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Abstract 

Background  Streptococcus pneumoniae is a gram-positive opportunistic pathogen, and infection risks of S. pneumo-
niae can be profoundly augmented by its acquired multidrug-resistance (MDR). The rapid development of MDR in S. 
pneumoniae was attributed to the international dissemination of a small number of multidrug-resistant “clones.” Clonal 
complex (CC) 271 is a prevalent MDR CC in the world and the most prevalent CC in China. However, the evolutionary 
trajectories of multidrug-resistant S. pneumoniae CC271 in China still are largely unknown.

Methods  We investigated a collection of 1312 S. pneumoniae isolates collected from 28 tertiary hospitals in China 
from 2007 to 2020. Recombination prediction and recombination-masked phylogenetic analysis were combined to 
determine the population structure and mode of evolution of CC271. Data from the Global Pneumococcal Sequenc-
ing program (GPS) were combined to understand the global distribution of clones identified in this study. Bayesian 
analysis were recruited to analysis the evolutionary dynamics of dominant clones within CC271 in China.

Results  The phylogenomic analysis resulted in the discovery of two globally distributed clones, ST271-A and ST271-B. 
ST271-A was a derivative of ST236 and an ancestor of ST271-B and ST320, refining the internal phylogenetic relation-
ship of CC271. ST271-B was the most dominant clone in China, with higher β-lactam resistance especially for cepha-
losporins comparing to other MDR clones. Bayesian skyline plot showed a rapid expansion of 19F ST271-B from 1995 
to 2000, which correlates with the widespread use of cephalosporins in the 1990s in China. 19A ST320, a vaccine-
escape clone, is the second largest population in China. The Bayesian skyline plot showed that the 19A ST320 began 
to expand rapidly around 2001, which appeared to coincide with the prevalence of 19A after application of PCV7 
in 2000 in the USA. We also observed frequent transmission of 19A ST320 between countries. It suggests that mass 
vaccination in some countries could affect the prevalence of clones in unvaccinated countries in the context of high-
frequency international transmission.

Conclusions  Our results refined the internal phylogenetic relationship of CC271, showing that the 19F ST271-B and 
19A ST320 evolved independently from ST271-A, with different histories and driving forces for their evolution and 
dissemination in China.
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Background
Streptococcus pneumoniae is a gram-positive opportun-
istic pathogen notorious for causing pneumonia, otitis 
media, meningitis, and bronchitis, resulting in signifi-
cant morbidities and mortalities. S. pneumoniae remains 
the leading source of fatal infections in children aged < 5 
years [1]. Disquietingly, infection risks of S. pneumoniae 
can be profoundly augmented by its acquired antimicro-
bial resistance (AMR), especially multidrug-resistance 
(MDR), defined as resistance to at least three classes of 
antibiotics [2]. Genotyping of multidrug-resistant pneu-
mococci has suggested that the rapid development of 
MDR in S. pneumoniae could be attributed to the inter-
national dissemination of a small number of multidrug-
resistant “clones” of closely related bacteria [3]. Therefore, 
introducing an evolutionary perspective to analyze the 
intraspecific evolutionary history of MDR in S. pneumo-
niae has become an essential and important approach.

Clonal complex (CC) 271 is one of the most widely dis-
tributed multidrug-resistant CC in the world, whose history 
has been investigated [4]. CC271 includes three well-known 
pandemic multidrug-resistant clones, sequence type (ST) 
320, ST236, and ST271. Of these three, ST236 isolates 
were the original identification of CC271, which were first 
detected in Taiwanese hospitals in 1997 and named Tai-
wan19F-14 [5]. ST271 is a single locus variant (SLV) of 
ST236 and belongs to serotype 19F. ST236 and ST271 dis-
seminated globally before the introduction of the 7-valent 
pneumococcal polysaccharide conjugate vaccine (PCV7) 
[6, 7]. Since the approval of PCV7 in the USA in 2000, the 
incidence of invasive pneumococcal disease (IPD) caused by 
vaccine serotypes, including 19F, was significantly reduced 
in countries with mass vaccination [8]. After that, ST320 
with serotype 19A became a highly prevalent multidrug-
resistant clone post-PCV7 in these countries, which was an 
SLV of ST271 and a double locus variant (DLV) of ST236 
[9]. The 19A isolates were reported to be derived from the 
19F isolates of ST320, most probably due to a recombina-
tion event resulting in a capsular switch [4, 10]. Therefore, 
the evolutionary relationship of these pandemic multidrug-
resistant clones in CC271 could be due to locus variants, 
i.e., ST236 was more ancestral than ST271, and ST320 was 
derived from ST271 [11]. Nevertheless, such a scenario 
requires further verification by whole-genome-based phylo-
genetic analyses.

As mentioned earlier, in countries where PCV7 was 
extensively administered, the vaccine plays a central 
role in the dissemination and evolution of S. pneumo-
niae. Therefore, an intriguing question arises, i.e., what 

the evolutionary trajectories of S. pneumoniae will be in 
those countries where PCV7 was not widely used, and 
what will be the impact of vaccination on these coun-
tries? Considering the case in China as an example, 
PCV7 and PCV13 were licensed in China in 2008 and 
2016, respectively, which was later than that in the USA 
(2000 and 2010, respectively). Since no pneumococcal 
vaccines were included in China’s National Immuniza-
tion Program (NIP), PCV7 and its replacement have 
only been taken by a small fraction of the Chinese pop-
ulation [12]. Thus, vaccine serotypes such as 19F and 
19A are still the most prevalent serotypes in China [13]. 
Therefore, it would also be of interest to study the evo-
lutionary dynamics of prevalent vaccine serotypes in 
China. Genome sequencing is a cost-effective approach 
widely applied to decipher pathogens’ evolution and 
transmission routes [14, 15]. In this study, we conducted 
whole-genome sequencing on a set of 1,312 isolates of S. 
pneumoniae collected from 28 tertiary hospitals distrib-
uted in 18 provinces of China from 2007 to 2020 to gain 
insight into the pneumococcal population structure. By 
introducing genomic approaches combining phyloge-
netic and recombination analyses, we provide evidence 
on the comprehensive phylogenomic relationship of the 
clones of CC271 different from previous understanding. 
We found that the two most dominant clones in China, 
19F ST271-B and 19A ST320, diverged separately from 
a recent common ancestor, 19F ST271-A. We further 
analyzed and speculated on their evolutionary dynamics 
and driving force of expansion. The high consumption 
of cephalosporins is the most likely reason for the prev-
alence of 19F ST271-B in China. In contrast, the preva-
lence of 19A ST320 appears to be impacted by not only 
its competitiveness such as antibiotic resistance but also 
its high intensity of global transmission. The results of 
our study provide insight into our understanding of the 
evolutionary trajectories of multidrug-resistant S. pneu-
moniae CC271 in China.

Methods
Genome sequencing and assembly
From 2007 to 2020, we obtained 1312 isolates of S. pneu-
moniae from 28 tertiary hospitals across 18 provinces 
in China as part of the China Antimicrobial Resistance 
Surveillance Trial (CARST) program [16]. The isolation 
information of these isolates was organized and summa-
rized every 2 years. Genomic DNA was extracted using 
Wizard® Genomic DNA Purification Kit (Promega, 
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Madison, USA). Samples were sequenced on an Illumina 
HiSeq 2000 platform with approximately 200 × coverage. 
Reads were assembled using SPAdes [17] (v3.13.1), and 
different lengths of k-mer (21,33,45,55,63,77) were used 
to obtain the optimal results with the fewest number of 
scaffolds.

Antibiotic susceptibility test
The MICs of 13 antibiotics (penicillin, amoxicillin, 
cefuroxime, ceftriaxone, cefepime, imipenem, eryth-
romycin, clindamycin, moxifloxacin, levofloxacin, van-
comycin, chloramphenicol, and azithromycin) were 
determined using the agar dilution method [18]. The 
MICs were categorized into either susceptible, inter-
mediate, or resistant according to CLSI (Clinical and 
Laboratory Standards Institute) 2021 guideline [19]. For 
β-lactam antibiotics, the breakpoint of parenteral (non-
meningitis) was used.

Multilocus sequence typing and serotyping
Serotype was predicted in silico using SeroBA [20] 
(v1.0.0). The isolates were assigned STs by aligning seven 
housekeeping genes (aroE, gdh, gki, recP, spi, xpt, and ddl) 
to the MLST database [21] (https://​pubml​st.​org/​organ​
isms/​strep​tococ​cus-​pneum​oniae) using BLASTn [22] 
(v2.11.0). The STs were clustered into CCs under single 
locus variant (SLV) criterion using goeburst [23] (v1.2.1). 
Any CC consisting of only two STs is called a doubleton, 
and any CC consisting of only one ST is called a single-
ton. For each antibiotic, a chi-square test or Fisher’s exact 
test of the scipy.stats package [24] in Python was selected 
according to the sample distribution to explore whether 
the proportion of nonsusceptible isolates of each CC was 
significantly higher than that of the 1312 isolates.

Phylogenetic construction
The general feature format (gff) files of 1312 isolates pro-
duced by Prokka [25] (v1.14.6) were used as the input of 
Roary [26] (v3.13.0) to create a core gene alignment. A 
maximum-likelihood tree was constructed based on the 
alignment using RAxML [27] (v8.2.12) with the GTR-
GAMMA method.

The sequencing reads of 526 CC271 isolates in our sam-
ples were mapped to the complete genome sequence of 
Taiwan19F-14 (NC_012469.1) using Snippy [28] (v4.6.0). 
The prediction and removal of putative recombining 
regions were conducted using Gubbins [29] (v3.0.0) with 
the GTRGAMMA method. Then, a phylogenetic tree with 
ultrafast bootstrap values was reconstructed using IQtree 
[30–32] (v2.1.4-beta). Furthermore, 19F ST271 (n = 86) and 
19A ST320 (n = 283) from the GPS database were included 
to reconstruct the global phylogeny of 19F ST271 (n = 387) 
and 19A ST320 (n = 458) using the same above-described 

method, respectively. Strain Taiwan19F-14 (19F ST236) 
was used to root the tree. For the phylogeny of 19A ST320, 
we changed the reference genome and outgroup into 
the isolate SP65 of 19F ST320 in our sample because 19F 
ST320 is the more recent ancestor of 19A ST320.

Analysis of genotype and phenotype of β‑lactam 
resistance
The alignments of PBP2b and PBP2x protein sequences of 
the 526 CC271 isolates in our sample were generated using 
MAFFT [33] (v7.475). Three isolates with incomplete PBP 
sequences were excluded. The phylogenetic trees of PBP2b 
and PBP2x sequences were constructed using IQTree.

For each of the six β-lactam antibiotics (penicillin, 
amoxicillin, cefuroxime, ceftriaxone, cefepime, and imipe-
nem), the Wilcoxon test in the R package ggpubr [34] was 
performed to investigate whether the mean MIC among 
19F ST271-A, 19F ST271-B, and 19A ST320 was signifi-
cantly different. Due to the diversity of PBP2x and PBP2b 
sequences, the MICs for six 19F ST271-A and all 13 19F 
ST236 isolates in our data may not be representative and 
were not included in the comparison of MICs.

Temporal phylogenetic reconstruction
A Bayesian coalescent analysis using Beast2 [35] (v.2.6.3) 
was conducted on the alignment of 301 19F ST271 isolates 
in our samples after the removal of recombining regions. 
The temporal signal was evaluated using TempEst [36] 
(v1.5.3) and examined using BETS [37]. A starting tree 
reconstructed using IQTree was used to fix the topol-
ogy of the phylogeny. The optimal models and tree priror 
were determined using Path Sampling/Stepping-stone (PS/
SS) [38, 39] analysis. The optimal substitution model was 
determined using bModelTest [40]. Parameters were esti-
mated with an effective sample size (ESS) of > 200. We then 
reconstructed the evolutionary dynamics of 19F ST271 in 
China using the same method with the Coalescent Bayes-
ian skyline as tree prior [41]. The same method was used 
for Bayesian skyline analysis of 175 isolates of 19A ST320.

Trend test
The proportion of 19F ST271 or 19A ST320 isolates every 
2  years was calculated. Significant upward or downward 
trends were examined using the Cochran–Armitage test in 
the DescTools package [42] in R.

Results
CC271 is the most prevalent clonal complex of multiple 
drug resistance in China
A total of 1,312 isolates of S. pneumoniae were col-
lected from 2007 to 2020 in China (Fig. S1). The major-
ity of the isolates were retrieved from sputum samples 
(929, 70.8%), and the remaining isolates were retrieved 

https://pubmlst.org/organisms/streptococcus-pneumoniae
https://pubmlst.org/organisms/streptococcus-pneumoniae
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from blood samples, secretions, throat swabs, cerebro-
spinal fluid, drainage, and urine. The proportion of iso-
lates from the elderly, adults, children, and unknown age 
group was 27.4%, 35.1%, 30.2%, and 7.3%, respectively. 
We sequenced the 1312 S. pneumoniae isolates on an 
Illumina HiSeq 2000 platform and constructed a phylo-
genetic tree based on the core genes of these 1312 iso-
lates (Fig. 1). The largest cluster was represented by the 
isolates of CC271, accounting for 40.1%, indicating that 
CC271 was the most prevalent CC in China. The other 
clusters included 28 CCs, among which CC81, CC876, 
and CC505 also occupied significant proportions in the 
population, accounting for 5.9%, 3.6%, and 3.1% of iso-
lates, respectively. A total of 1302 isolates were assigned 
to 64 serotypes, whereas the remaining 10 isolates were 
unknown serotypes or non-encapsulated. The preva-
lent serotypes were 19F (354, 27.0%), 19A (181, 13.8%), 
03 (127, 9.7%), 23F (95, 7.2%), and 14 (59, 4.5%). In par-
ticular, 19F and 19A primarily belonged to CC271. The 

serotypes covered by the 13-valent pneumococcal con-
jugate vaccine (PCV13) comprised 77.7% of our collec-
tion. The overall rate of invasive pneumococcal disease 
(IPD) inicidence of the 1312 samples was 12.8%. Notably, 
serotypes 14 and 09 V exhibit high rates of IPD incidence 
at 36% and 33%, respectively. CC876 exhibit a high rate 
of IPD incidence at 33%. We determined the minimum 
inhibitory concentrations (MICs) of 13 antibiotics for the 
1312 isolates. Nonsusceptible rates for macrolides (eryth-
romycin and azithromycin) and lincosamide (clindamy-
cin) antibiotics were very high, more than 90% (Fig. S2). 
However, most isolates were susceptible to fluoroqui-
nolones, and all isolates remained susceptible to vanco-
mycin. The nonsusceptibility rates to different β-lactam 
antibiotics in the pneumococcal isolates ranged from 11% 
for penicillin to 65% for cefuroxime. We also examined 
the contribution of diverse CCs to the resistance of the 
entire population. We identified CCs with significantly 
higher non-susceptible rates to at least one of the 13 

Fig. 1  Molecular typing results and maximum likelihood tree of 1312 S. pneumoniae isolates. The tree was constructed based on 1100 core genes 
and midpoint-rooted. The color strips represent the clonal complex (CC) and serotype from inside out. The main CCs and serotypes are represented 
by distinct colors, while other CCs and serotypes are uniformly displayed in white
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antibiotics than the average rates of all isolates, as shown 
in Fig. S3. CC271, the most successful pneumococcal CC 
in China, exhibited higher non-susceptible rates to multi-
ple antibiotics than other CCs, especially to six β-lactam 
antibiotics, indicating that CC271 is a multidrug-resist-
ant clonal complex and its prevalence would account 
for the high prevalence of MDR in China. Furthermore, 
CC81, CC3173, CC90, CC3397, CC876, CC2758, CC902, 
and a doubleton demonstrated significantly higher levels 
of resistance to one to three antibiotics than the average 
nonsusceptible rates of all isolates, separately.

Phylogenomic analysis refines intra‑clonal links of S. 
pneumoniae CC271
To understand the overall population structure and mode 
of evolution of CC271 S. pneumoniae, we first aligned 
the read pairs of 526 CC271 isolates in our collection 
against the complete reference genome of S. pneumo-
niae Taiwan19F-14, which is considered as the original 
identification of CC271. Recombinations were predicted 
using Gubbins [29]. A maximum-likelihood phylogenetic 
tree was reconstructed after the removal of recombina-
tion regions (Fig.  2a). The tree was midpoint-rooted. 
According to tree topology and predicted recombina-
tion events of isolates, we proposed that the CC271 could 
be divided into five clones: 19F ST236, 19F ST271-A, 

19F ST271-B, 19F ST320, and 19A ST320 (Fig. 2a). 19F 
ST271-B and 19A ST320 were predominant in CC271 of 
our collection, representing 289 and 175 isolates, respec-
tively. The clone of 19F ST236 including Taiwan19F-14 
was located at the root position, which was speculated 
to be the ancestor of the CC271 in previous study [11]. 
According to the MLST results, previous studies have 
favored the a priori assumption that ST320 is a derivative 
of ST271. Nonetheless, the presence of 19F ST271-A and 
19F ST271-B provided new insights into the evolutionary 
trajectories among clones in CC271. Multiple 19F ST271 
clades named as 19F ST271-A and located near a sister 
clone of 19F ST236. The branches corresponding to the 
emergence of 19F ST271-A preceded 19F ST271-B and 
ST320, which form two separate monophyletic groups, 
suggesting that 19F ST271-B and ST320 have indepen-
dently emerged from 19F ST271-A. Accordingly, we 
refined the evolutionary relationships among clones in 
CC271.

The recombination analysis also supported the evolu-
tionary trajectories among clones of CC271 (Fig.  2b, c). 
A total of 28 recombination events were shared by 19F 
ST271-A, 19F ST271-B, 19F ST320, and 19A ST320, but 
not by 19F ST236. In addition, four recombination events 
were exclusively detected in 19F ST271-B and 19A ST320 
isolates, respectively. Among the four recombination 

Fig. 2  Phylogenetic tree and predicted recombination events of 526 CC271 isolates in China. a Recombination-masked WGS phylogeny; colors 
of the branches correspond to groups, which consist primarily of isolates with the corresponding ST and serotype. Red represents 19F ST236 
(including Taiwan19F-14), orange represents 19F ST271-A, blue represents 19F ST271-B, purple represents 2 19F ST320 isolates, green represents 
19A ST320, and gray represents a group consisting of other rare STs that are not focused. Blue and green shaded box represents the monophyletic 
group of 19F ST271-B and 19A ST320. b The predicted recombinations in CC271 isolates. Column corresponds to location in the reference genome, 
and row corresponds to taxon in the phylogeny. Red blocks represent putative recombination events shared by multiple isolates through common 
descent, and blue blocks represent putative recombination events occurred in a single isolate. c Annotation of the S. pneumoniae Taiwan19F-14 
reference genome. Each block represents a coding sequence. Coding sequences of pbp2x, cps locus, and pbp2b are colored in red. pbp2x is located 
upstream of cps locus
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events unique to 19F ST271-B, two were detected in peni-
cillin-binding protein genes (pbps), pbp2x and pbp2b, and 
one was a large fragment deletion (15.7 kbp, correspond-
ing to 3157–22,610 bp of the genomes of Taiwan19F-14) 
(Fig. 2b, c). Regarding the ST320, 19F ST320 underwent 
six additional recombination events relative to the 19F 
ST271-A. The recombination events in pbp2x and pbp2b 
were also detected, introducing different alleles. The 19A 
ST320 contained these six recombination fragments, but 
further underwent four unique recombination events. 
Among four recombinations, a recombination in 19A 
ST320 resulted in the replacements of pbp2x gene and 
the adjacent cps locus, which was reported to be asso-
ciated with serotype switches from 19F to 19A, and the 
new pbp2x was reported to confer a similar β-lactam 
resistance level to that of 19F ST320 [4, 43].

Characterization of penicillin‑binding protein (PBP) 
and resistance phenotypes of clones in CC271
We conducted detailed analyses to detect the recombi-
nation of the three pbp genes primarily associated with 
β-lactam resistance in five clones [44]. The amino acid 
sequences of PBP1a were found to be 100% identical in 
all the CC271 isolates. Therefore, we used the amino 
acid sequences of PBP2x and PBP2b of CC271 isolates 
to construct the maximum-likelihood tree (Fig.  3a, b). 
The PBP2b amino acid sequence was clustered into three 
groups. The sequences of 19F ST236 and 19F ST271-
A was clustered, and there were two 19F ST236 isolates 
possess identical PBP2b sequences to 19F ST271-A. All 
isolates of 19F ST271-B contain identical PBP2b, and 
19F ST320 and 19A ST320 clustered and contain identi-
cal PBP2b. The sequences of PBP2X were clustered into 
four groups: 19F ST236 shared identical PBP2x with 
19F ST271-A, and the sequences within each of the 
19F ST320, 19A ST320, and 19F ST271-B were almost 
identical and distinguished from each other. This result 
is consistent with above mentioned description of the 
recombination of pbp2x and pbp2b.

To elucidate the resistance level of S. pneumoniae iso-
lates belonging to different clones, we analyzed the deter-
mined MICs of six β-lactam antibiotics for 19F ST271-A, 
19F ST271-B, and 19A ST320. Remarkably, we detected 
significant elevations in the MICs of amoxicillin, cefurox-
ime, ceftriaxone, cefepime, and imipenem for 19F ST271-
B and 19A ST320 isolates compared with the MIC for 
19F ST271-A, indicating that 19F ST271-A as an ances-
tral clone had less advantage in β-lactam resistance com-
pared with its subsequent clones. Moreover, the MICs 
of three cephalosporins for 19F ST271-B were signifi-
cantly higher than for 19A ST320. This may be partially 
due to the PBP2x amino acid sequence of 19F ST271-B 

containing three unique substitutions, M339F, M400T, 
and Y595F, compared with other clones in CC271 [45].

Spatial and temporal analysis of population diffusion 
of 19F ST271
To understand the global distribution of 19F ST271-A 
and 19F ST271-B, we combined 19F ST271 in our collec-
tion with 75 19F ST271 isolates from the Global pneu-
mococcal sequencing project (GPS) [46]. The isolates 
from GPS were from Africa (n = 50), Asia (n = 19, 16 
from China), Americas (n = 4), and Europe (n = 2). The 
387 genomes of 19F ST271 isolates formed two distinct 
clades (Fig. S4). One clade includes 19F ST271-A and 
isolates mainly from Africa which formed a relatively 
independent monophyletic clade adjacent to 19F ST271-
A. Five of the six isolates from Europe and the Americas 
and four isolates from Asia (not including China) clus-
tered with 19F ST271-A. Furthermore, the three PBPs 
(1a, 2b, 2x) of 11 isolates from Africa and three isolates 
from the Americas share 100% identical sequences with 
19F ST271-A. The observation strongly suggests that 19F 
ST271-A-related isolates circulated broadly worldwide, 
while only one isolate from Europe and one isolates from 
Asia (not including China) clustered with 19F ST271-B.

To infer the temporal patterns within 19F ST271, we 
performed Bayesian phylogenetic reconstruction using 
BEAST2 under a Strict Clock model with a Constant 
population distribution using isolates from our col-
lection. The TempEst root-to-tip plot shows a positive 
correlation between genetic distance and sampling 
year (Fig. S5), and the Bayesian evaluation of tempo-
ral signal (BETS) provided significant evidence of a 
molecular clock. Results showed that 19F ST271-B 
originated around 1988 (95% highest posterior density 
[HPD] interval 1983–1991), and 19F ST271-A appeared 
around 1967 (95% HPD interval 1958–1976) (Fig.  4a), 
with a median molecular clock rate of 6.55 × 10−7 
substitutions per site per year (95% HPD interval of 
5.71 × 10−7 to 7.37 × 10−7), lower than previously cal-
culated values4. Using the Coalescent Bayesian Sky-
line population distribution, an almost same result is 
obtained that 19F ST271-B was estimated to originated 
around 1988 (95% HPD interval 1983–1991) and 19F 
ST271-A appeared around 1963 (95% HPD interval 
1953–1975) (Fig. S6). We next conducted a Bayesian 
skyline analysis to determine the evolutionary dynam-
ics of 19F ST271 and observed a very sharp rise dur-
ing the period from 1995 to 2000 in China (Fig. 4b). We 
hypothesized that the rapid expansion of 19F ST271 
correlates with the widespread use of cephalosporins in 
the 1990s in China and the advantage of 19F ST271-B 
in resistance for cephalosporins [47].
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Spatial and temporal analysis of population diffusion 
of 19A ST320
In order to understand the evolution and dissemination 
of 19A ST320 in China, we performed Bayesian sky-
line analysis based on 175 isolates of 19A ST320 in our 
dataset. The results showed that 19A ST320 increased 
slightly around 1997 and sharply rose around 2001 in 
China (Fig. 5a), then decreased after 2010. We also cal-
culated the proportions of 19A ST320 and 19F ST271 
based on all S. pneumoniae isolates isolated in the cor-
responding years in our collection (Fig.  5b). The pro-
portion of 19A ST320 showed a statistically significant 

increase from 2007–2008 to 2011–2012 (Cochran–
Armitage test, Z = 2.62, p = 0.0087) and decreased after 
2011–2012 (Z =  − 2.51, p = 0.012), while the propor-
tion of 19F ST271 did not show statistically significant 
variation.

In order to understand the relationship between the 
19A ST320 distributed in China and the world, we per-
formed phylogeny reconstruction that included 458 
genomes of 19A ST320 isolates from our collection and 
GPS. The dataset primarily consisted of isolates from 
China (184, 56.4%) and the USA (93, 28.5%). One isolate, 
SP65 from 19F ST320 in our collection, was used to root 

Fig. 3  Phylogenetic tree of PBP amino acid sequences and β-lactam resistance phenotype comparison of groups in CC271. a, b Phylogeny of 
PBP2b (a) and PBP2x (b) amino acid sequences of 526 CC271 isolates. Bolded branches with colors are the manually selected representative 
sequences that correspond to each group and are identical or less different, and a few black branches that are not bolded represent PBP sequences 
with distinct variation that may be due to additional recombination and are not focused here. PBP2b sequence of Taiwan19F-14 (marked in 
figure) reference genome is similar but different from those of 19F ST236 isolates in our sample. All 19F ST271-A isolates had 100% identical PBP2b 
sequences with two 19F ST236 isolates in our sample. PBP2b sequences of 19F ST320 and most 19A ST320 were 100% identical. PBP2x sequences of 
most 19F ST236 and 19F ST271-A were 100% identical. c MICs of each β-lactam antibiotic in each group. The X-axis corresponds to each group, and 
the Y-axis corresponds to the log2(MIC) value. The presence of a significant difference between the two groups is marked in the figure, respectively. 
*p < 0.05. **p < 0.01. ***p < 0.001. ****p < 0.0001, ns, not significant
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the phylogeny (Fig.  5c). The rooted phylogeny showed 
that most isolates of 19A ST320 in the clades close to the 
root were isolated from the USA, while most of the iso-
lates from China clustered near the terminal branches of 
the tree. The phylogeny pattern demonstrated that some 
isolates of 19A ST320 from the USA diverged earlier than 
those prevalent in China, suggesting their ancestral posi-
tion. In addition, eight subclades supported by high ultra-
fast bootstrap values (ranging from 89 to 100) consisted 
of isolates from both China and other countries. Among 
these subclades, six contained isolates from both China 
and the USA, implying frequent and widespread global 
transmission of 19A ST320.

Discussion
Genome sequencing is a powerful approach to answer-
ing key issues, such as population dynamics, evolutionary 
trajectory, transmission route, and geographical origin. 
As an early example, the GPS project has demonstrated 
its strengths for pathogen genomic surveillance. It pro-
vided extensive information to understand evolution 
and spread of MDR clones, track vaccine-evading iso-
lates, and advance genome-based characterization [48]. 
The immunization rates for the S. pneumoniae vaccine 
are low in China [12, 49], and there exists a heavy bur-
den of pneumonia and meningitis caused by S. pneumo-
niae in China [50]. Unfortunately, the isolates from China 

represented only 3.74% of the GPS database. Further-
more, two recent reports on large-scale genomic analy-
sis of S. pneumoniae were collected from China. One 
study included 128 S. pneumoniae isolates isolated from 
children aged < 5 years in Zhejiang, China, from 2009 to 
2019, and the other study included 124 isolates isolated 
from children living in southwest China during 2017–
2019 [51, 52]. Our study included 1312 S. pneumoniae 
isolates collected from 28 tertiary hospitals in 18 prov-
inces of China over 14 years and provided a comprehen-
sive insight into population genomics in pneumococcal 
epidemiology. We found that CC271 is the most domi-
nant MDR clone complex in China, accounting for the 
β-lactam antibiotic resistance of pneumococci in China.

With additional representative data, genomic analyses 
have the potential to offer a clearer picture of the evolu-
tion and global spread of pathogens [48]. Previous studies 
based on genotyping have speculated on the evolution-
ary trajectory of clones in CC271, from ST236 to ST271, 
followed by ST320 [11]. The evidence obtained in our 
study through phylogenetic reconstruction and recombi-
nation analysis of a temporally and geographically broad 
collection of genomes not only supports this hypothesis 
on the evolutionary relationship of clones in CC271 but 
also provides a more detailed evolutionary trajectories 
of clones in CC271 (Fig.  6). According to serotype, tree 
topology and predicted recombination events of isolates, 

Fig. 4  Bayesian phylogenetic analysis of 19F ST271 in China. To reduce the error from various sources, we used only the genomes of 19F ST271 
(n = 301) from our collection. a Time-scaled phylogeny of 301 19F ST271 genomes. Nodes of the respective tMRCA (the most recent common 
ancestor) of 19F ST271-A and 19F ST271-B are marked with circle and triangle, respectively. The pink strip on each node represents a 95% 
confidence interval derived from highest posterior density (HPD) analysis for its differentiation time, corresponding to the timeline at the bottom of 
the figure. Clade of 19F ST271-B (n = 289) is collapsed and represented by blue-shaded triangle. b Bayesian skyline plot of genetic diversity shows 
sharp expansion of 19F ST271 during the 1990s. The vertical axis shows the estimated effective population size at the corresponding time. The 
shaded blue areas on either side of the line represent 95% HPD confidence intervals
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we proposed that the CC271 should be divided into five 
clones. We identified two distinct clones of ST271 with 
serotype 19F, 19F ST271-A and 19F ST271-B. Multiple 
early differentiated 19F ST271-A clades reflecting an 
ancestral genotype from which two dominant descend-
ants, 19F ST271-B and ST320, were derived indepen-
dently. We proposed several characteristics based on our 
data that could help to recognize 19F ST271-A: it belongs 
to serotypes 19F and ST271, inherited identical PBP2b, 
PBP2x, and PBP1a sequences from 19F ST236 and fur-
ther underwent 28 recombination events, did not obtain 
the dominant genotype (e.g., 4 recombination events) 
of 19F ST271-B, and had a significantly lower level of 
β-lactam resistance. Samples from the GPS database 
revealed that 19F ST271-A had been distributed in multi-
ple continents; a significant number of isolates from mul-
tiple continents were clustered with 19F ST271-A and 
shared the same PBP2b, PBP2x, and PBP1a sequences, 

indicating that it had been widely spread worldwide, 
although it is not currently prevalent in China. There-
fore, our results suggest that the 19F ST271-A genotype 
reported in this study is a starting point for the recent 
global epidemic of CC271, from which a variety of domi-
nant or unprevalent genotypes have been derived.

19F ST271-B contained two recombination events, 
imported pbp2x and pbp2b alleles, compared with 19F 
ST271-A. The data collected by the US Active Bacterial 
Core Surveillance Program (ABC) during 1998–2013 
demonstrated that the predominant resistance-associ-
ated PBP transpeptidase profile of 19F ST271 in the USA 
was consistent with that of 19F ST271-B [6]. Penicillin-
nonsensitive isolates of 19F ST271 previously reported 
in the Czech Republic and Hong Kong, China, also had 
identical PBP1a, PBP2x, and PBP2b sequences with 19F 
ST271-B [53, 54]. These data suggest that 19F ST271-A 
and 19F ST271-B could be widely distributed worldwide. 

Fig. 5  Phylogeny of 458 19A ST320 genomes from different countries, and temporal trends of 19F ST271 and 19A ST320 in China. a Bayesian skyline 
plot of genetic diversity shows sharp expansion of 19A ST320 around 2001. The vertical axis shows the estimated effective population size at the 
corresponding time. The shaded blue areas on either side of the line represent 95% HPD confidence intervals. b The proportion of 19F ST271 and 
19A ST320 in our collection every 2 years. c Reconstructed recombination-masked phylogeny 19A ST320 genome, consists of samples from this 
study (n = 175) and GPS (n = 283). One of the 19F ST320 isolates in this study SP65 was used as outgroup. The color strip represents the country 
from which the sample was isolated. Bold clades include isolates from both China and the other countries, supported by ultrafast bootstrap values 
of ≥ 89, with the values marked on the nodes
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19F ST271-B is currently the most dominant multidrug-
resistant population of S. pneumoniae in China and has 
the highest resistance to multiple β-lactam antibiotics 
among CC271 clones. The Bayesian analysis speculated 
that 19F ST271-B originated around 1988, earlier than 
1997 when the early ancestor of CC271, Taiwan19F-14, 
isolated, suggesting that the time of clonal differentiation 
could be earlier than the discovery of Taiwan19F-14. The 
Bayesian skyline analysis demonstrated a rapid expansion 
of 19F ST271-B during 1995–2000 in China, which cor-
relates with the widespread use of cephalosporins in the 
1990s in China, and consistent with the advantage of 19F 
ST271-B in resistance against cephalosporins [47].

The serotype 19A ST320 genotype has been highly suc-
cessful in the US post-PCV7 [55], whereas 19A ST320 
is the second largest population in our dataset, which 
shared the identical recombination sequence causing 
capsule switch to 19A ST320 in the USA [4]. The result 
of Bayesian skyline analysis speculated that 19A ST320 
began to expand rapidly in China around 2001, shortly 
after PCV7 was licensed in the USA in 2000. This is 
consistent with previous reports that serotype 19A was 

rarely detected in China before 2000 [56]. By 2005 and 
2006, the vaccine escape serotype 19A emerged as a 
major serotype in China and the USA [57, 58]. However, 
PCV7 was not licensed in China until 2008. Meanwhile, 
19F ST320 has very similar resistance level to 19A ST320 
in previous report and our data [4], but it has never been 
prevalent in China, suggesting that resistance pheno-
type could be the necessary but not sufficient condition 
to their prevalence. Phylogenetic analysis revealed the 
existence of multiple subclades shared between China 
and other countries. We proposed that the rapid expan-
sion of 19A ST320 in China could associate with global 
epidemic and transmission, which may have increased 
the probability of initiation of expansion, while the main 
driving force during expansion could still be due to com-
petitiveness, including antibiotic resistance. In addition, 
both Bayesian skyline analysis and the proportion of 19A 
ST320 in our sample demonstrated a significant decrease 
after 2011. However, PCV13 was not approved in China 
until 2016. PCV13 was licensed in the USA in 2010, and 
the incidence of IPDs caused by PCV13/non-PCV7 sero-
types (primarily 19A and 7F) decreased significantly in 

Fig. 6  Schematic diagram of the evolutionary history of main members of CC271. Clones were represented by circles. Each junction represents 
a step of differentiation. The annotations above each circle show the characteristics of each clone. Annotations at each junction show changes in 
pbp2x and pbp2b genes or cps locus that occur during the process of differentiation. *Two global distributed clones of 19F ST271 distinguished in 
this study
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children and adults in 2010 and 2011, respectively [59]. 
The application of vaccination affects the global preva-
lence of clones and may also indirectly affect countries 
without appropriate vaccination.

Conclusions
Our study provides a large-scale and time-continuous S. 
pneumoniae genomic surveillance in China, cataloging 
the distribution of serotypes and occurrence of antibiotic 
resistance of S. pneumoniae. This type of study offers an 
evidence-based tool to inform future vaccine strategies. 
More representative data fill the gap in evolution and the 
global spread of different multidrug-resistant clones in 
CC271. 19F ST271-A was identified as an ancestral clone 
of 19F ST271-B and ST320. 19F ST271-B exhibited higher 
resistance to multiple β-lactam antibiotics, and its wide-
spread dissemination is responsible for the multiple resist-
ance of S. pneumoniae in China. The widespread of 19F 
ST271-B may be related to the high consumption of ceph-
alosporins in China in 1990s. The dynamics of 19A ST320 
in China correlated with the shift of 19A caused by mass 
vaccination in other countries, providing strong evidence 
that mass vaccination can indirectly affect countries where 
immunization was not concomitantly implemented. This 
is an argument in favor of global vaccination programs.
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