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A machine learning classifier using 33 
host immune response mRNAs accurately 
distinguishes viral and non‑viral acute 
respiratory illnesses in nasal swab samples
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Abstract 

Background  Viral acute respiratory illnesses (viral ARIs) contribute significantly to human morbidity and mortality 
worldwide, but their successful treatment requires timely diagnosis of viral etiology, which is complicated by overlap 
in clinical presentation with the non-viral ARIs. Multiple pandemics in the twenty-first century to date have further 
highlighted the unmet need for effective monitoring of clinically relevant emerging viruses. Recent studies have iden‑
tified conserved host response to viral infections in the blood.

Methods  We hypothesize that a similarly conserved host response in nasal samples can be utilized for diagnosis 
and to rule out viral infection in symptomatic patients when current diagnostic tests are negative. Using a multi-
cohort analysis framework, we analyzed 1555 nasal samples across 10 independent cohorts dividing them into train‑
ing and validation.

Results  Using six of the datasets for training, we identified 119 genes that are consistently differentially expressed 
in viral ARI patients (N = 236) compared to healthy controls (N = 146) and further down-selected 33 genes for classifier 
development. The resulting locked logistic regression-based classifier using the 33-mRNAs had AUC of 0.94 and 0.89 
in the six training and four validation datasets, respectively. Furthermore, we found that although trained on healthy 
controls only, in the four validation datasets, the 33-mRNA classifier distinguished viral ARI from both healthy or non-
viral ARI samples with > 80% specificity and sensitivity, irrespective of age, viral type, and viral load. Single-cell 
RNA-sequencing data showed that the 33-mRNA signature is dominated by macrophages and neutrophils in nasal 
samples.

Conclusion  This proof-of-concept signature has potential to be adapted as a clinical point-of-care test (‘RespVerity’) 
to improve the diagnosis of viral ARIs.
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Background
Acute respiratory illnesses (ARI) significantly contribute 
to human mortality. Even prior to the COVID-19 pan-
demic, ARIs caused more than 2 million deaths annually 
and were the sixth major cause of mortality for all ages 
[1, 2]. Viral infections are a common cause of ARIs and 
require different treatment than non-viral ARIs. Typi-
cally, nasal samples of ARI patients are routinely screened 
for a predetermined set of common viruses [3, 4]. How-
ever, the sensitivity of nasal swab-based diagnostic tests 
varies widely as has been demonstrated repeatedly for 
multiple viruses including influenza [5] and SARS-CoV-2 
[6–9], which allow ruling in, but not ruling out viral 
infections. Furthermore, the multiple pandemics of the 
twenty-first century, including the ongoing COVID-19 
pandemic, have demonstrated that the current practice 
of using a predetermined set of viruses severely limits our 
ability to detect clinically relevant emerging pathogens in 
a timely manner [5]. Although metagenomic sequencing 
can identify novel viruses in pooled human samples [8–
11], identification of a pathogen in human meta-samples 
does not directly translate into a health risk. There is an 
unmet need for novel diagnostics that can enable rul-
ing out viral infection with higher confidence and iden-
tify patients with emerging viral infections of clinical 
relevance.

Recent studies have repeatedly highlighted the util-
ity of host response-based diagnostics in addressing 
these challenges, and multiple host response-based tests 
are in late development [12–15]. Importantly, the host 
response to viral infection in peripheral blood is con-
served and can distinguish it from other inflammatory 
conditions. For example, we have demonstrated that 
host response-based gene signature in peripheral blood, 
identified using known respiratory viral infections [16], 
is also conserved in emerging viruses, including SARS-
CoV-2, chikungunya, and Ebola, and is associated with 
the severity of viral infections [17]. Similarly, Mick et al. 
described a conserved host response to viral infection 
in nasopharyngeal/oropharyngeal swabs that is distinct 
from patients with other ARIs [18]. A recent pathogen 
surveillance and detection study demonstrated that in 
symptomatic patients, who tested negative for a panel of 
respiratory viruses using multiplex PCR but had higher 
levels of cytokines in nasal samples, host response in 
nasopharyngeal swab identified clinically relevant infec-
tion in 75% of samples, of which > 35% of patients had 
acute viral infection [19]. These results suggest that simi-
lar to blood-based host response diagnostics, conserved 
host response to viral infections in nasal samples can also 
be utilized for diagnosis and to rule in or rule out viral 
infection in symptomatic patients when targeted patho-
gen-diagnostic tests are negative. Nasal samples also have 

certain advantages over blood samples. First, nasal sam-
ples are easy to obtain and routinely obtained in clinical 
practice. Second, measuring host response in the respira-
tory tract could enable earlier detection of viral infection.

Several studies have profiled host response in nasal 
samples to identify gene sets for diagnosis of viral infec-
tion. However, none have been shown to generalize to 
broad populations [20–25]. One of the important fac-
tors limiting the translation to clinical practice is the lack 
of heterogeneity within cohorts from which these genes 
were identified, which do not generalize to the real-world 
patient population. Using a multi-cohort analysis frame-
work [26, 27], we have repeatedly demonstrated that lev-
eraging biological, technical, and clinical heterogeneity 
across diverse cohorts can identify robust host response 
changes in patients with infections that can be translated 
to clinical tests [14, 28]. For instance, we have success-
fully applied multi-cohort analysis to develop a clinically 
useful blood-based classifier that reliably distinguishes 
between viral and bacterial infections [29–31].

We hypothesized that multi-cohort analysis of whole 
transcriptome profiles from nasal samples of patients 
with or without viral infection can identify a robust 
nasal host response gene expression signature broadly 
conserved across populations that could be translated 
to clinical use. We applied multi-cohort analysis to tran-
scriptome profiles of 1555 nasal samples available across 
10 public datasets. We identify a conserved host response 
gene signature that distinguishes viral ARI samples from 
either healthy controls or non-viral ARIs with high accu-
racy. We found that the host response is robust to demo-
graphic and clinical variables such as age, virus type, or 
viral load and believe that these results provide a solid 
foundation for diagnostic test development.

Methods
Data collection
We conducted a systematic search in Gene Expression 
Omnibus (GEO)  for datasets with transcriptomic data 
using keywords respiratory viral infections, viral ARI, 
and respiratory viral infections in November 2021. After 
manual curation of all datasets, we identified 10 datasets 
that met the inclusion criteria (Table  1): included nasal 
samples from subjects with viral ARI and control sub-
jects, and control samples were derived from healthy 
donors or subjects recovered from ARI as well as subjects 
with non-viral respiratory illness.

Description of datasets
GSE113209
Nasal mucosal scrapings (NMS) from infants 
(< 18  months) and children (1.5–5  years) during acute 
viral bronchitis and post-convalescence. Immune 



Page 3 of 13Pandya et al. Genome Medicine           (2023) 15:64 	

response patterns were profiled by multiplex analysis of 
plasma cytokines, flow cytometry, and transcriptomics 
(RNA-Seq). Study was conducted in Australia [32].

GSE11348
Gene expression changes evaluated by microarray in 
nasal scrapings of adult subjects inoculated with rhino-
virus or sham control at 8 and 48  h after inoculation. 
Study was conducted in the USA [21].

GSE117827
Comparison of host transcriptomic response by micro-
array in nasal and blood samples of children with viral 
infections and various levels of symptoms (acute res-
piratory syncytial virus (RSV) infection, symptomatic 
non-RSV respiratory virus infection, asymptomatic 
rhinovirus infection, and virus-negative asymptomatic 
controls. Study was conducted in the USA [22].

GSE41374
Microarray-based gene expression of nasal wash samples 
collected from infants infected with RSV within 48 h of 
hospital admission and 10 healthy controls [33].

GSE93731
Microarray-based transcriptomic signatures from nasal 
swabs collected of patients with H1N1 influenza infec-
tion. Samples were collected either at inclusion (before 
any antiviral treatment, infected status) or 3  months 
after recovery (cured status). Study was conducted in 
France [34].

GSE97742
Microarray-based transcriptional profiles of nasopharyn-
geal swabs collected from children hospitalized with lower 
respiratory tract infections and diagnosed with either RSV 
or rhinovirus. Study conducted in Vietnam [23].

Table 1  Gene expression studies for viral ARI with nasal samples

The first 6 studies were used to identify a gene signature to distinguish viral ARI samples from controls; the last four studies highlighted in grey were used for 
validation. Age column includes group and age range in years if available

NP nasopharyngeal, OP oropharyngeal, HC healthy controls
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GSE152075
Bulk RNA-seq transcriptomic profiles of nasopharyngeal 
swabs collected from patients with SARS-CoV-2 infec-
tion and healthy controls. Study was conducted in the 
USA and includes patients with variable infection status, 
viral load, age, and sex [35].

GSE156063
Bulk RNAseq transcriptomic profiles of upper airway 
samples collected from children and adults with viral or 
non-viral acute respiratory illnesses (ARIs). Study con-
ducted in the USA [18].

GSE163151
Bulk RNAseq transcriptomic profiles of nasopharyngeal 
swabs from adults with viral and non-viral acute respira-
tory infections and donor controls [36].

GSE188678
Bulk RNAseq transcriptomic profiles of upper airway 
samples collected from children and adults with viral or 
non-viral acute respiratory illnesses (ARIs). Study con-
ducted in the USA [37].

Gene expression normalization
We processed the microarray datasets before analysis. 
Specifically, we downloaded original data files (.CEL) and 
normalized all data using the Robust Multichip Average 
(RMA) method from the affy R package [38]. Similarly, 
we processed the RNA-Seq datasets using our pipeline 
described previously [39]. In brief, we used FASTQC 
to assess multiple quality control metrics [40]. We used 
STAR aligner (version 2.7.3a) [41] to map the reads to 
the human reference genome and transcriptome (ver-
sions GRCh38 and GENCODE v32 primary assembly 
GTF, respectively) [41, 42]. We generated the read counts 
for all the samples using STAR. Finally, we normalized 
the count data using Voom transform. Specifically, low-
expressed genes were filtered using the following cutoff: 
max counts per million (CPM) less than 5 across all sam-
ples from a dataset. The voom method (limma R package) 
was then used to transform counts into normalized log2-
CPM. Two studies, GSE188678 and GSE156063, were 
published by the same authors. Therefore, we used Pear-
son correlation of gene expression as well as matching 
internal identifier ("Sample_title"), age, and sex provided 
in the GEO submission for each sample from GSE188678 
with all samples from GSE156063 to investigate whether 
any samples were overlapping between the two studies. 
We found 214 out of 318 samples in GSE188678 were 
also included in GSE156063 as they had the same age 
and sex reported and had almost perfect correlation for 
COVID-19 PCR results (r = 0.994). Therefore, we only 

used the remaining 104 samples from GSE188678 in our 
analysis.

Multi‑cohort analysis
We downloaded the 10 transcriptomic datasets from 
GEO together with phenotypic data. We used 6 datasets 
for discovery and reserved 4 datasets for validation. We 
performed a well-established multi-cohort analysis on 
the 6 discovery datasets using the MetaIntegrator pack-
age (v2.1.1) in R [27]. Briefly, we calculated the effect size 
(ES) for each gene within a study between cases (viral 
ARI samples) and controls as Hedges’ g. The pooled ES 
across all datasets was computed using DerSimonian 
and Laird random-effects model. After summarizing 
the effect size, p-values across all genes were corrected 
for multiple testing based on Benjamini–Hochberg’s 
false discovery rate (FDR). We used Fisher’s sum of logs 
method for combining p-values across datasets. Log-sum 
of p-values that each gene is over- or under-regulated 
was computed along with corresponding p-values. Again, 
we used the Benjamini–Hochberg method to correct for 
multiple testing across all genes. Finally, we used an abso-
lute ES threshold of ≥ 0.6 in conjunction with FDR ≤ 0.1, 
and the availability of gene measurement across all 10 
datasets to filter genes for the discovery datasets.

Guided forward search
To reduce the number of genes used for the final model, 
we used the forward search approach [15]. Briefly, for-
ward search is an iterative process where the algorithm 
starts with the gene with the highest single ES and keeps 
adding genes to the model one by one based on positive 
contribution to the model discriminatory power. For-
ward search often results in a small set of several genes 
that retains the performance of the entire set. However, 
one of the pitfalls of any forward search is the depend-
ence on starting point and potential overfitting to the 
particular set of training datasets. Therefore, here, we 
explored a modified forward search where we use mul-
tiple starting points—specifically we chose 12 genes (top 
10%) with maximum absolute pooled effect size in train-
ing sets and used each one of those in a separate for-
ward search run. We then used all 33 mRNAs that were 
identified in at least 1 of the 12 forward searches for the 
33-mRNA score.

Definition of a nasal viral score
We calculated the nasal viral score for samples using the 
geometric mean of the normalized, log2-transformed 
expression of the up-regulated genes minus that of the 
down-regulated genes from the final gene signature. 
We scaled the scores for comparison between datasets. 
To measure the performance, we used the metrics of 
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the receiver operating characteristic (ROC) curve and 
area under curve (AUROC) of the selected biomarkers.

Pathway analysis
We performed Gene Set Enrichment Analysis using 
the enrichGO function in R package clusterProfiler 
[43]. To understand the biological relevance of the 
biomarkers discovered through multi-cohort analysis, 
we tested the significance of the over-representation 
of genes reflected in Gene Ontology (GO) annotation 
and adjusted the p-values from the test using the Benja-
mini–Hochberg method.

scRNA‑Seq analysis
We downloaded the scRNA-seq data for (1) GSE176269 
[44] from the NCBI GEO and (2) SCP1289 from Single 
Cell Portal ([45] https://​singl​ecell.​broad​insti​tute.​org/​
single_​cell/​study/​SCP12​89/​impai​red-​local-​intri​nsic-​
immun​ity-​to-​sars-​cov-2-​infec​tion-​in-​severe-​covid-​19). 
We performed quality control and processed both data-
sets separately with Seurat [46]. After normalizing read 
counts using ‘SCTransform,’ we performed principal 
component analysis (PCA), uniform manifold approxi-
mation and projection (UMAP), and shared nearest 
neighbors clustering on the data. Cell type annotation 
of clusters was performed with manual annotation 
using cell type markers.

Logistic regression model using Inflammatix Machine 
Learning (IML) platform
To develop and train a logistic regression (LOGR) 
model, we used our in-house Inflammatix Machine 
Learning (IML) platform. This included only data-
sets with healthy controls. First, we co-normalized 
the samples across platforms using healthy control 
(HC) samples with a modified version of the ComBat 
empirical Bayes normalization method known as Com-
bat CO-Normalization Using conTrols (COCONUT) 
(29). This approach makes one strong assumption: HC 
samples from different cohorts represent the same dis-
tribution. In short, HC samples from each platform 
undergo ComBat co-normalization without covari-
ates. The co-normalized discovery data, comprising 6 
training datasets a total of 382 samples, was used for 
training the LOGR model using IML. The training pro-
cedure comprised 1000 hyperparameter searches based 
on machine learning best practices. Furthermore, we 
used the 33 mRNAs post co-normalization to train the 
model. The locked model was then applied to the four 
validation datasets.

Results
Data collection, curation, and preprocessing
We identified 10 independent datasets composed of 1555 
bulk transcriptome profiles from nasal samples of healthy 
controls (HC) or patients with viral ARIs or non-viral 
ARI (Table 1) [18, 21–23, 32, 34–36]. These 10 datasets 
enrolled infants, children, and adults with viral ARI or 
non-viral ARI across 5 countries (Table  1, Methods). 
Patients with non-viral ARI included those with bacterial 
pneumonia and non-infectious pulmonary conditions. 
Collectively, these datasets represented a broad spectrum 
of biological, clinical, and technical heterogeneity repre-
sentative of the real-world patient population.

We chose 6 out of the 10 datasets as “discovery” data-
sets. The discovery datasets comprised 382 samples (236 
viral ARI and 146 HCs). The remaining 4 datasets com-
prised 1173 samples (857 viral ARI, 251 non-viral ARI, 
and 65 HCs) were used for “validation” (Table  1). Our 
choice for using 6 datasets for discovery was based on 
three reasons. First, we have previously demonstrated 
that using 4–5 datasets comprising approximately 250–
300 samples provides sufficient statistical power to detect 
differential expression even with higher between-data-
set heterogeneity [26]. We had > 80% statistical power 
for detecting absolute effect size (ES) > 0.55 at a p-value 
of 0.05 even with high between-dataset heterogeneity 
(Additional file  1: Figure S1) [47]. Second, this division 
into discovery and validation datasets allowed us to use 
a larger number of samples with more clinical heteroge-
neity for validation while maintaining sufficient statistical 
power for discovery. Third, these 6 datasets represented 
broad biological (virus types and strains, age, sex), clini-
cal (patient populations from 5 countries, severity), and 
technical heterogeneity (gene expression profiling plat-
forms) to ensure the discovery of a robust gene signa-
ture (Table  1). However, the discovery datasets did not 
include any samples from patients with non-viral ARI. 
All datasets that included non-viral ARI patients were 
used as validation to ensure a more heterogeneous con-
trol population in the validation datasets. Using a higher 
number of samples with more clinical heterogeneity 
(i.e., patients with non-viral ARI) for validation provides 
strong evidence that our signature is not overfitted and 
is robust to the unseen clinical heterogeneity of the real-
world patient population.

119 genes are consistently differentially expressed in viral 
ARIs in nasal swab samples
Multi-cohort analysis using MetaIntegrator identified 
328 genes differentially expressed (|ES|≥ 0.6, FDR ≤ 10%) 
in nasal swabs of patients with viral ARIs compared 
to HCs using the 6 discovery datasets (Additional File 

https://singlecell.broadinstitute.org/single_cell/study/SCP1289/impaired-local-intrinsic-immunity-to-sars-cov-2-infection-in-severe-covid-19
https://singlecell.broadinstitute.org/single_cell/study/SCP1289/impaired-local-intrinsic-immunity-to-sars-cov-2-infection-in-severe-covid-19
https://singlecell.broadinstitute.org/single_cell/study/SCP1289/impaired-local-intrinsic-immunity-to-sars-cov-2-infection-in-severe-covid-19
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2: Table  S1). Out of these 328 genes, 119 genes were 
measured across all datasets and were differentially 
expressed in the same direction in the discovery and vali-
dation cohorts (Fig.  1B–C) with highly correlated effect 
sizes between training and validation datasets (r = 0.74, 
p < 2e − 16; Fig. 1D). As expected, gene enrichment analy-
sis found that these genes are involved in pathways asso-
ciated with the host response to viral infection including 
defense response to viruses, regulation of innate immune 
response, cytokine-mediated response, and response to 
type 1 interferon (Fig. 1E).

A 33‑mRNA immune response signature distinguishes viral 
ARI from healthy controls
We have repeatedly demonstrated that gene signatures 
identified using a multi-cohort analysis framework 
could be further reduced to a subset of genes that is 
more amenable to translation to a point-of-care clinical 
test (27,31,40–43). While we note that many sub-com-
binations of the differentially expressed genes could be 
optimized for diagnosis, we have previously described 
a greedy forward search [15] to iteratively (“Methods”) 
identify a smaller number of genes that can be translated 
into a point-of-care test. Our greedy forward search iden-
tified a 33-mRNA signature (24 over-expressed, 9 under-
expressed) that was consistently differentially expressed 

in patients with viral ARI from HCs in the discovery 
datasets and from HCs and patients with non-viral ARI 
in validation datasets (“Methods”; Table  S1 and Addi-
tional file 1: Figure S2).

Myeloid cells are the primary source of the 33‑mRNA 
signature
We used single-cell RNA sequencing (scRNA-seq) pro-
files of 43,814 cells from nasal samples of 78 individuals 
(55 viral infections, 23 HCs) reported in two independ-
ent cohorts (SCP1289 [48] and GSE176269 [44]) to iden-
tify the cell types that express the 33 genes. Specifically, 
GSE176269 profiled 18,913 cells from nasal wash sam-
ples from 20 individuals (6 SARS-COV-2, 8 influenza A, 
and 6 HCs). The other dataset, SCP1289, profiled 24,901 
cells from nasopharyngeal samples from 58 individuals 
(35 SARS-CoV-2 patients, 6 respiratory failure patients, 
and 17 HCs). Because of the differences in sample types 
(nasopharyngeal vs nasal wash), we did not integrate 
both studies into a single dataset.

Visualization using UMAP showed that the largest 
variation was by cell type (Fig. 2A) followed by the infec-
tion status (Fig.  2B) and severity (Fig.  2C). We defined 
the 33-mRNA signature score of a cell as the difference 
between the geometric mean of 24 over-expressed genes 
and that of 9 under-expressed genes. Macrophages and 

Fig. 1  Multicohort analysis identifies 328 differentially expressed genes in viral ARI nasal samples. A Graphical representation of the analysis. B, 
C Effect size heatmap of 119 differentially expressed genes in discovery (B) and validation (C). D Scatter plot showing the effect size correlation 
between discovery and validation datasets for all genes (grey) and 119 differentially expressed genes measured in all studies (blue). E Ontology 
enrichment analysis of 119 genes
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neutrophils had the highest scores (Fig. 2D) and pseudo-
bulk analysis (“Methods”) showed that the 33-mRNA 
scores were significantly higher in macrophages from 
patients with viral ARI (Fig.  2E), but not in the other 
cell types. These results are in line with the conserved 
host response to viral infection in blood [17] and pro-
vide further evidence that myeloid cells are also the 
primary source of the conserved host response at the 
site of infection. Importantly, we found that propor-
tions of macrophages increased with the severity of viral 
ARI (Fig. 2F), but there was no association between the 
33-mRNA score at the single-cell level and the severity 
of viral ARI (Fig.  2G), further suggesting that increased 
33-mRNA score is due to the change in the proportion of 
macrophages in the respiratory tract.

The 33‑mRNA score distinguishes patients with viral ARI 
from those with non‑viral ARI and healthy controls
Similar to the 33-mRNA score for a single cell, we 
defined a sample-level 33-mRNA score as the differ-
ence between the geometric mean of the overexpressed 
genes and that of the under-expressed genes in all cells 
attributed to a particular sample. As expected, sample-
level 33-mRNA scores for patients with viral ARI were 

significantly higher than those for HCs in the discov-
ery datasets for pediatric and adult patients (p < 3e − 04; 
Fig.  3A). More importantly, three validation datasets 
included patients with non-viral ARI. In these datasets, 
the 33-mRNA scores for patients with viral ARI were sig-
nificantly higher than those for HCs and patients with 
non-viral ARI (p < 3e − 14; Fig. 3A–B), although samples 
from non-viral ARI patients were not used to identify the 
33-mRNA signature. In one study, GSE163151, where 
both healthy and non-viral ARI samples were present, 
33-mRNA scores did not differ between the two control 
groups (Fig.  3B). These results further underscore the 
generalizability and specificity of the 33-mRNA to distin-
guish patients with viral ARI from HCs or patients with 
non-viral ARI.

The 33‑mRNA score is not confounded by age or viral type 
and is correlated with viral load
Multiple studies have described differences in immune 
response in children and adults [35, 49]. Therefore, 
we investigated whether age has any impact on the 
33-mRNA signature. As expected, the 33-mRNA 
score was significantly higher in children and adults 
with viral ARI compared to healthy controls in the 

Fig. 2  33-mRNA score reflects transcriptional changes in macrophages. UMAP representation of scRNA-seq data from SCP1289 and GSE176269. 
A–D represent clustering based on cell type (A), clinical status (B), severity (C), and 33-mRNA score (D). High score is attributable to myeloid cells 
(macrophages, dendritic, and neutrophil cells). Color coding represented in the upper panel applies to the lower panel as well. E Boxplots showing 
33-mRNA score distribution in macrophages and neutrophils by clinical status. p-values were calculated using Wilcox test. E shares color code 
with B. F Proportion of macrophages out of immune cells sequences per sample as function of disease severity. G Distribution of pseudo-bulk 
33-mRNA score in macrophages as function of disease severity. F and G share color code with C 
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discovery datasets. However, there was no difference in 
the 33-mRNA scores between children and adults with 
viral ARI (Fig. 3A). Furthermore, linear regression model 
using viral ARI, age, and sex as independent variables 
found that only infection status was significantly asso-
ciated with the 33-mRNA score (p < 2e − 16), whereas 
age and sex were not associated with 33-mRNA scores 
(p > 0.11). We also examined the effects of sex and age 
by study and found no significant correlation between 
33-mRNA score and either sex (Additional file  1: Fig-
ure S3) or age (Additional file 1: Figure S4) in any of the 
8 studies where age and sex information was available. 
However, we note that > 85% of the samples in the dis-
covery datasets were from infants and children, whereas 
the validation datasets were comprised exclusively of 
adults (Table  1). Hence, although our results strongly 
suggest that our multi-cohort analysis identified the host 
response to viral infections in the nasal mucosa that is 
conserved across different age groups, it should be fur-
ther validated in pediatric cohorts.

Next, we investigated whether the 33-mRNA sig-
nature is impacted by the type or load of viral infec-
tion. GSE163151 included samples from multiple 
viral infections whereas GSE152075 and GSE188678 

included samples with a range of viral loads. We did not 
observe a significant effect of the type of virus on the 
33-mRNA score across all 8 types of viruses contained in 
GSE163151 (Fig.  3B). Notably, the 33-mRNA score was 
significantly higher in patients with a high viral load than 
those with a low viral load in GSE152075 (p = 3e − 04) 
and GSE188678 (p = 0.017) (Fig.  3C–D). These results 
suggest that 33-mRNA is not affected by a type of virus 
and correlated with viral load in the respiratory tract. 
Together, our analysis strongly suggests that 33-mRNA is 
likely to be generalizable in clinical settings regardless of 
the viral type and loads.

The locked 33‑mRNA logistic regression‑based classifier 
generalizes to new datasets with high accuracy
Clinical translation of a diagnostic signature requires a 
locked classification model that can be applied to new 
datasets without the need for retraining or fine-tuning. 
The generalizability of the 33-mRNA signature across 
datasets despite the presence of biological, clinical, and 
technical heterogeneity strongly suggests that it is a rea-
sonable candidate for creating such a classifier. We used 
our previously described Inflammatix Machine Learn-
ing (IML) platform [31] to develop a logistic regression 

Fig. 3  33-mRNA signature is robust to real world heterogeneity. Distributions of sample-specific 33-mRNA scores across multiple, real life, potential 
confounding: age (A), virus type (B), and viral load (C, D). In all panels, y-axis is 33-mRNA score. A Control groups (either healthy, HC or non-viral 
ARI, nvARI) are grey while viral ARI (vARI)  is blue. p-value was calculated using Wilcox test. B Distribution of 33-mRNA score across different viruses 
in GSE163151. C, D Distribution of 33-mRNA score across different viral loads in GSE152075 and GSE188678, respectively. Viral load was defined 
by cycle threshold (Ct) of N1 target region of SARS-CoV-2 virus (C) or by RPM of SARS-CoV-2 virus (D). C and D share Y axis with B 
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(LOGR)-based classifier using the discovery datasets, 
which classified patients with viral ARI from HCs with 
summary AUROC of 0.94 (range: 0.85–1.00; Fig.  4A). 
Next, we applied this LOGR classifier “as is” (i.e., locked 
without any modifications) to the four validation datasets 
previously unseen to the model. We note that the valida-
tion datasets were not co-normalized with the discovery 
datasets or with each other. The locked 33-mRNA LOGR 
classifier had a summary AUROC of 0.89 (range: 0.84–
0.97) in the four validation datasets (Fig. 4B). At the opti-
mal Youden threshold, the locked LOGR classifier had 
82.87% sensitivity and 82.4% specificity for the diagnosis 
of viral ARI in the validation datasets. Taken together, 
these results highlight the robustness and generaliz-
ability of the 33-mRNA signature for future diagnostic 
development.

Discussion
To our knowledge, this is the first multi-cohort analysis 
of host response in nasal swab samples across viral ARIs. 
The goal of this study was to evaluate the potential for 
clinical development of a host response gene expression 
signature that identifies viral ARIs in real-world clinical 
settings. To this end, we applied a multicohort analysis 
approach to 1555 samples from 10 publicly available data-
sets, dividing them into discovery and validation groups. 
We identified a 33-mRNA signature in nasal samples that 
distinguished viral ARI with AUC > 0.9 in both discovery 

and validation datasets. We showed that the 33-mRNA 
signature generalizes to multiple viruses and is robust to 
biological heterogeneity such as viral type or load in the 
real-world patient population.

A diagnostic test for viral ARIs must be robust to clini-
cal heterogeneity. Specifically, it should be able to differ-
entiate patients with viral ARIs from those who present 
with similar symptoms but have non-viral ARIs to gen-
eralize to real-world settings where viral types and loads 
are highly variable. Using a large number of samples (427 
viral ARI, 251 non-viral ARI) across three independent 
validation cohorts, we showed that although we iden-
tified the 33 mRNAs using HCs, the model also distin-
guished patients with viral ARI from those with non-viral 
ARI with > 80% sensitivity and specificity. Importantly, 
one of the validation datasets, GSE156063, included 
non-viral ARI samples from patients with bacterial pneu-
monia as well as non-infectious lung and airway condi-
tions but did not provide patient-level information. In 
GSE156063, the 33-mRNA score had an AUROC of 
0.84, which further demonstrates its robustness to clini-
cal heterogeneity in diagnosing viral ARIs. In addition, 
three datasets (GSE163151, GSE152075, and GSE188678) 
provided information about virus type and viral load. 
The 33-mRNA model had high accuracy for diagno-
sis regardless of virus type (AUC = 0.92) and viral load 
(AUCs = 0.97 and 0.84).

Fig. 4  Performance of LOGR model of the 33 mRNAs in training and validation datasets. Datasets were split the same way as in original discovery 
(Table 1). Logistic Regression model was trained using expression values of the 33 mRNAs in 6 discovery datasets (A) achieving summary AUC = 0.94 
and then applied as a locked model to 4 validation datasets without co-normalization (B) achieving summary AUC of 0.89. In validation, GSE163151 
was split into two discovery datasets to represent healthy and non-viral ARI separately
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Accurate and timely determination of broad sources 
of infection in ARI patients would expedite proper care, 
minimize unnecessary use of antibiotics, and ultimately 
save lives. It would also provide a path forward for moni-
toring clinically relevant emerging viruses. Such a test, 
in conjunction with negative results from viral screening 
panels and clinical presentation, would identify the sam-
ples that are likely to harbor unidentified viruses posing 
a health risk and thus warranting further interrogation. 
In fact, given the recent technological advances, it would 
be possible to integrate the 33-mRNA signature with 
viral screening panels as a single diagnostic test. Such 
integration would also allow confidently ruling out viral 
infection in patients who tested negative for a panel of 
respiratory viruses and do not show the presence of host 
response to viral infections.

Cytokine-mediated response and inflammation 
play a significant role in defense against a viral infec-
tion [50, 51]. For example, Yu et al. have noted a strong 
type I interferon response in the nasal transcriptome 
of patients with viral ARI [22]. Studies by Landry et al. 
and Cheemarla et al. also demonstrated upregulation of 
interferon induced cytokines in nasopharyngeal sam-
ples of patients with viral infection, both at mRNA and 
protein levels. Consistent with previous studies, our 
pathways enrichment analysis of the 119 genes high-
lights defense response to viruses, regulation of innate 
immunity, and response to type I interferon [19, 25]. 
The most upregulated genes in our metanalysis, such 
as ISG15, various IFI genes, and RSAD2 (Table S1) are 
also all known interferon-induced genes. Consistently, 
many of the selected 33 mRNAs are also interferon-
induced. Examination of scRNA-seq studies provides 
further evidence that the 33-mRNA signature reflects 
changes in both myeloid cell expression and composi-
tion, particularly an increase in macrophage fractions 
as well as cellular changes in both macrophage and 
neutrophil expression. Indeed, CD163, a monocyte and 
macrophage-specific gene, is also part of the 33-mRNA 
signature. Collectively, these results are in line with pre-
vious studies that conserved host response to viral infec-
tion is dominated by myeloid cells [17].

Previous studies have suggested that epithelial cells 
make a major contribution to the early host response 
to viral infection [22, 48]. For example, Ziegler et  al. 
described a very strong epithelial cell response, 
with myeloid cells playing a relatively larger role in 
very severe COVID. However, our 33-mRNA sig-
nature is preferentially expressed in myeloid cells. 
This discrepancy raises the question of whether the 
33-mRNA signature might be biased against the epi-
thelial cell response, and if so, would this cause it to 
lose sensitivity for early infections and/or infections 

of mild-moderate severity. We note that the 33-mRNA 
signature was derived from datasets that included 
the entire gamut of cells present in the nasal wash 
and swab samples, including epithelial cells. Because 
the multicohort analysis framework, MetaIntegrator, 
used in our analysis prioritizes consistency of expres-
sion despite the biological, clinical, and technical het-
erogeneity across datasets, it is very likely that the 
33-mRNA signature emerged due to the robustness of 
host response in myeloid cells, whereas the sampling 
biases across cohorts may have affected the robustness 
of expression from epithelial cells. This is an important 
consideration for clinical translation as we would like 
to minimize variability due to sampling bias at point-
of-care. If there was consistent expression in epithe-
lial cells across all datasets, our framework would have 
prioritized it. In other words, our discovery process is 
unlikely to be intrinsically biased against selecting the 
genes expressed in epithelial cells.

Our study has a few limitations. First, COCO-
NUT co-normalization of training datasets required 
to build the regression model may have obfuscated 
some biological signals. However, our validation data-
sets were not co-normalized, which in turn demon-
strated that the effects of acute viral infection on the 
host immune response are robustly detectable across 
cohorts. Second, we validated the 33-mRNA signa-
ture in retrospective cohorts that used only microbio-
logically confirmed patients in a case–control design. 
The performance characteristics of the 33-mRNA 
signature will differ in patient cohorts that rely on 
non-microbiological adjudication methods, which are 
known to suffer from high inter-rater variations, lead-
ing to a variable standard. The 33-mRNA signature 
should be validated in additional prospective cohorts 
from other populations and where the microbiologi-
cal diagnosis is not available. In such a study, RNAseq 
could be used to validate viral presence and load in an 
unbiased manner. Third, critical considerations for 
clinical use are the temporal and clinical resolution 
of the test. None of the studies included in our anal-
ysis profiled patients longitudinally, provided time 
since symptom onset, or documented severity. Given 
the widespread acceptance of home nasal swab tests, 
there is high likelihood that patients will present at 
different time since symptom onset, this data should 
be included in future studies. Hence, future studies 
would need to include individuals with different, doc-
umented levels of infection severity as well as differ-
ent times since symptom onsets to assess diagnostic 
performance of the signature. Fourth, our validation 
cohorts, which included patients with non-viral ARI, 
did not provide sample-level information. Therefore, 
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we could not further explore accuracy of our classi-
fier in distinguishing viral ARI from specific non-viral 
ARIs. Fifth, although we found no differences in the 
33-mRNA scores between adult and pediatric patients 
with viral ARI in the discovery datasets, all valida-
tion datasets, which also included all non-viral ARI 
samples, only included adult patients. Hence, further 
validation in pediatric cohorts is required to assess 
generalizability of the classifier across the entire age 
spectrum, and in pediatric patients with non-viral 
ARI. Future studies would focus on testing our sig-
nature and the classifier in pediatric patients and in 
elderly patients to assess the impact of aging. Sixth, 
none of the studies included in our analysis provided 
information on comorbidities. Hence, we could not 
assess how our 33-mRNA signature would perform in 
patients with comorbidities, especially immune sys-
tem-related disorders. Future studies validating our 
33-mRNA signatures should focus on addressing this 
limitation.

Despite these limitations, we have successfully uti-
lized multicohort analyses of heterogeneous data to 
repeatedly identify robust host response signatures 
that diagnose the presence of an infection [15], dif-
ferentiate bacterial vs viral infection [29, 52], predict 
severity of infection [17, 53–56], and in some cases 
identify the infecting pathogen [14, 16] in blood sam-
ples. We and others have validated these signatures 
in independent prospective cohorts [57, 58]. Com-
bined with machine learning-based classifiers, we have 
moved several of these signatures to clinical develop-
ment and demonstrated their accuracy in multiple 
prospective cohorts [30, 31, 56, 59, 60]. Our long-
term goal is to extend the similar capability to nasal 
swab samples, and the current work is the first step 
in that process that demonstrates the feasibility of our 
approach.

Conclusions
Our study of host response profiles in the nasal samples 
of viral ARI patients identified a robust 33-mRNA sig-
nature diagnostic of viral ARI that is primarily driven by 
myeloid cells and conserved across different age groups. 
This signature forms a foundation for the development 
of ‘RespVerity’—a diagnostic test that will identify viral 
ARIs using nasal swab samples. Furthermore, such a 
test could integrate pathogen detection as well as host 
response on a single diagnostic platform using nasal 
swab samples. This test will allow rapid confirmation of 
viral infection when a pathogen cannot be identified and 
thereby reduce the misuse of antibiotics and facilitate 
pathogen surveillance.
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