drivers that fell for at least 25% of their transcript length 
within a CNA event were considered CNA drivers. Only 
tumour suppressors with LoF alterations and oncogenes 
with GoF alterations were further retained. Both LoF and 
GoF alterations were considered for drivers with unclas-
sified roles. Finally, only drivers damaged in ≥ 2% or five 
samples were retained. In total 1231 (254 canonical and 
977 candidate drivers, Fig. 1 and S1A) damaged in 6921 
samples were used for the identification of TIME drivers.

The clonality of 27,763 damaging mutations affecting 
1,231 drivers was measured using the cancer cell fraction 
(CCF) as described in [25]. Briefly, for each damaging 
mutation, the probability to have a CCF from 0. 01 to 1 
with 0. 01 increments was calculated given the observed 
variant allele frequency (VAF), mutation copy number 
status, sample purity and normal copy number. The CCF 

with the highest probability was selected with the associ-
ated 95% confidence interval (CI). A damaging mutation 
was considered clonal if 95% CI of the CCF overlapped 
with 1; otherwise, it was considered subclonal. A driver 
was considered clonal when it had at least one clonal-
damaging mutation.

The clonality of 38,846 damaging CNAs affecting 1,231 
drivers was assessed with ABSOLUTE [26], using muta-
tion VAFs and SNP6 array segmentation values obtained 
from GDC. ABSOLUTE was run with default parameters 
and using the cancer type-specific karyotype models for 
6900 TCGA samples. Even in this case, the returned CCF 
with the highest probability was selected with the asso-
ciated 95% CI. A CNA driver was considered clonal if a 
95% CI of its CCF overlapped with 1; otherwise, it was 
considered subclonal.

TIME features
To assess the cytotoxic anti-tumour infiltration score 
(CYS), 6445 samples were grouped into six clusters 
ordered from the lowest (CYS1) to the highest (CYS6) 
CYS levels, as defined in the original publication [12]. The 
six CYS levels were grouped into low (CYS1, 2), medium 
(CYS 3, 4) and high (CYS 5, 6) groups for consistency with 
the other features. To assess the immunologic constant 
of rejection (ICR), 6528 samples were grouped into low, 
medium or high ICR levels based on the expression dis-
tribution of 20 genes encoding IFN-simulated, regulatory, 
and effector immune molecules [15]. To assess the tumour 
inflammation signature (TIS), 6266 samples were grouped 
into low, medium or high TIS levels based on the signa-
ture values derived from the expression of 18 genes meas-
uring adaptive immune response [27]. Overall immune 
infiltration (immune score, IS) and cancer-promoting 
inflammation (CPI) values were calculated for 6921 and 
6728 samples, respectively, based on the expression of 
141 genes using ESTIMATE [23] and as the mean of the 
Log2-transformed expression [28] of ten genes encoding 
known mediators of cancer-promoting inflammation [29], 
respectively. For IS, FPKM gene expression data from 
GDC were used to assess gene expression levels. For CPI, 

Fig. 1  Identification and properties of TIME drivers. A Approach for TIME driver identification. Interactions between damaging alterations in 
cancer-specific drivers and TIME features were assessed in 32 TCGA cancer types using Lasso-regularised ordinal regression. Regressions were 
computed separately for canonical and candidate drivers and TIME features in each cancer type. β > 0 and β < 0 indicated that altered cancer 
drivers were predictive of medium/high or medium/low TIME levels, respectively. B Proportions of TIME canonical and candidate drivers over all 
drivers. C Proportions of TIME and non-TIME drivers in ≥ 2 cancer types. D Fold change (FC) of median frequency alterations of TIME and non-TIME 
drivers in each cancer type. The number of samples in each cancer type is shown in brackets. E Venn diagram of TIME drivers predictive of the five 
TIME features. F Distributions of protein–protein interactions in TIME and non-TIME drivers. G Proportions of TIME and non-TIME drivers that are 
part of protein complexes. H Distributions of level 2–9 Reactome pathways [39] containing TIME and non-TIME drivers. I Proportion of TIME and 
non-TIME drivers mapping to immune-related pathways as derived from MSigDB [40] and Reactome [39]. CPI, cancer-promoting inflammation; CYS, 
cytotoxicity score; FDR, false discovery rate; ICR, immunologic constant of rejection; IS, immune score; TIS, tumour inflammation signature. TCGA 
abbreviations are listed in Additional File 2: Table S1. Proportions (C, G, I) and distributions (D, F, H) were compared using Fisher’s exact test and 
Wilcoxon rank-sum test, respectively. In D, Benjamini–Hochberg correction for multiple testing was applied

(See figure on next page.)
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RSEM gene expression data from cBioPortal [30, 31] were 
used. Cancer samples were grouped into discrete cate-
gorical levels starting from the lowest (low) to the highest 

quartile (high) and assigning all remaining samples to the 
group with medium levels. The sample grouping was per-
formed for each cancer type separately.

Fig. 1  (See legend on previous page.)
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Lasso‑regularised ordinal regression
Lasso-regularised ordinal regression was used to esti-
mate the probability of a given damaged driver to predict 
the TIME ordinal level of a given cancer sample using the 
glmnetcr function from the glmnetcr R package [32] v. 1. 
0. 6. Input data consisted of a binary matrix whose rows 
corresponded to samples (observations) and columns to 
the driver alteration status (variable). TIME levels were 
encoded as ordered factor vectors with a size equal to 
the number of samples. Regression analysis was run 
for each TIME feature in each cancer type, considering 
canonical and candidate drivers separately and only sam-
ples with ≥ 1 damaged driver, for a total of 320 glmnetcr 
calls to fit 320 regression models. All analyses were run 
without variable standardisation and all other parameters 
were set to default values. In each regression, multiple 
steps of the model with the different values of lambda 
were ran and models with the minimum Akaike informa-
tion criterion were used to extract non-zero β coefficients 
[32].

Protein–protein interaction and functional analysis
The number of non-redundant protein–protein interac-
tions for TIME and non-TIME drivers were computed 
from BioGRID [33] v. 3. 5. 185, IntAct [34] v. 4. 2. 14, DIP 
[35] (February 2018), HPRD [36] v. 9 and Bioplex [37] v. 
3. 0 as described in [20] and compared using a Wilcoxon 
rank-sum test. The proportion of proteins encoded by 
TIME and non-TIME cancer drivers that engage in com-
plexes were derived from CORUM [38] v. 3. 0, HPRD 
[36] v. 9 and Reactome [39] v. 72 as described in [20] and 
compared using Fisher’s exact test.

Reactome [39] v. 72 level 2–9 pathways were used to 
calculate the numbers of pathways each of 821 drivers 
present in Reactome mapped to. These were compared 
between 335 TIME and 486 non-TIME cancer  driv-
ers  using a Wilcoxon rank-sum test. A list of 2519 
immune-related genes was derived combining genes 
mapping to the immune system level 1 pathway of Reac-
tome [39] v. 72 and the immune-related pathways in 
MSigDB [40]. The proportions of immune-related TIME 
and non-TIME drivers were compared using a Fisher’s 
exact test.

HNSC analysis
Human papillomavirus negative (HPV−) HNSCs were 
divided into CNAhigh and CNAlow subtypes as described 
in [41] using a cohort of 1495 squamous cell carcino-
mas that included 1386 TCGA samples and 109 CPTAC 
HNSCs. CNA GISTIC2 loci were obtained from [41] 
for the TCGA cohort and from LinkedOmics [42] for 
the CPTAC HNSCs. Loci were classified as copy num-
ber neutral, low, and high CNAs and grouped with 

hierarchical clustering using Euclidean distance. Two 
clusters, one with 143 HPV− CNAlow HNSCs and the 
other with 351 HPV− CNAhigh HNSCs were identified. 
TCGA classification overlapped with that in the origi-
nal publication [41] for 94% of samples (Additional File 
1: Figure S3A). Survival analysis was performed for 557 
patients with available clinical data using the survminer R 
package v. 0. 4. 9 and compared between HNSC subtypes 
using the log-rank test.

CIBERSORTx [43] was run on the FPKM-normalised 
RNA-Seq data of 562 HNSCs using the LM22 signature 
to estimate the absolute abundance level of 22 immune 
populations. Absolute abundance scores were compared 
between HNSC subtypes using a Wilcoxon rank-sum test 
and corrected with Benjamini–Hochberg correction.

Since only FPKM gene expression data were available 
for all 562 HNSCs, the five TIME features were recalcu-
lated using FPKM instead of RSEM values, verifying that 
the two measures correlated positively (Additional File 
1: Figure S3B-F). For CYS and ICR, clustering was done 
as described in the original publications [12, 15]. For 
TIS the same clustering strategy as for the TCGA cohort 
was applied. For IS and CPI, the score was calculated as 
described above.

For each TIME feature, the normalised sample propor-
tion of a HNSC subtype i in a TIME level j was calcu-
lated as:

where nij is the number of HNSCs in subtype i with 
TIME level j ; ni is the total number of HNSCs in subtype 
i ; Nj is the number of all HNSCs with TIME level j ; and 
N is the total number of HNSCs.

TIME drivers – TIME TFs functional network
A list of 1471 genes annotated with the GO:0006355 term 
(regulation of DNA-templated transcription) of Gene 
Ontology (release 2022–05) [44, 45] was considered 
bona fide transcription factors (TFs) and used as input 
for ARACNE-AP [46] together with the gene expression 
profiles of 562 HNSCs with default parameters (Fig. 4A). 
The resulting HNSC transcriptional regulatory network 
composed of 1443 TFs, 18,067 targets and 202,512 inter-
actions was used to infer the sample-level TF protein 
activity using VIPER [47], resulting in 1211 HNSC-active 
TFs.

The expression levels of downstream targets of each 
active TFs were compared between HNSC subtypes 
and 100 adjacent normal tissues using ms-VIPER [47]. 
Overall, 271, 113 and 212 differentially active (DA) TFs 
(p-value < 0. 05) were found in HPV+, HPV− CNAlow 
and HPV− CNAhigh HNSCs, respectively, for a total of 

(
nij

ni
)/(

Nj

N
)
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398 unique DA TFs. Pearson’s correlations were calcu-
lated between the protein activity of each DA TF and 
each TIME feature to retrieve the DA TFs that signifi-
cantly correlated (FDR < 0. 1) with TIME in each HNSC 
subtype (TIME TFs). Overall, 51, 103 and 159 TIME TFs 
were found in HPV+, HPV− CNAlow and HPV− CNAhigh 
HNSCs, respectively, for a total of 240 unique DA TFs.

TIME TFs were tested for statistical association with 
the 53 HNSC TIME drivers, comparing their protein 
activity in HNSCs with and without TIME driver altera-
tions using the Wilcoxon rank sum test. Overall, 131, 373 
and 882 TIME TF- TIME driver significant associations 
(FDR < 0. 1) were found in HPV+, HPV− CNAlow and 
HPV− CNAhigh HNSC, respectively, for a total of 1386 
associations. TieDIE [48] was applied to find functional 
interactions between significantly associated TIME TFs 
and HNSC TIME drivers. The prior knowledge network 
(PKN) for TieDIE was assembled from 542,397 protein–
protein [20], 12,730 phosphorylation [49], 15,104 genetic 
[33] and 34,877 signalling interactions [50] across 18,053 
human genes. Fourteen TIME drivers–TIME TFs func-
tional networks were rebuilt in each HNSC subtype and 
TIME feature, seven of which had an influence score 
significantly higher (p-value < 0. 08) than random net-
works with the same degree distribution (Additional 
File 2: Table  S11). Starting from these networks, coher-
ent subnetworks were defined as those with maximum 
three nodes between the TIME driver and the TIME 
TF and a positive coherency score [48] (Additional File 
2: Table S12). TIME TF targets were functionally anno-
tated using pathway enrichment analysis as described in 
[51] (Additional File 2: Table S13). GSEA [52] v4. 3. 2 was 
used with a gene set permutation test of 1,000 iterations.

Results
TIME drivers are multifunctional genes commonly altered 
across cancers
To identify the cancer genes interacting with specific 
states of the TIME (TIME drivers), we derived a reliable 
set of genes specifically contributing to the evolution of 
each of the 32 TCGA cancer types (Additional File 1: 
Figure S1A). We started from a pan-cancer collection of 
experimentally validated (canonical) and computation-
ally predicted (candidate) drivers [20] and assigned them 
to each cancer type according to an expert annotation of 
the literature. We then retained only drivers with dam-
aging alterations in 7730 TCGA samples with matched 
genomic and transcriptomic data. We considered LoF 
alterations in tumour suppressors, GoF alterations in 
oncogenes, and both types of alterations in drivers with 
unclassified roles. We removed rarely damaged drivers 
for which no reliable interaction with the TIME could be 
computed. The final list was composed of 254 canonical 

and 977 candidate drivers with damaging alterations in 
6921 samples across the 32 cancer types (Fig. 1A, Addi-
tional File 2: Table S1, Table S2).

To characterise the TIME features of these tumours, we 
used five gene expression signatures indicative of over-
all tumour immune infiltration (IS) [23], cytotoxic anti-
tumour infiltration (CYS) [12], anti-tumour T-helper 
activity (ICR) [15], anti-tumour inflammation state 
(TIS) [27], and cancer-promoting inflammation (CPI) 
[28, 29] (Additional File 2: Table  S3). The five gene sig-
natures had a minimal overlap (Additional File 1: Figure 
S1B), confirming that they captured distinct TIME prop-
erties. Since IS and CPI were available only for a subset 
of samples, we re-computed them for the whole cohort, 
verifying that our results reproduced those previously 
published [23, 28, 29] (Additional File 1: Figure S1C, D).

We grouped samples into low, medium, and high TIME 
levels of each TIME feature based on the correspond-
ing score distribution in each cancer type. We used cat-
egorical values rather than the original scores to make 
the analysis more interpretable and comparable across 
features and cancer types. We then calculated the prob-
ability of a cancer driver to predict the TIME level of the 
sample where it was altered using ordinal logistic regres-
sion with Lasso regularisation for each feature in each 
cancer type (Fig.  1A). Driver-TIME feature pairs with 
a positive β regression coefficient indicated that sam-
ples with damaging alterations in that driver were likely 
to have medium or high levels for that TIME feature. 
Driver-TIME features pairs with a negative β regression 
coefficients indicated the opposite.

Overall, we identified 477 TIME drivers whose dam-
aging alterations predicted higher (301) or lower (277) 
TIME levels in 30 cancer types (Fig. 1A, Additional File 2: 
Table  S4, available at http://​www.​netwo​rk-​cancer-​genes.​
org). These predictions were enriched in experimentally 
validated TIME drivers (66 of 102, p = 4 × 10−8, Fisher’s 
exact test, Additional File 2: Table  S5), supporting the 
robustness of our approach. Cholangiocarcinoma and 
kidney chromophobe cancer did not show any significant 
interaction, possibly because of the low statistical power 
due to the small sample size. Predicted TIME drivers 
included 164 canonical and 313 candidate drivers, indi-
cating that most well-known cancer drivers can interfere 
with the immune system (Fig.  1B). Unexpectedly since 
cancer drivers tend to be cancer-specific [20], TIME 
drivers were instead recurrently damaged across cancer 
types (Fig.  1C) and samples (Fig.  1D, Additional File 2: 
Table  S6). Moreover, more than 40% of them were pre-
dicted as TIME drivers in multiple cancer types (Addi-
tional File 2: Table S4). They included well-known TIME 
drivers such as TP53, PTEN, ARID1A, and KRAS, but 
also PIK3CA, CDKN2A, or TERT for which no or very 

http://www.network-cancer-genes.org
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little interactions with the TIME have been described. 
Most TIME drivers (261, 55%) were predictive of at 
least two features, and 45 of all five of them (Fig. 1E). An 
example was BRAF, whose V600E mutation is highly 
immunogenic [53], despite BRAF signalling promoting 
pro-tumour inflammation [54].

Our results depicted TIME drivers as genes recur-
rently damaged across cancer samples and types and 
able to interact plastically with multiple TIME features. 
This suggested that TIME drivers were likely multifunc-
tional genes involved in several biological processes. To 
test this hypothesis, we computed the number of interac-
tions of TIME drivers in the protein–protein interaction 
network. We confirmed that TIME drivers encoded pro-
teins engaging in a significantly higher number of pro-
tein–protein interactions (Fig. 1F) and protein complexes 
(Fig.  1G) compared to non-TIME drivers. Moreover, 
TIME drivers mapped to a significantly higher number 
of biological pathways (Fig.  1H) and were involved in a 
higher number of immune-related functions (Fig.  1I), 
confirming that they are multifunctional genes.

TIME tumour suppressors and oncogenes predict 
opposite TIME states
Given the different modes of action, we sought to analyse 
the TIME interactions of tumour suppressors and onco-
genes separately. Overall, we found that their alterations 
had an opposite effect on the TIME composition. While 
tumour suppressors were enriched in TIME drivers 
predictive of a hot anti-tumour TIME, oncogenes were 
enriched in TIME drivers predictive of a cold pro-tumour 
TIME (Fig. 2A, Additional File 2: Table S7). These obser-
vations suggested that tumour suppressor alterations 
preferentially helped tumours to survive in a hot TIME. 
Oncogene alterations, instead, sustained tumour growth 
in the presence of a pro-tumour TIME or directly inhib-
ited anti-tumour TIME.

We reasoned that, if alterations in TIME tumour sup-
pressors favoured immune escape, they were likely to 
occur early in tumour evolution. To test this hypothesis, 
we computed the proportion of clonal drivers and found 

that TIME tumour suppressors were enriched in clonal 
drivers compared to TIME oncogenes and non-TIME 
tumour suppressors (Fig. 2B, Additional File 2: Table S8). 
Moreover, the proportion of clonal TIME drivers predic-
tive of high immune infiltration was significantly higher 
than that of TIME drivers predictive of low immune 
infiltration (Fig.  2C). Similarly, anti-tumour TIME driv-
ers were enriched in clonal alterations compared to pro-
tumour TIME drivers (Fig. 2D). Therefore, cancers with a 
hot TIME select alterations in tumour suppressors very 
early in their evolution. Interestingly, also the proportion 
of TIME oncogenes with clonal alterations was signifi-
cantly higher than that of non-TIME oncogenes (Fig. 2B, 
Additional File 2: Table  S8). This suggested that, inde-
pendently on their effect, drivers involved in the tumour-
immune interactions are altered earlier than other 
drivers. Interestingly, 74% of genes driving somatic clonal 
expansion in non-cancer tissues [55] were TIME drivers, 
indicating that their interaction with the immune system 
may even predate cancer transformation.

A hot TIME is needed for an effective response to 
immune checkpoint blockade (ICB) [4]. We therefore 
hypothesised that the number of antitumour TIME driv-
ers in a cancer type (i.e. its antitumour TIME driver bur-
den, anti-TDB) could predict its response to ICB. To test 
this hypothesis, we considered whether ICB treatment 
had been approved for that cancer type [56, 57] and used 
the median tumour mutational burden (TMB) for com-
parison. Unsurprisingly since both anti-TDB and TMB 
depend on the overall number of cancer alterations, they 
were positively correlated (Fig.  2E, F). We used Bayes-
ian logistic regression to account for this correlation and 
avoid overfitting [58]. Moreover, we tested maximum 
three variables at a time resulting in at least ten observa-
tions per variable to further minimise overfitting [59, 60]. 
TMB and anti-TDB showed comparable predictive power 
(p = 0. 003, Additional File 1: Figure S2A). We therefore 
compared their predictive power alone or in combination 
using Receiver Operating Characteristic (ROC) curves. 
We confirmed that TMB and anti-TDB alone were sig-
nificant predictors of response, but their combination 

(See figure on next page.)
Fig. 2  Effects of tumour suppressors and oncogenes on TIME and ICB response. A Enrichment of TIME drivers predictive of medium/low ( β < 0) 
or medium/high ( β > 0) TIME levels in tumours suppressors and oncogenes. B Proportions of TIME and non-TIME tumour suppressors or 
oncogenes with clonal damaging alterations. C Proportions of clonal TIME drivers predictive of high or low immune infiltration. D Proportions 
of clonal TIME drivers predictive of an anti-tumour (CYS, TIS, ICR β > 0 , or CPI β < 0) and pro-tumour (CYS, TIS, ICR β < 0 , or CPI β > 0) TIME. E 
Number of antitumour TIME drivers, approval ICB treatment and TMB across cancer types. The number of samples for each cancer type is shown 
brackets. F Pearson’s correlation between the median TMB and the number of antitumour TIME drivers in 31 cancer types, excluding COAD-MSI. 
ROC curves comparing the performance of TMB and anti-TDB (G) and T-cell-inflamed GEP (H) in predicting response to ICB. Recall rates and AUCs 
were calculated across 100 cross-validations. AUC, area under the curve; CPI, cancer-promoting inflammation; CYS, cytotoxicity score; ICB, immune 
checkpoint blockade; ICR, immunologic constant of rejection; IS, immune score; anti-TDB, antitumour TIME driver burden; GEP, gene expression 
profile; TIME, tumour immune microenvironment; TIS, tumour inflammation signature; TMB, tumour mutational burden; TOB, TIME oncogene 
burden; TTB, TIME tumour suppressor burden. TCGA abbreviations are listed in Additional File 2: Table S1. Proportions (A–D) were compared using 
Fisher’s exact test. In A, Benjamini–Hochberg correction for multiple testing was applied
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further improved the predictive power (Fig. 2G). In line 
with their antitumour TIME interactions, antitumour 
TIME tumour suppressor burden (anti-TTB) had higher 
predictive power than the TIME oncogene burden (anti-
TOB, Additional File 1: Figure S2B). Moreover, no signifi-
cant difference in prediction accuracy could be observed 

between training and test datasets (Additional File 1: Fig-
ure S2C), confirming that the model was not overfitted.

In a similar way, we tested other described predictors of 
response to ICB, namely T-cell-inflamed gene-expression 
profile (GEP) [61], PDL1 [62], CD8A [63] and CXCL9 [64] 
expression levels, gender [65] and age at diagnosis [66]. 

Fig. 2  (See legend on previous page.)
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Of those, only T-cell-inflamed GEP, CD8A and CXCL9 
expression showed significant predictive power across all 
cancer types (Additional File 1: Figure S2A). Moreover, 
T-cell-inflamed GEP, CD8A and CXCL9 expression were 
positively correlated (Additional File 1: Figure S2D-F) 
and T-cell-inflamed GEP showed the highest predictive 
power among the three (Additional File 1: Figure S2A). 
Therefore, we decided to test the predictive power of 
T-cell-inflamed GEP when added to TMB and anti-TDB. 
However, the addition of T-cell-inflamed GEP did not 
further improve the predictive power compared to when 
TMB and anti-TDB were analysed together (Fig. 2H).

TIME drivers predict the TIME profiles of head and neck 
cancer subtypes
To gain further insights into driver-TIME interactions, 
we focused on head and neck squamous cell carcinoma 
(HNSC), a group of genetically heterogeneous cancers 
from multiple anatomical sites [67]. The two main sub-
types of HNSC are caused by human papillomavirus 
(HPV+ HNSC) and cigarette smoking (HPV− HNSC), 
respectively. HPV+ tumours show less genetic instability, 
respond better to treatment, and have an overall better 
prognosis [68]. Despite having among the highest leuko-
cyte infiltration [14], HNSC shows variable response to 
immunotherapy [56]. This makes it an interesting cancer 
type to further investigate the dynamic of driver-TIME 
interactions.

We expanded the TCGA HNSC cohort to include sam-
ples from the Clinical Proteomic Tumour Analysis Con-
sortium (CPTAC) [17], for a total of 562 HNSCs with 
matched genomic and transcriptomic data (Fig.  3A). 
Of these, 68 were HPV+ HNSC. Based on copy number 
alterations (CNAs) [41], we further divided the remain-
ing HPV− HNSCs into 351 CNAhigh and 143 CNAlow 
samples (Fig. 3A, Additional File 1: Figure S3A). We con-
firmed that HPV+ HNSC patients have better overall sur-
vival (Fig. 3B) and, within the HPV− group, high levels of 
aneuploidy confer worse prognosis [67] (Fig. 3C).

We quantified the immune infiltrates in samples of 
the three HNSC subtypes using their gene expression 

profiles and confirmed the hot anti-tumour TIME of 
HPV+ HNSCs (Fig.  3D, Additional File 2: Table  S9). 
Interestingly, we observed an overall higher anti-tumour 
immunity in HPV− CNAlow compared to HPV− CNAhigh 
HNSCs (Fig.  3E). HPV− CNAhigh HNSCs were instead 
enriched in M0 macrophages and regulatory T cells, sug-
gesting that these pro-tumour immune infiltrates could 
contribute to their worse prognosis. When compared 
directly, HPV+ and CNAlow HNSCs showed a different 
immune infiltration profile, with the former enriched in T 
cells but depleted in NK cells and neutrophils compared 
to the latter (Fig.  3F). To test whether these differences 
were reflected in the five TIME features, we grouped the 
562 HNSCs into low, medium, and high TIME levels in 
each TIME feature according to the corresponding dis-
tribution. We then compared the proportion of samples 
of the three HNSC subtypes in each TIME level. HPV+ 
samples consistently showed high proportion of sam-
ples with high and medium anti-tumour TIME features 
(Fig.  3G, Additional File 2: Table  S10), confirming that 
they are immune-hotter than HPV− HNSCs. Similarly, 
HPV− CNAlow HNSCs confirmed to be immune-hotter 
than HPV− CNAhigher HNSCs (Fig. 3H, Additional File 2: 
Table S10).

To test whether the TIME features of the three HNSC 
subtypes could be explained by their TIME driver 
alteration profile, we compared the frequency of the 53 
HNSC TIME drivers across subtypes (Additional File 2: 
Table  S4). Five of the seven TIME drivers significantly 
more frequently damaged in HPV+ HNSCs were pre-
dictive of high anti-tumour or low pro-tumour TIME 
(Fig.  3I). Similarly, all three TIME drivers more fre-
quent in HPV− CNAlow HNSCs were predictive of high 
anti-tumour immunity, while most TIME drivers more 
frequent in HPV− CNAhigh were predictive of low anti-
tumour immunity (Fig.  3J, K). Moreover, HPV+ and 
HPV− CNAlow HNSCs showed significantly higher anti-
tumour or lower pro-tumour TDB per sample than 
HPV− CNAhigh HNSCs (Fig. 3M, N). These results indi-
cated that the distinct immune profiles within HNSCs 
segregate with the distinct TIME driver alteration pro-
files across molecular subtypes.

Fig. 3  Immune profiles and TIME driver alterations of HNSC. A HNSC extended cohort. HNSCs collected from TCGA and CPTAC were divided 
in HPV+, HPV− CNAlow and HPV− CNAhigh samples based on HPV infection and level of aneuploidy [41]. Kaplan–Meier survival curves between 
HPV+ and HPV− (B) or HPV− CNAlow and HPV− CNAhigh (C) HNSC patients. Overall survivals were compared using the log-rank test. Comparison of 
CIBERSORTx absolute score medians between HPV+ and HPV− (D); HPV− CNAlow and HPV− CNAhigh (E); or HPV+ and HPV− CNAlow (F) HNSCs. Only 
immune cell types enriched in at least one HNSC subtype are shown. Comparison of sample proportion in the five TIME features between HPV+ 
and HPV− (G) or HPV− CNAlow and HPV− CNAhigh (H) HNSCs (see Methods). TIME drivers more frequently damaged in HPV+ HNSCs (I), HPV− CNAlow 
(J), or HPV− CNAhigh HNSC samples (K). For HPV− CNAhigh HNSCs only the top 13 TIME drivers are shown (full list in Additional File 2: Table S4). 
CPI = cancer-promoting inflammation; CYS, cytotoxicity score; CPTAC, Clinical Proteomic Tumour Analysis Consortium; FDR, false discovery rate; HPV, 
human papillomavirus; ICR, immunologic constant of rejection; IS, immune score; TIS, tumour inflammation signature. Proportions were compared 
using Fisher’s exact test (D–F, I–K) or Mantel–Haenszel chi-square test (G, H). Distributions (M, N) were compared using Kruskal − Wallis test. In D–K, 
Benjamini–Hochberg correction for multiple testing was applied

(See figure on next page.)
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Fig. 3  (See legend on previous page.)
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Functional networks uncover the molecular mechanisms 
of driver‑TIME interactions
Regression models can reveal significant interac-
tions between genetic drivers and the TIME but not 
the directionality of these interactions. To unravel the 
functional links between driver alterations and TIME 
features more directly, we rebuilt the transcriptional 
regulatory network of 1443 transcription factors (TFs) 
in 562 HNSCs using their expression profiles (Fig. 4A). 
Measuring the corresponding TF protein activity, we 
found 1211 TFs overall active in HNSC and 398 differ-
entially active in the three HNSC subtypes. Of these, 
240 showed a significant correlation with TIME features 
in one of the three HNSC subtypes (TIME TFs). Com-
paring the protein activity of these TIME TFs in HNSCs 
with and without damaging alterations in the 53 HNSC 
TIME drivers, we found 1386 TIME driver – TIME TF 
associations. We then combined several types of func-
tional data (Methods) and identified seven functional 
networks linking HNSC TIME drivers and TIME TFs 
(Fig.  4A, Tables S10). Since these networks comprised 
between 37 and 203 functional nodes (Additional File 2: 
Table S12), we extracted the coherent subnetworks con-
necting TIME drivers to TIME TFs through maximum 
three nodes.

These subnetworks enabled investigation of the tran-
scriptional programmes directly linking TIME driver 
alterations to the TIME features in each HNSC subtype. 
For example, the TIME oncogene DNMT3B, predictive 
of a hot TIME, was frequently damaged in HPV+ HNSCs 
(Fig. 3I). DNMT3B was part of the HPV+/TIS subnetwork 
involving HIC1 and the TIME TF PHF1 (Fig. 4B, Addi-
tional File 2: Table S12). DNMT3B is known to methylate 
HIC1 [69] inhibiting PHF1 recruitment and activating its 
transcriptional repression programme [70]. Consistently, 
we found a higher PHF1 protein activity (Fig. 4C) and a 
downregulation of keratinization (a pathway enriched in 
PHF1 targets, Additional File 2: Table S13) in DNMT3B-
damaged HPV+ HNSCs (Fig.  4D). Keratinocytes have 

recently been reported to inhibit T cell proliferation by 
secreting T cell-modulating cytokines [71]. This could 
explain how DNMT3B amplification could lead to higher 
immune infiltration. Interestingly, HPV+ HNSCs have 
been divided into two transcriptional subtypes, one 
(HPV+ KRT) characterised by high keratinocyte dif-
ferentiation and the other (HPV+ IMU) with a strong 
immune response [72]. Using the same dataset [72], we 
verified that DNMT3B was more frequently damaged in 
HPV+ IMU HNSCs (Fig.  4E). This independently sup-
ported the hot anti-tumour TIME induced by DNMT3B 
amplification.

Next, we investigated the TIME role of the tumour sup-
pressor CASP8 whose damaging alterations were pre-
dictive of anti-tumour immunity and were enriched in 
HPV− CNAlow HNSCs (Fig.  3J). Two lines of evidence 
supported a role of CASP8 loss in immune escape in 
HPV− CNAlow HNSC. The first was that FASL, a cyto-
toxic T cell-induced trigger of apoptosis [73] was upregu-
lated in CASP8-damaged HPV− CNAlow HNSCs (Fig. 4F). 
Since CASP8 is the downstream target of the FASL-ini-
tiated apoptotic cascade (Fig. 4G), its loss could prevent 
cancer cells to undergo apoptosis. The second line of evi-
dence came from the HPV− CNAlow HNSC subnetworks 
where CASP8 interacts with the TIME TF IRF7 through 
TP53 (Fig. 4H, Additional File 2: Table S12). Since CASP8 
loss stabilises TP53 [74], we expected higher IRF7 activ-
ity in CASP8-damaged HPV− CNAlow HNSCs, which was 
indeed confirmed (Fig.  4I). IRF7 targets were enriched 
in several immune and apoptosis-related pathways 
(Additional File 2: Table  S13). Accordingly, we found a 
significant upregulation of both a/b interferon signal-
ling and apoptosis-negative control CASP8-damaged 
HPV− CNAlow HNSCs (Fig.  4J). This further confirmed 
that apoptosis reduction was a CASP8-induced immune 
escape mechanism in HPV− CNAlow HNSCs with a hot 
TIME.

Lastly, we analysed the functional network of the 
TIME oncogene TERT, predictive of a cold TIME 

(See figure on next page.)
Fig. 4  Driver–TIME functional networks in HNSC subtypes. A Reconstruction of HNSC driver-TIME functional networks. HNSC transcriptional 
regulatory network was used to identify the transcription factors (TFs) differentially active (DA) in the three HNSC subtypes that correlated with 
TIME features and were associated with TIME drivers. Combining functional data, the significant functional networks linking these drivers to 
TIME TFs were derived. B DNMT3B functional subnetwork in HPV+ HNSCs. C Comparison of PHF1 protein activity between DNMT3B-damaged 
and wild-type (wt) HPV+ HNSCs. D Gene set enrichment analysis (GSEA) plot comparing the activation of the keratinization pathway between 
DNMT3B-damaged and wt HPV+ HNSCs. E Comparison of DNMT3B-damaged samples between immune (IMU) and keratinization (KRT) HPV+ 
HNSCs from [72]. F Comparison of FASL gene expression levels between CASP8-damaged and wt HPV− CNAlow HNSCs. G Schematic of cytotoxic 
T-cell induced apoptosis of cancer cells through the FAS-FASL cascade. H CASP8 functional subnetwork in HPV− CNAlow HNSCs. I Comparison of 
IRF7 protein activity in CASP8-damaged and wt HPV− CNAlow HNSCs. J GSEA plots comparing the activation of the α/β interferon signalling and 
apoptosis regulation pathways between CASP8-damaged and wt HPV− CNAlow HNSCs. K GSEA plot comparing the activation of the WNT signalling 
pathway between TERT-damaged and wt HPV− CNAhigh HNSCs. L TERT functional subnetwork in HPV− CNAhigh HNSCs. M Comparison of PRMT5 
protein activity between TERT-damaged and wt HPV− CNAhigh HNSCs. N GSEA plot comparing the activation of the interferon signalling pathway 
between TERT-damaged and wt HPV− CNAhigh HNSCs. CNA, copy number alteration; HNSC, head and neck squamous cell carcinoma; HPV, human 
papilloma virus; TIME, tumour immune microenvironment. Distributions (C, F, I, M) were compared using Wilcoxon rank-sum test. Proportions (E) 
were compared using Fisher’s exact test. GSEAs (D, J, K, N) were performed using gene set permutation tests
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Fig. 4  (See legend on previous page.)
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whose GoF alterations were enriched in HPV− CNAhigh 
HNSCs (Fig.  3K). TERT has been reported to contrib-
ute to the WNT-β-catenin pathway through its inter-
action with the β-catenin transcriptional complex [75], 
although in a highly context-dependent manner [76]. In 
our data, HPV− CNAhigh HNSCs with damaging altera-
tions in TERT showed significant WNT upregulation 
(Fig.  4K). WNT activation has been linked to immune 
exclusion [8], which could explain the role of TERT in 
inducing a cold TIME. Moreover, TERT was in the same 
HPV− CNAhigh subnetwork of the TIME TF PRMT5 
(Fig. 4L, Additional File 2: Table S12). TERT activation 
is known to induce AKT1-mediated EGFR phospho-
rylation that, in turn, downregulates PRMT5 through 
a negative genetic interaction [77]. We confirmed a 
lower PRMT5 protein activity (Fig. 4M) and the down-
regulation of interferon signalling (Fig. 4N), one of the 
pathways enriched in PRMT5 targets (Additional File 
2: Table S13) in HPV− CNAhigh HNSCs with damaging 
alterations in TERT. A lower interferon activity could 
reduce the production of T cell chemo-attractants 
resulting in a cold TIME.

Discussion
In this study, we predicted the functional interac-
tions between the genetic drivers of 6,921 cancers and 
their immune microenvironment. Despite the analy-
sis being conducted separately in 30 cancer types, the 
predicted TIME drivers shared key properties, includ-
ing high multifunctionality, plasticity in their interac-
tion with the TIME, and recurrent damaging alterations 
across cancer types and samples. These properties sup-
port a multifaceted role of TIME drivers in promoting 
tumour evolution through both cancer-intrinsic and 
cancer-extrinsic mechanisms and suggest that they can 
interfere with multiple TIME features likely in a tissue-
specific manner.

We found an enrichment of TIME tumour suppres-
sors in early drivers and their alterations are predic-
tive of a hot anti-tumour TIME. These observations 
strongly suggest that tumour suppressors are involved 
in immune evasion supporting the recently reported 
preferential loss of tumour suppressors in mice with a 
functional adaptive immunity [10]. Unlike tumour sup-
pressors, TIME oncogenes were preferentially damaged 
in samples with a cold TIME, in line with the docu-
mented role of MYC, HRAS and BRAF oncogenes in 
inducing inflammatory chemokines and cytokines [78]. 
The opposite effect of tumour suppressors and onco-
genes on the TIME could reflect their broad functional 
differences, with the former mostly involved in control-
ling cell cycle, DNA repair and apoptosis and the latter 

enriched in signalling genes [79]. In all cases, TIME 
alterations occur earlier than those of other drivers, 
suggesting that the interactions between the mutated 
epithelium and the immune cell compartment are likely 
to start well before the epithelial cells become fully 
transformed [55].

The burden of antitumour TIME drivers, particularly 
tumour suppressors, can predict whether a cancer type 
is responsive to ICB and improves the predictive power 
of TMB. The identification of patients who are most 
likely to benefit from ICB treatment is an open clini-
cal question since response to ICB primarily assessed in 
the clinic and translational biomarkers are still lacking 
[80]. For example, although ICB treatment is standard 
of care in recurrent HNSC [81], the majority of patients 
will not respond [82] exposing them to unnecessary 
toxic effects and worse survival. In clinical practice, the 
combined positive score based on the number of PD-L1 
positive cells over all tumour cells is used for eligibility 
to ICB treatment [83]. Still, only 30% of HNSC patients 
will respond [56]. We showed that HPV+ but also HPV− 
CNAlow HNSCs tend to have a hot anti-tumour TIME 
while HPV− CNAhigh HNSCs are usually deprived of 
immune infiltration. This would suggest a prioritisation 
of ICB treatment only in patients with HPV+ and HPV− 
CNAlow HNSC subtypes.

Unlike TMB that has a sample-specific value, anti-
TDB is a feature of the cancer type and cannot predict 
response of the individual patient to ICB. To overcome 
this limitation and unravel the molecular mechanisms of 
the driver-TIME interactions, we rebuilt the transcription 
regulatory networks linking driver alterations to TIME 
states. We identified TIME-driver functional networks 
for 33 HNSC TIME drivers, indicating how alterations 
in these genes interfere with the TIME. For example, 
DNMT3B-damaged HPV+ HNSCs significantly overlap 
with the recently identified HPV+ IMU subtype, which 
shows better prognosis and high immune infiltration 
[72]. Our data show that this is likely achieved through 
a reduction of keratinocyte differentiation induced 
by DNMT3B amplification. Therefore, patients with 
DNMT3B-damaged HPV+ HNSCs are good candidates 
for a successful ICB treatment. Similarly, CASP8-induced 
immune escape through apoptotic inhibition is another 
mechanism evolved by HPV− CNAlow HNSCs to survive 
a high anti-tumour infiltration. Our prediction is that 
also this subgroup of patients would benefit from ICB 
treatment. On the contrary, TERT activation modulates a 
cold TIME, suggesting that HPV− CNAhigh patients with 
this alteration would not benefit from immunotherapy.
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Conclusions
Our study provides a comprehensive set of driver-
TIME interactions and mechanistic insights into their 
crosstalk. This could be further explored in experi-
mental and clinical settings for the development of 
robust and cancer-specific biomarkers of response to 
immunotherapy.
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