
Mumme et al. Genome Medicine           (2023) 15:83  
https://doi.org/10.1186/s13073-023-01241-z

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecom-
mons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Genome Medicine
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in pediatric mixed phenotype acute leukemia
Hope L. Mumme1,2†, Sunil S. Raikar1,3†, Swati S. Bhasin1,3, Beena E. Thomas1,3, Taylor Lawrence1, 
Elizabeth P. Weinzierl4, Yakun Pang5, Deborah DeRyckere1,3, Chuck Gawad5, Daniel S. Wechsler1,3, 
Christopher C. Porter1,3, Sharon M. Castellino1,3, Douglas K. Graham1,3 and Manoj Bhasin1,2,3* 

Abstract 

Background  Mixed phenotype acute leukemia (MPAL), a rare subgroup of leukemia characterized by blast cells 
with myeloid and lymphoid lineage features, is difficult to diagnose and treat. A better characterization of MPAL 
is essential to understand the subtype heterogeneity and how it compares with acute myeloid leukemia (AML) 
and acute lymphoblastic leukemia (ALL). Therefore, we performed single-cell RNA sequencing (scRNAseq) on pediat-
ric MPAL bone marrow (BM) samples to develop a granular map of the MPAL blasts and microenvironment landscape.

Methods  We analyzed over 40,000 cells from nine pediatric MPAL BM samples to generate a single-cell transcrip-
tomic landscape of B/myeloid (B/My) and T/myeloid (T/My) MPAL. Cells were clustered using unsupervised single-cell 
methods, and malignant blast and immune clusters were annotated. Differential expression analysis was performed 
to identify B/My and T/My MPAL blast-specific signatures by comparing transcriptome profiles of MPAL with normal 
BM, AML, and ALL. Gene set enrichment analysis (GSEA) was performed, and significantly enriched pathways were 
compared in MPAL subtypes.

Results  B/My and T/My MPAL blasts displayed distinct blast signatures. Transcriptomic analysis revealed that B/
My MPAL profile overlaps with B-ALL and AML samples. Similarly, T/My MPAL exhibited overlap with T-ALL and AML 
samples. Genes overexpressed in both MPAL subtypes’ blast cells compared to AML, ALL, and healthy BM included 
MAP2K2 and CD81. Subtype-specific genes included HBEGF for B/My and PTEN for T/My. These marker sets segregated 
bulk RNA-seq AML, ALL, and MPAL samples based on expression profiles. Analysis comparing T/My MPAL to ETP, near-
ETP, and non-ETP T-ALL, showed that T/My MPAL had greater overlap with ETP-ALL cases. Comparisons among MPAL 
subtypes between adult and pediatric samples showed analogous transcriptomic landscapes of corresponding sub-
types. Transcriptomic differences were observed in the MPAL samples based on response to induction chemotherapy, 
including selective upregulation of the IL-16 pathway in relapsed samples.

Conclusions  We have for the first time described the single-cell transcriptomic landscape of pediatric MPAL 
and demonstrated that B/My and T/My MPAL have distinct scRNAseq profiles from each other, AML, and ALL. 
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Differences in transcriptomic profiles were seen based on response to therapy, but larger studies will be needed 
to validate these findings.

Keywords  Mixed phenotype acute leukemia, Single-cell RNA sequencing, Tumor microenvironment

Background
Mixed phenotype acute leukemia (MPAL) is a rare sub-
type of acute leukemia, accounting for 2%–3% of all 
newly diagnosed pediatric leukemia cases, with blasts 
expressing markers of both the lymphoid and myeloid 
lineage [1, 2]. Antigen expression patterns vary greatly 
among different MPAL cases, and given the wide phe-
notypic variability, the diagnostic criteria for MPAL have 
continued to evolve over the past decades. The Euro-
pean Group for the Immunological Characterization of 
Leukemias (EGIL) and the World Health Organization 
(WHO) criteria are the two MPAL classification systems 
primarily used; however, despite both systems relying on 
immunophenotype characterization, there remain sig-
nificant differences in their definitions [1–5]. Given the 
frequent changes and relative subjectivity in diagnostic 
criteria, it is extremely difficult to interpret previously 
published MPAL literature. Reported survival outcomes 
for MPAL have ranged between 36% and 80%; however, 
since patients with an MPAL phenotype were excluded 
from frontline clinical trials until recently, all available 
treatment and outcome data for MPAL is retrospective. 
While most patients with MPAL respond to acute lymph-
oblastic leukemia (ALL) directed therapy [2, 4], there is 
no clear consensus on how to treat this heterogeneous 
disease.

The lack of standardized treatment regimens specifi-
cally tailored for MPAL is compounded by fluid diagnos-
tic criteria for classifying MPAL and its subtypes. Current 
classification systems divide MPAL into two broad cat-
egories, B/myeloid (B/My) MPAL and T/myeloid (T/
My) MPAL [6]. Despite these differences in classifica-
tion and the wide phenotypic diversity, current treat-
ment approaches have typically considered MPAL to be 
a single entity with providers primarily choosing between 
ALL vs. AML regimens, and not considering specific 
subtypes. Two recent large MPAL genomic studies, one 
in pediatric patients and one in adults, have shown that 
B/My and T/My MPAL have distinct genomic signatures 
[7, 8], thus suggesting that different approaches may be 
necessary to treat MPAL subtypes. Evolving data has 
also suggested greater overlap between T/My MPAL and 
early T-cell precursor ALL (ETP-ALL), a subset of T-ALL 
that expresses myeloid/stem cell markers not consid-
ered to be myeloid lineage defining, hence do not meet 
the criteria of T/My MPAL. While initial studies showed 
ETP-ALL had better success with AML-type regimens, 

more recent data has suggested improved outcomes with 
ALL regimens, despite higher rates of induction failure 
[8–10]. Thus, understanding the biological differences 
between T/My MPAL and ETP-ALL is critically impor-
tant to design better therapeutic options. Furthermore, 
two large retrospective cohorts have now shown that the 
early response to ALL therapy is critical in terms of over-
all MPAL prognosis, especially in B/My MPAL [8], with 
patients having positive measurable/minimal residual 
disease (MRD) at the end of induction (EOI) having sig-
nificantly poorer outcomes [4, 11]. Analyzing the biol-
ogy and understanding the similarities and differences is 
thus critical for improving outcomes in this rare high-risk 
leukemia. Thus, a more in-depth analysis of MPAL biol-
ogy is essential to determine effective treatments for this 
unique disease.

Single-cell RNA sequencing (scRNAseq) analysis has 
revolutionized cancer research by revealing cell types, 
pathways, and cellular interactions that play a critical role 
in malignant cell progression and response to therapy 
[12, 13]. Identifying changes in cellular and molecular 
profiles is critical for identifying novel targets for diag-
nosis, risk assessment, and clinical outcomes. Single-cell 
profiling can be invaluable for deep characterization, 
given the wide phenotypic and genomic diversity seen 
in MPAL. Only one single-cell study of MPAL has been 
previously reported, using six MPAL samples from adults 
(one B/My and five T/My MPAL) [14]. Here, we present 
for the first time scRNAseq profiling of nine pediatric 
MPAL samples, along with a comparative analysis with 
previously generated scRNAseq datasets from pediatric 
AML and ALL samples including ETP-ALL, young adult 
healthy bone marrow (BM) samples, and adult MPAL 
samples [14–18]. Additionally, we performed a compara-
tive analysis among the diagnostic MPAL samples based 
on their response to ALL-directed induction therapy. 
Our results provide the initial framework of the pediat-
ric MPAL single-cell signature and support utilizing scR-
NAseq analysis for further characterization of the MPAL 
blasts and marrow landscape.

Methods
Bone marrow samples
Viably frozen de-identified pediatric MPAL BM samples 
were obtained from the Leukemia/Lymphoma Biorepos-
itory at the Aflac Cancer and Blood Disorders Center at 
Children’s Healthcare of Atlanta (CHOA). Patients and/
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or their legal guardian(s) provided written informed 
consent that permitted the use of biological material 
in accordance with a protocol that was approved by 
the CHOA Institutional Review Board (IRB) (Protocol 
#00034535). The immunophenotypic characterization 
of MPAL was made according to the updated World 
Health Organization (WHO) 2022 MPAL criteria [5]. 
BM samples were collected at the initial presentation 
as part of routine diagnostic evaluation. Correspond-
ing available clinical cytogenetic, molecular, and flow 
cytometric data characterizing these cases as well as 
treatment information for each case was also obtained. 
ScRNAseq analysis was performed on seven MPAL 
patient samples, four of which were classified as B/My 
MPAL and three T/My MPAL based on their immu-
nophenotype. Additionally, we also incorporated raw 
gene expression data from two T/My MPAL patients 
from the Single-cell Pediatric Cancer Atlas (ScPCA) 
[15] for characterizing the landscape of pediatric MPAL. 
To perform comparative analysis, we utilized single-cell 
datasets from other pediatric leukemias, including AML 
(n = 15) and T-ALL (n = 11), obtained from previous 
or ongoing studies in our lab [17, 18]. Additionally, we 
incorporated publicly available scRNAseq datasets from 
young adult and pediatric healthy BM (n = 9), pediatric 
B-ALL (n = 7), and AML (n = 8) samples as well as adult 
MPAL samples (n = 6) [14–16, 19].

Clinical, pathological, and treatment characteristics 
of MPAL cases
A total of nine pediatric MPAL cases were included in 
this analysis, eight of which were collected at the time of 
initial diagnosis and one at relapse. Based on their immu-
nophenotype, four cases were classified as B/My MPAL 
and five were categorized as T/My MPAL. The mean 
age for the study population was 13.4 years (range: 8.7–
15.8  years) and included seven males and two females. 
Overall clinical characteristics of the study popula-
tion are summarized in Table 1, and detailed individual 
case characteristics are described in Additional file  1: 
Table S1. Available clinical-grade molecular, cytogenetic, 
and flow cytometry-based characterizations of these 
leukemias are summarized in Table  2 and Additional 
file 1: Table S2. Cytogenetic analysis revealed that among 
the B/My MPAL cases, one case had a KMT2A-R with 
t(4;11)(q21;q23) (M1), and another one was positive for 
t(9;22) (q34;q11.2) and monosomy 7 (M3). Among the 
T/My MPAL cases, translocations seen included t(3;15)
(p21;q24) (M2), t(2;3)(p15;q26.2) (SCPCS000220), and 
t(7;14)(q21;q32) (SCPCS000230). Molecular findings 
in T/My MPAL cases included FLT3-ITD with elevated 
allelic ratio of 0.15 (M2), mutations in NRAS, NOTCH1, 
ETV6, and MED12 (M4), and alterations in KDM6A, 

RUNX1, SUZ12, TP53, JAK3, and ASXL1 (M6). Flow 
cytometric immunophenotyping showed a heterogene-
ous pattern of blast populations within individual MPAL 
cases. Some cases had separate distinct blast populations 
(M3, M5, SCPCS000230), whereas other cases had minor 
subsets within the larger blast population with unique 
surface profiles (M1, M2, M4, M6, M7, SCPCS000220). 
Several T/My MPAL samples had blasts with ETP-ALL-
like immunophenotypic features (M2, M4, M6). Available 
detailed flow cytometric immunophenotypic characteri-
zation on peripheral blood blasts and bone marrow blasts 
is summarized in Additional file  1: Table  S2. Seven 
patients included in this analysis received a Children’s 
Oncology Group (COG) based ALL-directed induction 
therapy. Specific regimens are listed in Additional file 1: 
Table S1. At the end of induction (EOI), out of the four B/
My MPAL samples, one was negative for MRD (M1), two 
were positive for MRD (M3, M5), and one had induction 
failure (M7). Of the three de novo T/My MPAL sam-
ples that received ALL induction therapy, one was MRD 
negative (M2), one was MRD positive at EOI (M4) and 
one had induction failure (M6). Overall, four of the nine 
patients had relapsed/refractory disease and six were 
alive at the last follow-up (Table 1 and Additional file 1: 
Table S1).

Single‑cell RNA sequencing and analysis of MPAL samples
ScRNAseq libraries were prepared from viably revived 
BM samples using anti-human hashtag antibodies (Bio-
legend) and Chromium single-cell 3′v3 reagent kits 
(10x  Genomics). Sequencing was performed using Next-
Seq 500 high output and Novaseq S4 kits (Illumina). The 
fastq files were analyzed using Cell Ranger version 7.0.0 
[20] for demultiplexing, alignment to the human genome 
(hg38), and generation of gene-count matrices for further 
bioinformatics analysis.

Single‑cell profiling data from other leukemias and healthy 
bone marrow
For comparative analysis of MPAL with other pediatric 
leukemias, we utilized single-cell datasets generated in 
our lab for other leukemias: AML (n = 15), and T-ALL 
(n = 11) [17, 18, 21, 22]. The T-ALL data contains both 
samples with ETP-ALL-like features (ETP-ALL and near 
ETP-ALL, n = 4) and non-ETP T-ALL (n = 7). Data were 
generated and processed using the uniform approach 
briefly described in the following paragraph and previ-
ously utilized [17, 18]. We also used publicly available 
datasets, downloaded via the Gene Expression Omnibus 
(GEO) portal (GSE154109), for comparative analysis [16, 
23]. This dataset contained pediatric B-ALL (n = 7), pedi-
atric AML (n = 8), and young adult healthy BM (n = 4) 
samples. Additionally, we also obtained young adult and 
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pediatric healthy BM samples (n = 5) from ScPCA [15] 
and GEO (GSE132509) [19, 24] for comparative analy-
sis with MPAL. Furthermore, we conducted a compara-
tive analysis of adult and pediatric MPAL using one B/
My and five T/My MPAL adult scRNAseq data obtained 
from a recently published study [14, 25].

Single‑cell profiling data analysis
Raw gene-count matrices from samples were merged 
to generate a raw expression matrix from pediatric leu-
kemias and healthy BM. Cells were filtered based on 
mitochondrial content and feature count (pct. mito-
chondrial < 20 and feature count < 5000, > 200). Expres-
sion profiles were normalized and scaled using the 
pre-processing functions in Seurat v4 [26]. To remove 

the systematic variation in the expression data from vari-
ous resources, we performed batch correction using the 
Harmony algorithm version  0.1.1 (with default param-
eters) for the analysis shown in Figs. 2, 3, 4, and 6, which 
uses a graph-based approach to model the variation in 
gene expression across batches [27], or the integration 
anchors method (with default parameters, 2000 integra-
tion features were selected using “vst” method) by Seu-
rat v4, for the analysis shown in Fig. 1, to identify anchor 
correspondences between data sources to minimize 
variation [28]. Principal component analysis (PCA) was 
performed (number of PCs = 30), and batch-corrected 
expression data was visualized on a low dimensional 
space via the UMAP approach. The cells were clustered 
using the K-nearest neighbor graph-based clustering 

Table 1  Characteristics of pediatric MPAL patients analyzed in this study. Patient characteristics and clinical information with sex, age 
at disease diagnosis/relapse (Dx/Rel), white blood cell (WBC) count at Dx/Rel, peripheral blood blast percentage, bone marrow blast 
percentage, timepoint of sample collection, response to ALL-based induction therapy, relapsed/refractory disease, and patient status 
information. Response to ALL-based induction therapy is shown as minimal residual disease (MRD) positive (> 0.01%), MRD negative 
(< 0.01%), and induction failure (> 5%)

MPAL mixed phenotype acute leukemia, B/My B/myeloid, T/My T/myeloid, WBC white blood count, MRD minimal residual disease

Characteristic All MPAL (n = 9) B/My MPAL (n = 4) T/My MPAL (n = 5)

Sex

  Male 7 (78%) 3 (75%) 4 (80%)

  Female 2 (22%) 1 (25%) 1 (20%)

Age at presentation (years)

  Mean (range) 13.4 (8.7–15.8) 14.6 (13.7–15.1) 12.5 (8.7–15.8)

   < 10 1 (11%) 0 (0%) 1 (20%)

   ≥ 10 8 (89%) 4 (100%) 4 (80%)

WBC at presentation (× 103/uL)

  Mean (range) 65.5 (7.1–180.1) 56.1 (12.8–134.6) 73 (7.1–180.1)

   < 50 6 (67%) 3 (75%) 3 (60%)

   ≥ 50 3 (33%) 1 (25%) 2 (40%)

Peripheral blood blast %

  Mean (range) 59.5 (5.0–95.7) 65.0 (31.8–95.7) 54.0 (5.0–73.5)

Bone marrow blast %

  Mean (range) 82.6 (40.2–97.7) 92.4 (82.0–97.7) 72.8 (40.2–96.4)

Timepoint of sample collection

  Initial diagnosis (Dx) 8 (89%) 4 (100%) 4 (80%)

  Relapse 1 (11%) 0 (0%) 1 (20%)

Response to ALL-based induction therapy (n = 7)

  MRD negative 2/7 (29%) 1/4 (25%) 1/3 (33%)

  MRD positive 3/7 (43%) 2/4 (50%) 1/3 (33%)

  Induction failure 2/7 (29%) 1/4 (25%) 1/3 (33%)

Relapsed/refractory disease

  Yes 4 (44%) 1 (25%) 3 (60%)

  No 5 (56%) 3 (75%) 2 (40%)

Patient status

  Alive 6/9 (67%) 3 (75%) 3 (60%)

  Deceased 3/9 (33%) 1 (25%) 2 (40%)
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approach (dims = 1:30, resolution = 0.5). Leukemic cells, 
or blast cells, were annotated by comparing each leuke-
mia set (AML, B-ALL, T-ALL, MPAL) samples with the 
healthy control BM profile and identified as cells that did 
not cluster with the healthy control cells. Once the blasts 
were identified, the non-blast or canonical lymphoid, 
myeloid, and erythroid lineage cells were annotated 
based on a combination of automatic annotation using 
the SingleR package v1.8.1 [29], and manual annotation 
via known marker genes (Fig.  1B). SingleR is an auto-
matic annotation tool that labels cells based on an exter-
nal annotated reference, such as the Human Primary Cell 
Atlas (ERP122984), which we utilized in our analysis [30].

Differential Gene Expression (DEGs) analysis was per-
formed to generate MPAL blast transcriptome signatures 
by comparing gene expression profiles of MPAL subtype 
blast cells with healthy cells using the Wilcoxon rank test, 
with the FindMarkers function from Seurat v4 (compared 
B/My MPAL blast cells versus all healthy cells, repeated 
for T/My MPAL  blast cells). The transcriptome signa-
tures were generated based on fold change and P-value 
cutoffs (adjusted p-value < 0.05, average log2FC > 0.25, 
and percent cell expression > 50%). The analysis identi-
fied transcriptome signatures for MPAL as well as sub-
types, i.e., T/My MPAL and B/My MPAL. In addition to 
identifying genes that are overexpressed in MPAL selec-
tively, we also performed differential expression analysis 
between MPAL subtypes versus other acute pediatric 
leukemia (i.e., AML, B-ALL, T-ALL) and healthy BM 
cells using FindMarkers function (adjusted p-value < 0.05, 
average log2FC > 0.25, and percent cell expression > 50%) 
from Seurat v4 package. Also, in the ETP analysis of 
Fig. 3, DEGs were identified by comparing T/My MPAL 

to non-ETP T-ALL blast cells, and near-ETP/ETP-ALL to 
non-ETP T-ALL blast cells using the FindMarkers func-
tion (average log2FC > 0.25, adjusted p-value < 0.05) from 
Seurat v4 package. To identify DEGs based on clinical 
outcomes, we performed differential expression analysis 
between blasts from MRD outcome groups or Dx-Rel 
and Dx-Rem blasts for each MPAL subtype with Seurat 
v4 FindMarkers function (average log2FC > 0.25, adjusted 
p-value < 0.05, and percent expressed > 0.7 for Dx-Rem 
and percent expressed in comparison group < 0.1 for Dx-
Rel). In the DEGs analysis, the calculation of the adjusted 
p-value was performed using the Bonferroni correction 
in the Seurat v4 FindMarkers function.

Generation of MPAL blast‑specific gene dysregulation
Transcriptome signatures generated from the above 
analysis were systematically compared with normal 
and stem cell profiles from the human cell atlas (HCA). 
MPAL blast genes with an average expression of > 0.5 in 
normal BM or stem cells from the HCA were considered 
non-specific and filtered out. The analysis resulted in the 
identification of MPAL blast cells specific overexpressed 
genes that were further compared with pediatric ALL 
and AML leukemia blast cells to identify MPAL-specific 
genes with high potential to be MPAL biomarker candi-
dates (Additional file 2: Fig. S1).

Additional validation of MPAL blast biomarkers was 
performed using the TARGET bulk RNA-seq dataset 
[31], which includes AML (n = 1199), T-ALL (n = 221), 
B/My MPAL (n = 21), and T/My MPAL (n = 25) patients. 
Transcripts per million (TPM) normalized data was 
obtained from the TARGET portal and log transformed 
for comparative analysis. The Wilcoxon rank test was 

Fig. 1  Comparative analysis of mixed phenotype acute leukemia (MPAL) samples single-cell landscape with healthy bone marrow (BM). A UMAP 
showing the profile of MPAL and healthy samples (n = 67,024 cells), colored based on the individual sample. B Dot plot showing expression 
of canonical cell markers used to annotate clusters on the X-axis and final cell type labels on the Y-axis. C Split UMAP based on clinical groups 
(i.e., B/My MPAL, T/My MPAL, Healthy) to visualize cellular clusters associated with specific clinical groups. Dotted lassos highlight the locations 
of the immune cell populations. D UMAP highlighting the heterogenous blast populations from selected patients. The cell types from M2 (T/My 
MPAL) and M3 (B/My MPAL) are highlighted on the UMAP. The major blast populations are shown (lassoed) for each sample: M2-My and M2-T, 
and M3-My and M3-B. E Table and bar plot with cell type distributions, disease subtype, MRD status after treatment, and clinical outcomes. F 
Heatmap showing top 20 overexpressed genes in B/My MPAL and T/My MPAL blast cells. DEGs were identified by comparing the profile of B/
My or T/My MPAL blast cells and healthy immune cells based on fold change and adjusted P-values (i.e., average log2FC > 0.25 and adjusted 
p-value < 0.05). The top 20 genes were selected based on the highest fold change. G Gene ontology enrichment results for the overexpressed 
genes (average log2FC > 0.25 and adjusted p-value < 0.05) in MPAL blasts compared to progenitor cells in healthy BM samples. The gene ontology 
analysis was performed using clusterProfiler package from R/Bioconductor using Biological Process GO categories. The Biological Process 
with Benjamini–Hochberg p-value < 0.05 is considered significant. The X-axis represents the GeneRatio, which indicates the fraction of MPAL 
significantly overexpressed genes that can be found in biological gene sets (specifically, GO categories). The size of each dot corresponds 
to the count of input genes that are present in a particular GO biological category. The color of the dot reflects the adjusted p-value obtained 
from the enrichment analysis. Specifically, pink and blue colors are used to represent the most and least significantly enriched GO terms associated 
with MPAL significantly overexpressed genes, respectively. H Macrophage migration inhibitory factor (MIF) signaling in T/My and B/My MPAL cell 
types. Signaling was inferred using cellular communication analysis, showing the estimated interactions between cell types in MPAL samples 
via the ligand (MIF) and receptors (CD74, CXCR4, CD44) expression

(See figure on next page.)
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performed to compare the expression levels of each 
MPAL blast biomarker in MPAL versus AML and T-ALL 
samples. The analysis was conducted using the stat_com-
pare_means function in the ggpubr v0.6.0 package. The 
corresponding p-values are reported.

Pathway enrichment analysis
MPAL subtype blast-specific pathways were identified 
by performing pathways and systems biology analysis 

using the MetaCore platform. The B/My MPAL blast-
specific DEGs were identified by comparing the expres-
sion between B/My MPAL blasts and other leukemia 
blasts, as well as with immune cells (Wilcoxon rank test, 
adjusted p-value < 0.05 and average log2FC > 0.25). A sim-
ilar DEG analysis was performed to identify T/My MPAL 
blasts dysregulated genes. The DEGs were used for path-
ways enrichment analysis using the MetaCore platform 
that contains functions, pathways, and network models 

Fig. 1  (See legend on previous page.)
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derived by systematically exploring peer-reviewed scien-
tific literature and public databases. It calculates statisti-
cal significance based on the hypergeometric distribution 
where the p-value represents how likely the observed 
association between a specific pathway/function/inter-
active network and the input dataset would be if it were 
only due to random chance, by also considering the total 
number of functions, pathways, and interactive net-
work eligible genes in the dataset and the Reference Set 
of genes (those which potentially could be significant in 
the dataset). Focus molecules were identified from the 
integrated networks based on the degree of connectivity 
(number of interactions for each gene). Focus hubs with 
higher degrees of connectivity are considered critical for 
the maintenance of the networks, suggesting that thera-
peutic targeting of these focus hubs may elicit the strong-
est impact. Pathways and networks with a false discovery 
rate (FDR) < 0.05 (calculated using the Benjamini–Hoch-
berg method) were considered statistically significant.

Gene set enrichment analysis
In addition to individual gene analysis, gene set enrich-
ment analysis (GSEA) was implemented to determine 
whether a priori-defined set of genes showed statisti-
cally significant, concordant differences between differ-
ent group comparisons [32]. GSEA can be more powerful 
than single-gene methods for studying the effects of fac-
tors such as MRD in which each set of genes make subtle 
contributions to have a cumulative effect. Two methods 
were used for performing GSEA, including (i) the easy 
single-cell analysis platform for enrichment (escape) R 
package, version 1.5.1 [33]. Gene sets were obtained from 
the molecular signature database via the msigdbr pack-
age (v7.4.1). Another method (ii), clusterProfiler (v4.6.0) 
R package [34], was used to perform GSEA with the Gene 
Ontology (GO) biological processes gene sets to generate 
enrichment map networks and gene concept enrichment 
plots. Once the significantly upregulated pathways were 
identified for each leukemia type, the comparative analy-
sis of pathways resulted in the identification of T/My and 
B/My MPAL blasts-specific pathways. Gene sets with an 
adjusted p-value < 0.05, determined through the Benja-
mini–Hochberg correction (clusterProfiler), or the Bon-
ferroni correction (escape), were considered enriched. 
These GSEA methods were also used to identify adult, 
pediatric, and induction outcome-specific pathways.

Cellular communication analysis
Cellular communication analysis was performed using 
CellChat v1.0.0 [35], with default parameters. CellChat 
uses ligand-receptor expression to predict intercellular 
communication among specific signaling pathways. Cell-
Chat first calculates the communication probability of 

each signaling pathway in the CellChatDB ligand-recep-
tor database between cell clusters or cell types within a 
group (B/My vs. T/My MPAL). Differences in cellular 
communication between groups can be analyzed by cal-
culating the information flow, the sum of communication 
probability for each cell cluster predicted interaction, for 
each signaling pathway. Signaling network differences 
between groups can also be analyzed by performing 
manifold learning and classification based on functional 
similarity, or the similarity in sender/receiver cell types 
between two pathways. CellChat algorithm also allows 
analysis of specific cell type interactions within each 
group for each signaling pathway, and this can be visual-
ized as a circular chord diagram. This analysis was used 
to determine the communication differences between B/
My and T/My MPAL, particularly focusing on pathways 
that are estimated to have blast cells as the receiver or 
sender cells and might be key for disease progression.

Stemness index
To further compare the relative levels of stemness of 
blast and normal cells, a stemness index was calculated 
for each cell as the first principal component value after a 
principal component analysis. The analysis was based on 
the expression values of 175 genes in the stemness index 
signature (Additional file  1: Table  S3). This stemness 
index signature was identified by Palmer et al. to stratify 
hematopoietic malignant cells from normal and precur-
sor cells [36].

Survival analysis
Estimated survival probabilities for the T/My MPAL 
and B/My MPAL blasts biomarker sets were calculated 
using the survMisc v0.5.5 [37] and survival [38] v3.2–
13 R packages. Survival analysis was performed on the 
TARGET-ALL-P3 dataset after obtaining the T-myeloid 
and B-myeloid MPAL samples [31], along with their 
overall survival in months and vital status information. 
For each gene in the T/My MPAL biomarker set (Addi-
tional file 1: Table S4), the T/My MPAL TARGET sam-
ples (Additional file 1: Table S5) were partitioned into 
high and low expression groups using the cutP method 
[37] from the survMisc package v0.5.5. The survival 
association of each gene was assessed by computing 
Kaplan–Meier survival curves and hazard ratio statis-
tics via the survfit (with confidence type “log–log”) and 
coxph functions of the survival R package. This analysis 
allowed us to analyze the probability of survival over 
time and compare survival rates between groups with 
high and low expression of genes. A similar survival 
analysis was also performed for the B/My MPAL gene 
set in the B/My MPAL samples from the TARGET-
ALL-P3 dataset.
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Results
Single‑cell RNA sequencing characterizes 
the heterogeneous nature of MPAL with identification 
of distinct profiles for immunophenotypic subtypes
Comprehensive single-cell transcriptome profiling was 
performed, after thawing viably frozen patient BM 
samples collected at the time of initial diagnosis (Dx), 
using the 10x Genomics platform. To robustly map the 
transcriptome landscape, we also included two MPAL 
samples from the ScPCA initiative [15]. In total, we per-
formed analysis on nine pediatric MPAL samples (n = 8 
at diagnosis, n = 1 at relapse) to understand underlying 
molecular mechanisms and explore potential therapeu-
tic targets. To identify blast cells and study their tran-
scriptome landscape, the data from healthy pediatric and 
young adult BM samples was included in the analysis 
[16]. In total, we analyzed the transcriptome profile of 
67,024 cells (23,318 from five T/My MPAL, 17,258 from 
four B/My MPAL, and 26,448 from healthy BM sam-
ples). After quality control, filtering, and normalization, 
the unsupervised analysis identified 26 transcriptionally 
distinct clusters of cells (Additional file  2: Fig. S2). The 
annotation based on the individual samples depicted 
segregation in the single-cell profiles of MPAL subtypes 
from healthy BM samples (Fig.  1A). The cellular clus-
ters were labeled based on the expression of canonical 
cell lineage-associated markers (Fig. 1B); these cell types 
include erythroblasts, monocytes, T-cells, B-cells, Pro-B, 
NK, and progenitor cells. The expression of these mark-
ers in individual sample’s blast cells is shown in Addi-
tional file  2: Fig. S3. The putative MPAL leukemic blast 
clusters depicted segregated clustering from the healthy 
normal cell clusters (Fig. 1C, non-blast cells lassoed). B/
My MPAL blasts formed segregated clusters as com-
pared to T/My MPAL, indicative of subtype heterogene-
ity (Fig. 1C). The gene expression of blast markers used 
in flow cytometry for immunophenotypic characteriza-
tion is shown in Additional file 2: Fig. S4. On the other 
hand, immune cells from both MPAL subtypes clustered 
together with no subtype heterogeneity (Fig. 1C). Further 
individual sample analysis captured significant heteroge-
neity among blast cells from some patients (Additional 
file 2: Fig. S5). For example, T/My MPAL sample M2 and 
B/My MPAL sample M3 contained two and three distinct 
blast cell clusters on UMAP visualization respectively, 
correlating with the characterization on flow cytometry 
(Additional file  1: Table  S2, and Fig.  1D). For the T/My 
MPAL M2 sample, there were two blast cell populations, 
which overexpressed myeloid (e.g., S100A8, S100A9, 
and LYZ) and T-lymphoid (e.g., CD3D and CD3E) line-
age markers respectively (Additional file  1: Table  S6A). 
Similarly, DEGs analysis between the two major blast 
populations in the B/My MPAL M3 sample (Additional 

file 1: Table S6B) showed over-expression of myeloid (e.g., 
S100A8, S100A9, and LYZ), and the B-lymphoid (e.g., 
CD79B, CD79A, and MZB1) lineage markers respec-
tively. These results clearly depict the usefulness of sin-
gle-cell profiling in highlighting the heterogeneity of blast 
cell populations, which is a unique attribute of MPAL 
cases. As anticipated, the profile of cancerous samples 
collected at the time of initial diagnosis or relapse was 
primarily composed of malignant blasts (Fig. 1E), with a 
limited enrichment of normal stromal and immune cell 
types. Available immune cell type breakdown from diag-
nostic flow cytometric characterization (Additional file 1: 
Table S2) correlated with the clusters seen in single-cell 
profiling. In contrast, the healthy BM samples consisted 
of major cell types from lymphoid and myeloid lineages 
including B-cells, T-cells, and natural killer (NK) cells 
(Fig. 1E).

The differential expression analysis between B/My or 
T/My MPAL blasts and healthy cells can provide insight 
into the molecular mechanisms underlying the develop-
ment and progression of MPAL subtypes. The differen-
tial expression analysis based on fold change and p-value 
(Wilcoxon rank test, average log2FC > 0.25 and adjusted 
p-value < 0.05) identified 219 and 194 significant DEGs 
in B/My and T/My MPAL blast cells respectively. The 
top 20 genes based on average log2 fold change for 
MPAL subtypes were selected and plotted on a heat-
map (Fig.  1F). B/My MPAL blasts depicted significant 
overexpression genes such as STMN1 and SOX4, which 
have been previously associated with other hematologi-
cal malignancies, such as AML and ALL [39, 40]. T/My 
MPAL blasts overexpressed genes such as SPINK2 which 
has been associated with immune infiltration in AML 
[41], and CD82 which has been identified as a driver 
of chemoresistance in AML [42]. Interestingly, B/My 
MPAL blasts up-regulated genes show high expression 
in healthy B/Pro-B-cells (Fig.  1F) indicating that these 
genes might play a role in the normal differentiation and 
maturation of B/Pro-B-cells. While T/My MPAL blasts 
overexpressed genes were observed to exhibit minimal 
or no expression in the normal T-cells derived from the 
young adult BM. We did not investigate the expression 
of these T/My MPAL blasts genes in precursor T-cells 
from the thymus, which represents a limitation of our 
study (Fig.  1F). To understand the dysregulations at 
Pathways and Gene ontology levels, we performed gene 
ontology (GO) enrichment analyses on the significantly 
overexpressed genes for the MPAL subtypes (Additional 
file  1: Table  S7). The top significantly enriched (Benja-
mini–Hochberg adjusted p-value < 0.05) GO categories 
for B/My MPAL blasts are associated with activation and 
regulation of the immune response (Additional file  2: 
Fig. S6A). On the other hand, for T/My MPAL blasts 
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overexpressed genes depicted significant enrichment in 
GO categories associated with cell signaling and nega-
tive regulation of myeloid and leukocyte differentiation 
(Additional file 2: Fig. S6B).

To further characterize the GO categories that are 
commonly dysregulated in T/My and B/My MPAL 
blast cells compared to healthy progenitor cells, we per-
formed additional DEGs analysis comparing MPAL blast 
cells (n = 35,515) and healthy progenitor cells (n = 3902). 
The DEGs (Additional file  1: Table  S8A, n = 147) were 
subsequently used to perform GO enrichment analysis 
to identify associated biological processes. The MPAL 
blasts overexpressed genes revealed significant asso-
ciations with myeloid leukocyte migration, NF-kB tran-
scription factor activity, and immune system processes 
(Fig.  1G). In addition, cellular communication analysis 
of B/My and T/My MPAL cells via the expression of 
ligands and receptors using the CellChat tool identi-
fied dysregulated signaling pathways associated  with 
aberrant cellular communications. The macrophage 
migration inhibitory factor (MIF) signaling pathway 
was found to be enriched in both MPAL subtypes and 
was associated with signaling from blasts to immune 
cells including monocytes and B-cells (Fig.  1H). The 
gene for the ligand of the MIF signaling pathway (MIF) 
depicted significant up-regulation in both T/My and B/
My MPAL blasts compared to healthy cells (Additional 
file 1: Table S8B). These results mapping the landscape 

of MPAL subtypes, highlight the inter- and intra-patient 
heterogeneity in blast cell profiles and similarities in the 
immune microenvironment landscape.

Compared to other acute leukemias, the scRNAseq 
profiles of B/My MPAL show significant overlap with B‑ALL 
and AML, while T/My MPAL shows overlap with AML 
and T‑ALL
To assess the similarities and differences between MPAL 
and other acute leukemias, we performed compara-
tive analyses among MPAL, AML, B-ALL, T-ALL, and 
healthy BM single-cell profiles. Single-cell transcriptome 
data for other leukemias (Additional file  1: Table  S9) 
were obtained from the Pediatric Cancers Single-Cell 
Atlas [17, 18, 43] initiative of our lab and publicly avail-
able studies [16]. After uniform pre-processing, filtering, 
normalization, and batch correction, the gene expres-
sion profiles were visualized using UMAP (Fig.  2A). 
UMAP analysis showed that B/My MPAL blasts clus-
tered mostly with B-ALL and AML (clusters 0, 4, and 
6) due to presence of both myeloid and B-lymphoid 
features in the B/My MPAL blasts (Fig.  2A, Additional 
file  2: Fig. S7). On the other hand, T/My MPAL blasts 
profile overlapped with T-ALL and AML (clusters 0, 1, 
and 8) due to myeloid and T-lymphoid features in the T/
My MPAL blast cells (Fig. 2A, Additional file 2: Fig. S7). 
Interestingly, immune cells clustered based on the cell 

(See figure on next page.)
Fig. 2  Comparative analysis of mixed phenotype acute leukemia with other acute leukemias. A Split UMAP of leukemic and canonical cell 
types (n = 156,489 cells), separated based on leukemia type/subtype (i.e., AML, B-ALL, T-ALL, B/My MPAL, and T/My MPAL) and healthy samples. 
B Density plot showing stemness index distribution of the different blast cells from different acute leukemias including B/My MPAL and T/
My MPAL, progenitor cells, and normal immune cells. The stemness index was calculated as the first principal component value of each cell 
after performing principal component analysis with the expression of the genes in a stem cell signature (Additional file 1: Table S3). C Heatmap 
with the top overexpressed markers for mixed phenotype acute leukemia (MPAL) and subtypes (i.e., B/My MPAL and T/My MPAL). The heatmap 
also shows the expression of MPAL marker genes in other acute leukemias (i.e., AML, B-ALL, T-ALL), (BM) and healthy immune cells. These markers 
were filtered to only include genes with low expression in healthy bone marrow cells. Overexpressed genes were identified for MPAL subtypes 
by comparing the profile of MPAL blast cells versus blast cells from other acute pediatric leukemias (i.e., AML, B-ALL, T-ALL) and healthy BM 
samples. The MPAL subtype significantly overexpressed genes (average log2FC > 0.25, adjusted p-value < 0.05, and pct. expressed > 50%) were 
further refined by selecting genes with low expression in healthy BM cells from HCA (avg. expression < 0.5). Finally, the top genes for the heatmap 
were chosen based on their highest average log2FC values. D Dot plots showing the expression of two canonical immune cell markers (CD79A 
and CD3D) and two MPAL blast cell markers (CD81 and LMO2), to show that these MPAL blast cells markers have low expression in various normal 
BM cell types and healthy hematopoietic stem cells. The size of the dots refers to the percentage of cells in each cell type cluster expressing 
the gene and the color represents averaged scaled gene expression level; cyan: low, red: high. X-axis is the cell type, and Y-axis is the genes. The 
expression of MPAL markers is marked with lasso. E Expression of MPAL blast markers in AML, T-ALL, and MPAL bulk RNA-seq data. The Y-axis 
shows the scaled values of the log2 of the normalized expression plus one, and the X-axis shows different subtypes for the bulk RNA-seq samples. 
Wilcoxon rank tests were performed to test the difference in expression between MPAL and AML, and MPAL and T-ALL for the three genes shown 
(*** for p-value < 0.001, ** for p-value < 0.01, and * for p-value < 0.05). F The top significantly enriched pathways of the filtered B/My MPAL blast cell 
marker genes. Each bar represents a significantly enriched pathway as determined using the P value (shown on the primary X-axis). The bar plot 
is sorted by the negative log of the hypergeometric distribution-based p-values of the results. The analysis for canonical pathways was performed 
using the MetaCore platform from Clarivate Inc. G The top significantly enriched pathways of the filtered T/My MPAL blast cells marker genes. 
H Kaplan–Meier curves-based survival association analysis of B/My MPAL marker gene, MTRNR2L12 in B/My MPAL TARGET samples (top) and T/
My MPAL marker, PTEN in T/My MPAL TARGET samples (bottom). Survival association analysis was performed using the Cox Proportional Hazards 
Regression Model, with MTRNR2L12 expression having a hazard ratio of 4.80 (p = 0.059) and PTEN expression having a hazard ratio of 4.50 (p = 0.04), 
high expression of both genes indicated an association with poor survival
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lineage irrespective of leukemia type/subtype indicating 
minimal heterogeneity in the immune landscape; T and 
NK cells are located mostly in clusters in 3, 7, 13, and 
24; B-cells in cluster 9; and monocytes in clusters 2, 5, 
and 16. To evaluate stemness levels, we also calculated 
the stemness index for the single-cell clusters based 
on the expression values of 175 genes in the stemness 
index signature identified by Palmer et  al. (Additional 
file 1: Table S3) [36]. Higher stemness was observed for 
blast cells from different acute leukemias as compared 

to non-blast immune cells. The T/My MPAL blast cells 
showed the highest level of stemness compared to other 
blast populations, whereas the B/My MPAL blast cells 
stemness index was similar to B-ALL and AML blasts 
(Fig.  2B). A sample-wise DEG analysis was performed, 
to calculate sample-to-sample distances based on the 
DEGs. The analysis revealed that blast cells from B/
My MPAL and B-ALL exhibit the most similar profiles, 
whereas blast cells from T/My MPAL are most similar to 
near ETP/ETP T-ALL samples (Additional file 2: Fig. S8).

Fig. 2  (See legend on previous page.)
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To identify genes with significant overexpression in 
MPAL as compared to other leukemias and healthy con-
trols, DEG analysis was performed based on the Wilcoxon 
rank test (FC > 0.25 and adjusted p-value < 0.05). Genes 
that are overexpressed in both MPAL subtypes blast cells 
compared to other leukemias and healthy controls include 
CD81, and LMO2 (Fig. 2C). B/My MPAL blast cells over-
expressed genes include AUTS2, PAX5, MTRNR2L12, 
and HBEGF. T/My MPAL blast cells overexpressed genes 
include PTTG1IP, ESYT2, PTEN, and CALCOCO2. To 
ensure markers are MPAL blast cell-specific, we per-
formed additional filtering steps based on expression in the 
BM immune cells and hematopoietic stem cells (HSCs). 
The BM single-cell data of 391,505 immune cells and HSCs 
were obtained from the Human Cell Atlas (HCA) Ini-
tiative [44]. MPAL blast-specific genes were found to be 
minimally expressed in these HSCs and immune cells from 
HCA (Fig. 2D) in contrast to canonical immune cell mark-
ers such as CD3D for T-cells and CD44 for HSCs, which 
had high expression in these cells. Interestingly, CD81 had 
relatively high expression in the BM mesenchymal stem 
cells (MSCs) that constitute 0.06% (n = 239 cells) of the 
HCA dataset (Fig. 2D). Recent studies have shown compel-
ling evidence that CD81 serves as a promising marker for 
identifying MSC-derived extracellular vehicles and intra-
cellular communication [45]. The complete lists of MPAL 
blast markers with fold change and p-values from each 
step of the filtering process (Additional file 2: Fig. S1) are 
listed in Additional file 1: Table S4. The biomarker genes, 
CD81 and LMO2 which are expressed in both MPAL sub-
types (Fig.  2D) had minimal or no expression in normal 
immune and stem cells, making these genes ideal potential 
candidates for targeting. In addition, the expression of the 
B/My and T/My MPAL biomarker genes was also assessed 
(Additional file  2: Fig. S9A, B) using the TARGET bulk 
RNA-seq MPAL, AML, and T-ALL datasets [31]. Some of 
the MPAL subtype blast markers showed higher expres-
sion in MPAL bulk RNA-seq data, and the rest showed 
noisier results. We do not expect the bulk-RNA-seq data 
to match our single-cell expression patterns completely 
as bulk RNA-seq data depicts the average expression pro-
file of immune, stromal, and blast cells in a sample. The 
selected genes (CHST11, GLS, PPP1R12A) that are overex-
pressed in B/My and T/My MPAL blast cells in single-cell 
data, showed significantly higher expression (Wilcoxon 
rank test, p-value < 0.05) in MPAL versus T-ALL and AML 
bulk RNA-seq TARGET samples (Fig. 2E).

To further understand the potential pathway level dys-
regulation in MPAL blast genes, pathway enrichment anal-
ysis was performed on the MPAL subtypes (i.e., T/My, B/
My MPAL) blasts significantly overexpressed genes (Addi-
tional file 1: Table S4). The pathways analysis depicted the 
significant enrichment (p-value < 0.05) of B/My MPAL 

overexpressed genes in multiple cell cycle, prolifera-
tion, and immune system-related pathways (Fig. 2F). This 
included activation of protein kinase C (PKC) via G-Pro-
tein coupled receptor, gastrin signaling in inflammatory 
response, angiotensin II receptor type 1 (AGTR1) signaling 
via p38, extracellular-signal-regulated kinase (ERK) and 
epidermal growth factor receptor (EGFR) signaling, and 
glucocorticoid receptor signaling, as well the role of IL8 
typically seen in colorectal cancer (Fig. 2F). Similar analy-
sis on T/My MPAL overexpressed genes depicted a signifi-
cant association with cell cycle, cell adhesion, and immune 
response including tissue factor signaling, ERK1/2 signal-
ing, IL6 signaling similar to that seen in prostate cancer, 
and PTEN pathways (Fig.  2G). The pathway enrichment 
analysis also depicted a significant (p-value < 0.05) effect 
on Sphingosine 1-phosphate receptor 2 (S1P2) signaling 
in both B/My and T/My MPAL (Fig. 2F, G). Interestingly, 
while the activation signaling of S1P2 was prominent in B/
My MPAL, the inhibitory signaling was most enriched in 
T/My MPAL. This dissimilarity in S1P2 signaling could be 
attributed to the upregulation of HBEGF in B/My MPAL 
and PTEN in T/My MPAL (Fig.  2D). HBEGF is a down-
stream target of S1P2 signaling, resulting in the promo-
tion of cell survival (Additional file 2: Fig. S10A); whereas 
PTEN is a direct target of S1P2 signaling, resulting in the 
inhibition of FAK1 and inhibition of cell migration (Addi-
tional file 2: Fig. S10B). The analysis on top B/My MPAL 
affected pathways depicted that HBEGF was involved in 10 
out of 15 top enriched pathways (Fig. 2F), whereas PTEN 
was found to be involved in 12 out of the 15 top affected 
pathways in T/My MPAL (Fig. 2G). The complete lists of 
significantly enriched pathway maps along with p-values 
are listed in Additional file 1: Table S10. To further explore 
the role of MPAL blast cells overexpressed genes in can-
cer outcomes, we performed survival analysis using the 
Cox proportional hazards model in the TARGET-ALL-P3 
dataset [31]. The high expression of the B/My MPAL blast 
marker MTRNR212 had an association with poor sur-
vival (HR = 4.80, p-value = 0.059) in B/My MPAL samples. 
Whereas high expression of PTEN, a T/My MPAL blast 
marker gene depicted a significant association with poor 
survival (HR = 4.50, p = 0.040) in the T/My MPAL samples 
(Fig. 2H).

T/My MPAL has higher similarity to ETP than with non‑ETP 
T‑ALL, but still displays unique myeloid characteristics
Given the emerging literature showing greater over-
lap between T/My MPAL and ETP-ALL, we decided to 
compare the single-cell transcriptomic profiles between 
the two groups as well as non-ETP T-ALL cases. Among 
the 11 T-ALL cases used in the analysis, four cases had 
ETP-ALL-like features (ETP-ALL, n = 1 and near ETP-
ALL, n = 3), while the remaining seven were categorized 
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as non-ETP T-ALL (Additional file 1: Table S11). Among 
the five  T/My MPAL cases, three had ETP-like immu-
nophenotypic blasts features on flow cytometry, aside 
from their myeloid lineage defining antigen expression, 
that resulted in a diagnosis of T/My MPAL (Additional 
file 1: Table S2).

To assess the scRNAseq similarities of T/My MPAL to 
T-ALL and ETP subtypes, we performed a focused analy-
sis on these 16 samples (Fig. 3). The UMAP visualization 
depicted T/My MPAL, ETP and T-ALL formed distinct 
clusters with some overlaps among them (Fig.  3A). For 
the blast populations specifically, there exist clusters 
with cells from T/My MPAL and ETP/near-ETP (cluster 
0) and T/My MPAL and non-ETP T-ALL (cluster 7), as 
well as a distinct myeloid cluster 3 (high expression of 
S100A9, LYZ, CD14) which contains mostly T/My MPAL 
blasts (Fig. 3B). Differential expression analysis was per-
formed to determine the top overexpressed genes for 
near-ETP/ETP-ALL blast cells compared to non-ETP 
T-ALL and T/My MPAL blast cells compared to non-
ETP T-ALL. This analysis found that there are 353 com-
mon genes overexpressed in near-ETP/ETP-ALL and T/
My MPAL compared to T-ALL (Fig.  3C). An additional 
analysis was performed to compare the three groups, 
with AES and CD3D showing high expression in non-
ETP T-ALL blast cells, and near-ETP/ETP blast cells 
over-expressing CKLF and TASP1 (Fig. 3D). T/My MPAL 
blasts overexpress VAMP8 and SAT1 with high speci-
ficity compared to the other T-ALL blast cells (Fig. 3D). 
The DEG analysis identified 1,021  T/My MPAL, 639 
near-ETP/ETP, and 831 non-ETP T-ALL overexpressed 
genes for blast cells (average log2FC > 0.25 and adjusted 
p-value < 0.05). GSEA was performed on these three sets 
of genes to determine which biological processes were 
significantly over-represented (adjusted p-value < 0.05) 
in each of the three subtypes’ blast cells. GSEA analysis 
identified T/My MPAL overexpressed gene enrichment 
in inflammatory and cell growth-related processes (Addi-
tional file 2: Fig. S11A). The non-ETP T-ALL blasts had 
high enrichment of cell differentiation processes (Addi-
tional file 2: Fig. S11B), and near-ETP/ETP overexpressed 
genes linked to transcription regulation and/or structural 
organization processes (Additional file 2: Fig. S11C) such 
as PTEN, TNIK, and AUTS2 (Fig. 3E). Further stemness 
analysis interestingly revealed that near-ETP/ETP T-ALL 
blasts had the highest stemness index, followed by T/
My MPAL and non-ETP T-ALL blasts. The T/My MPAL 
depict bimodal distribution of the stemness index rang-
ing from high (similar to ETP) to low stemness (similar 
to T-ALL) indicating heterogeneity at the stemness level 
(Fig. 3F). To our knowledge, this is the first comparison 
of T/My MPAL and ETP-ALL on a single-cell transcrip-
tomics level.

Adult and pediatric MPAL have similar transcriptional 
landscapes
To determine the similarities and differences between 
adult and pediatric MPAL, we performed a comparative 
analysis by analyzing adult MPAL scRNAseq data (n = 6) 
from a publicly available study [14] (Additional file  1: 
Table  S9). Adult MPAL data after normalization and 
quality control analysis was merged with pediatric MPAL 
samples and healthy BM. After performing clustering, 
annotation, and UMAP visualization inspection, we 
observed that the adult and pediatric samples predomi-
nantly clustered based on the MPAL subtypes rather than 
by age. This suggests that the MPAL subtypes are a more 
significant factor in determining the gene expression pat-
terns than the age of the patients (Fig. 4A). In the UMAP, 
we observed that pediatric B/My MPAL samples (M1, 
M3, M5, M7) cluster together with the adult B/My MPAL 
sample (A4) in the lower left part of the plot. Specifically, 
these samples were distributed in clusters 2, 5, 9, 10, and 
18. Similarly, the pediatric T/My MPAL samples (M2, 
M4, M6, SCPCS000230, SCPCS000220) cluster with the 
adult T/My MPAL samples (A1, A2, A3, A5, A5R) in 
the upper right portion of the UMAP in clusters 0, 1, 6, 
8, and 27. This finding suggests a possible commonality 
in gene expression patterns between pediatric and adult 
MPAL subtypes. Furthermore, immune cells from adult 
and pediatric samples cluster together and are segregated 
based on cell type irrespective of age and MPAL subtypes 
(Fig. 4B).

To identify subtle potential age-specific MPAL blast 
markers, we performed differential expression analy-
sis between adult and pediatric MPAL blasts (average 
log2FC > 0.25, adjusted p-value < 0.05). Heatmap with the 
top 20 markers (by average log2FC and percent expres-
sion) is shown in Fig.  4C. These genes might be linked 
to age instead of the malignant nature of the blasts. To 
further assess of stemness of blast cells from differ-
ent pediatric and adult MPAL subtypes, we performed 
stemness analysis using a stem cell gene signature from 
literature [36]. In both MPAL subtypes, the adult patient 
blasts had higher stemness index values (Fig.  4D), indi-
cating that pediatric MPAL blasts are more differentiated 
than adult MPAL blasts. Gene set enrichment analysis 
on pediatric and adult T/My MPAL blast cells provided 
insights into underlying biological mechanisms. Adult 
blast cells are significantly enriched (Wilcoxon rank-sum 
test, p-value < 0.001) with the inflammatory response 
and the KRAS up-regulated signaling pathway (Fig. 4E), 
while pediatric T/My MPAL blast cells are significantly 
enriched (p-value < 0.001) with TGF-β and PTEN path-
ways (Fig. 4F).

Overall, a comparison of adult and pediatric MPAL 
subtypes revealed a similar transcriptional landscape 
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Fig. 3  Mapping the single-cell landscape of early T-cell precursor acute lymphoblastic leukemia (ETP-ALL). A UMAP clusters of 50,907 cells colored 
based samples and different ALL (left) including T/myeloid mixed phenotype acute leukemia (T/My MPAL), near-ETP/ETP-ALL, and non-ETP T-ALL. 
The right side is the UMAP colored by clusters obtained based on K-mean clustering using the Seurat package. B Cell type annotations for the three 
T-Lineage subtypes shown on UMAPs. Clusters with the overlap of cells and transcriptome profiles among different T-ALL subtypes have been 
lassoed and labeled. C Venn diagram analysis to visualize commonly overexpressed genes (average log2FC > 0.25, adjusted p-value < 0.05) in T/
My MPAL compared to non-ETP T-ALL blast cells, and near-ETP/ETP-ALL compared to non-ETP T-ALL blast cells. D Feature map of selected T/My 
MPAL, non-ETP T-ALL, and near-ETP/ETP-ALL blast cells overexpressed genes. Low and high expressions are shown with gray and purple colors 
respectively. E Gene network plot for enriched GO categories associated with overexpressed near-ETP/ETP-ALL genes. The network nodes have 
been colored based on fold change in near-ETP/ETP-ALL, and the size of the central dots represents the size of the selected GO category. F Density 
plot showing stemness index distribution of blast cells T/My MPAL, near-ETP/ETP-ALL, non-ETP T-ALL, and non-blast immune cells. The stemness 
index was calculated as the first principal component value of each cell after performing principal component analysis with the expression 
of the genes in a stem cell gene set as the features (Additional file 1: Table S3)
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Fig. 4  Comparative analysis of pediatric and adult mixed phenotype acute leukemia single-cell landscape. A Split UMAP plots of B/My MPAL and T/
My MPAL colored based on the respective patient samples. The adult MPAL samples are represented in shades of blue and green, while the pediatric 
are depicted in shades of red and pink. B Comparative visualization of malignant blasts and normal microenvironment cell types in the adult, 
pediatric, and healthy samples. C Heatmap of top genes overexpressed in adult vs. pediatric MPAL blast cells. Genes were identified by performing 
differential expression analysis selecting genes with average log2FC > 0.25 and adjusted p-value < 0.05. The top genes for the heatmap were 
selected based on average log2FC. Relative gene expression is shown in pseudo color, where purple represents downregulation, and yellow 
represents upregulation. D Density plot showing the distribution of stemness index of different adult and pediatric MPAL subtypes and normal 
cells. Density plot showing stemness index distribution of the different cell types found in T/My MPAL samples. The stemness index was calculated 
as the first principal component value of each cell after performing principal component analysis with the expression of the genes in a stem cell 
gene set as the features (Additional file 1: Table S3). E Selected gene sets with significantly higher enrichment (p-value < 0.001) in adult T/My MPAL 
blast cells. F Gene sets with higher enrichment (p-value < 0.001) in pediatric versus adult T/My MPAL blast cells. The enrichment score was calculated 
using a single-sample gene set enrichment approach using Hallmark/Biocarta gene sets from the MSigDb H and C2 collections and the significance 
of differential enrichment was determined using the Wilcoxon rank-sum test
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with subtle immune and inflammatory pathway level dif-
ferences that might be due to the high mutational burden 
in adult MPAL and poorer outcomes.

Diagnostic MPAL samples have transcriptomic differences 
that may help predict response to ALL induction therapy
Given the growing consensus that MPAL patients should 
be initially treated with an ALL-directed induction regi-
men, we explored the association between transcriptome 
profiles at baseline and the end of induction (EOI) results 
following an ALL-based chemotherapy. Of the eight de 
novo MPAL cases, seven received initially an ALL-based 
induction regimen (Additional file  1: Table  S1). These 
cases were partitioned into different groups based on 
their outcome status at the end of induction (i.e., MRD + , 
MRD − , and induction failure) (Table  1). Among the 
two MPAL induction failure patients, one had a poor 
initial response to ALL induction and was switched to 
AML therapy at day 13 (M7), hence was classified as an 
induction failure to ALL therapy. Given the distinct tran-
scriptome profiles between the B/My and T/My MPAL 
subtypes, we chose to analyze the two groups separately. 
Among the B/My MPAL patients, two were MRD + (M3 
and M5), one was MRD − (M1), and one had an induc-
tion failure, requiring change in therapy (M7). For the 
T/My MPAL patients, one had induction failure (M6), 
one was MRD + (M4), and one was MRD − (M2). As this 
analysis exclusively incorporates samples obtained at the 
time of diagnosis, the term “blasts from MRD + patients” 
refers to blast cells identified during the initial diagno-
sis of patients who were determined to have minimal 
residual disease (MRD +) at the end of induction (EOI). 
Clustering and UMAP embeddings based on induction 
results formed patient-specific clusters in B/My MPAL as 
well as T/My MPAL (Fig.  5A). One of the B/My MPAL 
MRD + (M5) patients formed a distant cluster indicating 
the highest transcriptional difference as compared to the 
cells from other MRD + , MRD − and induction failure 
patients. Additionally, MRD + patients also depicted sig-
nificant heterogeneity in the blast cell profile as evident 
from multiple blast clusters of the same patient (Fig. 5B). 
The non-blast cells formed mostly overlapping clusters 
except monocytes (Fig.  5B). To identify baseline differ-
ences in the blasts based on induction status (MRD + , 
MRD − , induction failure), we performed differential 
expression analysis for B/My and T/My MPAL samples 
(Fig. 5C). B/My MPAL blast cells from induction failure 
patients showed high expression of MT2A and FKBP5 
genes that are associated with chemoresistance in osteo-
sarcoma [46], solid cancers, and ALL [47]. The blast cells 
from the MRD − patients depicted the highest expres-
sion of IGHM, a gene associated with good prognosis in 
breast cancer [48], and IGFBP7, a marker of leukemia cell 

and chemosensitivity in AML [49]. Blast cells from B/
My MPAL MRD + patients overexpressed genes such as 
NEAT1 and SOX4 that are associated with cancer devel-
opment and pan-cancer poor outcome [50, 51]. For T/My 
MPAL the top marker genes for blast cells from induc-
tion failure and MRD + patients show significant over-
lap, whereas markers for blast cells from MRD − patients 
are more uniquely expressed. To further identify the key 
pathways over-represented in the three blast groups, we 
performed gene set enrichment analysis using canoni-
cal pathways gene sets from the MSigDB database [52]. 
Blast cells of B/My MPAL the induction failure patient 
depicted the highest enrichment (Wilcoxon ranked test, 
p-value < 0.001) of MAP3K8/TPL2 dependent MAPK1/3 
activation (Fig.  5D). B/My MPAL blast cells from the 
MRD − patient had high enrichment of the translation 
factors gene set (Wilcoxon ranked test, p-value < 0.001) 
(Fig.  5D), whereas MRD + blast cells had high enrich-
ment of the PI3K/AKT/mTOR VITD3 signaling pathway 
(Fig.  5D). Blast cells from T/My MPAL MRD − patient 
depicted significantly higher enrichment of the cell dif-
ferentiation expanded index as compared to blast cells 
from MRD + and induction failure patients (Wilcoxon 
ranked test, p-value < 0.001) (Fig.  5E). Induction failure 
and MRD + patient blast cells showed higher enrich-
ment of Stathmin pathway as compared to blast cells 
from MRD − patients (Fig.  5E). The comparative analy-
sis of stemness index revealed a broader distribution of 
stemness in T/My MPAL blast cells T/My MPAL com-
pared to ALL and AML patients, indicating a higher 
level of heterogeneity (Fig.  2B). Further assessment of 
variation in stemness [53] across future induction out-
comes groups depicted a similar and higher stemness 
index of diagnosis blast cells from induction failure and 
MRD + patients as compared to the MRD − patients 
(Fig. 5F).

Although the small sample size limits definitive con-
clusions, our analysis reveals distinct baseline transcrip-
tomic differences in blast cells based on outcomes. To 
establish the robustness of these findings, further valida-
tion is essential using larger sample sets in future studies.

Diagnostic MPAL samples show distinct transcriptome 
profiles based on future clinical outcome
To determine if there are any transcriptomic features in 
the MPAL subtypes that are indicative of future relapse or 
remission status, we performed a comparison of samples 
collected at disease diagnosis based on outcomes. In the 
B/My MPAL subset, of the three patients who continued 
with ALL therapy post-induction, two patients achieved 
continuous complete remission (M1, M5) and one patient 
had a relapse (M3). In the T/My MPAL, two patients 
achieved continuous complete remission (M2, M6) and 
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Fig. 5  Comparison of the single-cell landscape of diagnosis MPAL samples based on induction outcomes. A UMAP plot of B/My (n = 17,258 
cells) and T/My (n = 11,031 cells) MPAL patient cells colored by patient IDs, with the end of induction outcome (MRD + , MRD − , induction 
failure) information shown in the legend. B UMAP plots of B/My and T/My MPAL patient cells colored based on cell type including malignant blast 
(Blast cells from MRD + , MRD − , and induction failure patients) and normal cells (B-cells, T-cells, NK cells, Progenitor cells, monocytes, erythroblasts). 
C Heatmap showing top overexpressed genes in B/My MPAL and T/My MPAL blast cells from patients with different induction outcomes (induction 
failure, MRD + , and MRD −). The markers for the end of induction outcome group blasts were identified by comparing the target group’s blast 
cells with the other groups’ blast cells and filtered based on fold change, multiple test corrected p-value, and % expression (average log2FC > 0.25, 
adjusted p value < 0.05, pct. > 0.7). D Violin plots showing gene set enrichment values for different Biocarta and Reactome gene sets in B/My MPAL 
induction outcome blast groups calculated using single-sample gene set enrichment analysis. The significance between groups was calculated 
with Wilcoxon rank tests, with p-value < 0.001 represented with “***”. E Violin plots showing gene set with significantly different enrichments in T/
My MPAL induction outcome groups. The significance between groups was calculated using Wilcoxon rank tests, with p-value < 0.001 represented 
with “***.” F Density plot showing stemness index distribution of the different cell types found in T/My MPAL samples. The stemness index 
was calculated as the first principal component value of each cell after performing principal component analysis with the expression of the genes 
in a stem cell gene set as the features (Additional file 1: Table S3). Populations of interest are shown in bolder lines and labeled
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one patient relapsed after treatment (M4) with T-ALL 
chemotherapy regimens. The UMAP visualization based 
on outcomes (i.e., Remission = Dx-Rem, Relapse = Dx-
Rel) depicted large transcriptome differences in T/My 
MPAL as compared to B/My MPAL (Fig.  6A). The dif-
ferential expression analysis identified 343 and 926 genes 
that are significantly upregulated in relapse blast cells of 
B/My and T/My MPAL subtypes respectively (Fig.  6B). 
On the other hand, remission blast cells have 143 and 
1015 significantly overexpressed genes in B/My and T/
My MPAL subtypes respectively (Fig. 6B). The total num-
ber of differentially expressed genes between Dx-Rel and 
Dx-Rem blast cells was much higher for T/My MPAL 
(n = 1,941) as compared to B/My MPAL (n = 486), sup-
porting our previous observation that the transcriptome 
landscape of T/My MPAL significantly different based on 
future outcome as compared to B/My MPAL. The com-
parative analysis of relapse-associated DEGs from both 
subtypes (i.e., B/My and T/My MPAL) identified 40 genes 
that are commonly associated with relapse outcomes in 
MPAL. A similar analysis identified 24 genes that are 
associated with remission outcomes in both MPAL sub-
types (Fig. 6B). To understand the underlying biological 
mechanism associated with outcomes, we performed 
pathway enrichment analysis on 40 MPAL relapse- and 
24 remission-associated genes using the MetaCore plat-
form (Fig.  6C). Based on the commonly up-regulated 
markers in Fig. 6B, Dx-Rel blasts in MPAL depicted sig-
nificant enrichment of genes associated with the cytokine 
and chemokine pathways, IL-16 pathway, and IFN-alpha 
signaling via JAK/STAT pathway (Fig. 6C) which are all 
involved in inflammation. In contrast, Dx-Rem blasts 
showed enrichment in cytoskeleton remodeling and cell 
adhesion/migration activity-related pathways. IFN-alpha 
has been shown to induce apoptosis and differentiation 
in AML cells, and there have been clinical trials for IFN-
alpha targeting therapies in AML [54]. In MPAL Dx-Rel 
blasts, downstream targets of the IFN-alpha signaling 
via JAK/STAT are up-regulated (MX2, TNFSF10, IFI6, 
and IFITM1), which in turn have roles in the activation 
of apoptosis and the immune response (Additional file 2: 
Fig. S12). To further explore the differences in Dx-Rel 
and Dx-Rem blasts, we performed a gene set enrich-
ment analysis. Dx-Rem blasts showed significantly higher 
enrichment (p-value < 0.05, Wilcoxon rank test) of the 
cell differentiation index gene set in both MPAL subtypes 
(Fig.  6D), indicating that the Dx-Rel blasts exhibit less 
differentiated features than Dx-Rem blast cells.

Cellular communication analysis was performed to 
highlight the differences in cellular communication and 
interactions between Dx-Rel and Dx-Rem samples to 
identify dysregulated signaling pathways. A comparison 
of the overall number of interactions and their strengths 

between Dx-Rel and Dx-Rem samples in B/My MPAL 
revealed most signaling was stronger in Dx-Rel sam-
ples, with some interactions involving blast and B-cells; 
whereas in T/My MPAL, Dx-Rem has more signaling 
overall but blasts have more signaling to T-cells in Dx-Rel. 
(Additional file 2: Fig. S13A, B). Further, we explored the 
information flow of the signaling pathways, which is cal-
culated as the sum of communication probability among 
cell types of Dx-Rel and Dx-Rem samples (Fig.  6E). For 
both MPAL subtypes, SELPLG signaling was enriched in 
Dx-Rel samples, whereas CLEC signaling was enriched 
in Dx-Rem samples. In B/My MPAL specifically, MHC-I 
and MHC-II signaling was enriched in Dx-Rel samples, 
and the MHC-I pathway was explored further by plot-
ting the specific cell types and ligand/receptor pairs that 
contribute to this communication probability (Fig.  6F). 
In B/My MPAL Dx-Rel, blasts, erythroblasts, monocytes, 
progenitor, and B-cells express MHC-I molecules and 
are estimated to be communicating with T and NK cells. 
When blasts and T-cells ligand-receptor pair interactions 
are plotted, the ligand (HLA-A) is expressed highly by 
Dx-Rel blasts, and the CD8A receptor is expressed exclu-
sively in Dx-Rel T-cells (Fig.  6F) compared to Dx-Rem. 
In the T/My MPAL Dx-Rel cells, CD70 signaling was 
enriched and blast cells were predicted to be interacting 
with T-cells in the Dx-Rel sample via the CD70-CD27 
ligand-receptor interaction (Additional file 2: Fig. S13C).

Discussion
The emergence and optimization of single-cell profil-
ing as a powerful tool to characterize the tumor micro-
environment has revealed the heterogeneity of cancers, 
particularly different leukemia subtypes. Most MPAL 
biology studies to date, however, have focused on genet-
ics and bulk RNA profiling that measures an average 
signal from the amalgam of blast and immune microenvi-
ronment cells in the bone marrow, failing to address blast 
cell heterogeneity, blast and immune cell interactions, 
and the role of the immune microenvironment in clinical 
outcome. There has only been one study published utiliz-
ing a single-cell approach to analyze this rare leukemia. 
In this study, Granja et  al. analyzed samples from five 
adult MPAL patients and compared their findings to con-
trols for normal hematopoiesis [14]. They demonstrated 
that despite widespread epigenetic heterogeneity within 
the patient cohort, common malignant signatures across 
patients were observed. Pediatric MPAL research is criti-
cal because in other leukemias like AML significant dif-
ferences have been demonstrated between adult and 
pediatric leukemia microenvironments [55–57]. Also, the 
analysis by Granja et  al. only included one patient with 
B/My MPAL; hence they did not perform a compara-
tive analysis between the different B/My MPAL subtypes 
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[14]. Therefore, besides being the first study to character-
ize the single-cell tumor landscape in pediatric MPAL 
patients, our study is also the first study to compare sin-
gle-cell expression profiles between the two major MPAL 
subtypes.

Comparative analysis of gene expression patterns 
showed that the two MPAL subtypes, B/My and T/My 
MPAL, had distinct single-cell transcriptomic profiles. 
The B/My MPAL cases showed significant clustering 
overlap with B-ALL and AML. The T/My MPAL cases 
showed more overlap with T-ALL and AML. Individual 
differences between subtype populations were seen, 
likely due to differences in genomic drivers for individual 
cases. Previous large bulk genomic studies in pediatric 
MPAL have shown that B/My MPAL and T/My MPAL 
had distinct genetic profiles based on transcriptome and 
whole-genome sequencing [8]. B/My MPAL were shown 
to commonly have ZNF384 fusions, while T/My MPAL 
was associated with WT1 and FLT3 alterations. Avail-
able clinical grade cytogenetic and molecular profiling in 
our study did not reveal any ZNF384 fusions in our B/
My MPAL samples, but alterations in FLT3 were seen in 
one T/My MPAL sample. Interestingly, ZNF384 fusions 
are also commonly seen in B-ALL suggesting overlap-
ping biology between the two entities. Based on prior 
MPAL diagnostic criteria, often the switch in classifica-
tion from B-ALL and B/My MPAL resulted from isolated 
MPO expression seen on otherwise typical appearing 
B-ALL cells. Previous work by our group showed that B/
My MPAL cases with isolated MPO essentially clinically 
behaved like typical B-ALL, with an excellent response 
to ALL therapy [3]. The most recent WHO diagnostic 
criteria for MPAL published in 2022 [5] now accounts 
for the intensity of the lineage-defining marker (e.g., 
MPO), requiring it to be at least 50% when compared to 

expression in the most similar population (e.g., neutro-
phils for myeloid lineage). All MPAL samples in our study 
met these newly defined stricter criteria. Interestingly, 
among the four B/My MPAL samples analyzed in our 
cohort, one had a BCR-ABL translocation and one had a 
KMT2A-rearrangement, thus accounting for two major 
B/My MPAL categories defined by genetic abnormalities 
in the new criteria. Studies have also shown that T/My 
MPAL have a similar mutational profile to ETP-ALL [58], 
and more recent literature has shown that a subset of 
these cases, both in T/My MPAL and ETP-ALL, are asso-
ciated with BCL11B (14q32) rearrangements. One of our 
samples had a t(7;14) (q21;q32) abnormality. Comparison 
of T/My MPAL single-cell profiles with ETP and non-
ETP T-ALL cases showed greater overlap of T/My MPAL 
with ETP-ALL as one may expect; however, certain T/
My MPAL samples had distinct non-overlapping clus-
ters with greater myeloid antigen expression (LYZ, CD74) 
confirming this indeed is a separate entity. Overall, these 
findings suggest that the two MPAL immunophenotypic 
subtypes should be considered distinct entities and may 
have implications for differing treatment regimens, such 
as using more T-ALL-specific drugs like nelarabine for T/
My MPAL. While there is no clear consensus as to how 
to treat MPAL patients, more recent literature has sug-
gested utilizing an ALL-directed therapy approach first 
compared to AML therapy. Our results do support this 
as an initial approach given the overlap of MPAL with 
their corresponding ALL subtypes, but there remains 
wide heterogeneity among individual cases with some 
cases showing a much greater overlap with AML. As we 
continue to refine and improve our MPAL diagnostic cri-
teria, thereby excluding potential ALL cases that previ-
ously met a weaker MPAL definition, it will be interesting 
to see if the more recent literature suggesting improved 

(See figure on next page.)
Fig. 6  Exploratory analysis on T/My and B/My MPAL samples with relapse depicted differences in transcriptome profiles in comparison to samples 
with remission. A UMAP of Dx B/My MPAL cells (n = 10,591) annotated based on future clinical outcomes: relapse (Dx-Rel) or remission (Dx-Rem). 
The normal cells were annotated based on canonical markers (Fig. 1b). The B/My MPAL cells depict some overlapping Dx-Rem and Dx-Rel 
single-cell profiles on the unsupervised analysis. UMAP of Dx T/My MPAL cells (n = 11,031 cells) showing unique profile for Dx-Rel and Dx-Rem 
blasts with no overlap. B Venn diagram showing genes that are associated with MPAL remission or relapse in B/My and T/My MPAL. These genes 
were identified by comparing each subtype’s Dx-Rel and Dx-Rem blast cells profile and selecting significantly differentially expressed genes 
based on average log2FC > 0.25, and adjusted p-value < 0.05). The analysis identified 40 and 24 genes that are commonly upregulated in relapse 
and remission respectively at diagnosis. C Gene sets that are significantly associated with relapse (left) and remission (right) in MPAL at diagnosis. 
D Gene set enrichment analysis on the Dx-Rel and Dx-Rem blast cells in each MPAL subtype. The cell differentiation expanded index gene set 
depicted differential enrichment (Wilcoxon ranked test p-value < 0.05) between Dx-Rel and Dx-Rem blasts in both MPAL subtypes. E Cellular 
communication analysis based on ligand and receptor expression was performed to identify differences between remission and relapse outcomes 
at diagnosis. The pathways with significantly different information flow between remission and relapse (at Dx) B/My and T/My MPAL samples have 
been plotted as bar graphs. The information flow represents the sum of the communication probabilities of all cell types for the particular signaling 
pathway, and pathway names colored in pink and green representing enrichment for the Dx-Rel and Dx-Rem outcomes. F A chord diagrams 
for MHC-I signaling in Dx-Rel B/My MPAL cells. The left diagram shows the signaling between different cell types, from senders to receivers. The right 
diagram highlights the expression of ligand-receptor pairs estimated to interact between blasts and T-cells (green color represents Dx-Rem and red 
color represents Dx-Rel)
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response to ALL therapy holds true in the future. A pro-
spective clinical trial, which is a first for this rare disease, 
is now utilizing this treatment approach for de novo 
pediatric MPAL (NCT03959085).

Specific genes that were overexpressed in the blasts of 
both MPAL subtypes compared to other acute leukemias 
included CD81 and LMO2. CD81, which is a member of 
transmembrane 4 superfamily, has been associated with a 
poor prognosis in AML [59] and is also a known marker 
in B-ALL [60, 61]. Interestingly, preclinical models have 

shown that CD81 knockout promotes chemosensitiv-
ity and disrupts in  vivo homing and engraftment in 
ALL [62]. LIM-domain only 2 (LMO2) is overexpressed 
in T-ALL and plays a critical role in the regulation of 
hematopoietic cell development as well as in DNA repair 
[63]. Over-expression of LMO2 in diffuse large B-cell 
lymphoma was shown to result in the accumulation of 
DNA double-stranded breaks, contributing to tumor cell 
genetic instability and chemosensitivity to PARP inhibi-
tors [64]. Subtype analysis showed that B/My MPAL 

Fig. 6  (See legend on previous page.)
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blast-specific genes included AUTS2, MEF2A, RB1CC1, 
and HBEGF, whereas T/My MPAL blasts overexpressed 
PTEN, ESYT2, KMT2C, and PTGG1IP. Heparin-binding 
epidermal growth factor-like growth factor (HBEGF) has 
been implicated in several cancers including leukemias 
as an inducer of tumor growth [65–67], and has previ-
ously been targeted in various cancers with small mol-
ecule inhibitors [67–69]. PTEN is typically considered a 
tumor suppressor gene, with inactivation leading to the 
development of T-ALL and AML [70, 71], thus the sig-
nificance of PTEN overexpression in T/My blasts needs 
further exploration. Pathway enrichment analysis showed 
that HBEGF was involved in several enriched pathways 
in B/My MPAL, whereas PTEN was involved in the top 
affected pathways in T/My MPAL. Interestingly, both 
MPAL subtype blasts showed upregulated sphingo-
sine 1-phosphate receptor 2 (S1P2) signaling, but with 
opposite downstream effects. B/My MPAL blasts had 
increased S1P2 receptor activation resulting in the pro-
motion of cell survival and cell migration, while T/My 
MPAL blasts had elevated S1P2 receptor inhibitory sign-
aling resulting in inhibition of cell migration and cell pro-
liferation (Additional file 2: Fig. S10). S1P2 receptor has 
been researched as an inhibitor to invasion and metas-
tasis in tumor cells, and up-regulation of S1P2 receptor 
inhibitory signaling has been proposed as a promising 
anti-cancer therapy [72].

Comparison of our pediatric MPAL samples with adult 
MPAL data from the Granja et al. study [14] showed that 
MPAL samples cluster together more by subtype than 
age, further indicating the transcriptomic differences 
between the subtypes. While there are few differences 
between adult and pediatric samples in clustering loca-
tions, differentially expressed genes were found between 
the two age groups, with adult MPAL patients having 
higher expression of genes related to HSC regulation and 
function in the bone marrow, CD44 and U2AF1 [73, 74]. 
In addition, adult MPAL subtype blasts had higher levels 
of the stemness than pediatric subtypes, indicating that 
adult MPAL blasts are less differentiated than pediatric 
MPAL blasts.

Finally, we concluded our paper with an explora-
tory analysis looking at the association of baseline 
MPAL single-cell profile and response to ALL-directed 
therapy. More recent literature has shown that pediat-
ric MPAL patients with MRD at EOI have significantly 
poorer outcomes [4, 11]. In the multi-national iBFM-
AMBI2012 study, Hrusak et  al. showed that patients 
with MRD at EOI had a significantly worse event-free 
survival (EFS) and overall survival (OS), despite their 
analysis being complicated by the inclusion of a myriad 
of treatment regimens [4]. Oberley et  al. similarly also 
showed that MRD positivity was highly predictive of 

relapse and death. Based on these findings, we first per-
formed a comparative analysis by grouping our diagnos-
tic samples according to their response to ALL induction 
therapy  MRD: − , MRD + , or induction failure. Inter-
estingly, we did identify differences in gene expression 
profiles based on induction response, with differences 
seen in stemness, cell cycle patterns, and specific path-
way enrichments. However, given the limited sample 
size, a much larger sample size analysis will be needed 
to validate these interesting findings. We also performed 
a comparative analysis on overall remission vs relapse 
status and identified similar transcriptomic differences. 
Thus, while our findings are indeed preliminary and need 
to be validated with larger sample sets, it suggests that 
unique transcriptome profiles at diagnosis can be associ-
ated with response to ALL induction and overall therapy. 
Identifying these specific gene expression profiles associ-
ated with induction response in the separate MPAL sub-
types would allow for better risk stratification and more 
tailored therapy for MPAL in future prospective clinical 
trials.

Conclusions
Our data provides the initial framework of the single-cell 
landscape of pediatric MPAL. Comparison between B/
My and T/My MPAL subtypes showed distinct transcrip-
tome patterns and identified unique gene signatures and 
pathways specifically enriched in each subtype. T/My 
MPAL was shown to have more overlap with ETP-ALL 
cases, and a comparison between adult and pediatric 
MPAL blast signatures revealed only minor differences. 
We also saw differences in baseline transcriptome sig-
nature depending on the eventual response to ALL 
induction therapy, but a larger sample size is needed to 
validate these findings. Our future goal is to perform a 
more detailed integrative single-cell multiomic analysis 
on a larger set to pediatric MPAL samples, and to utilize 
newly identified signatures and targets for the develop-
ment of novel diagnostics and therapies in the future.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s13073-​023-​01241-z.

Additional file 1: Table S1. Detailed patient characteristics for pediatric 
MPAL samples analyzed in our study. For each MPAL sample analyzed, 
the sample ID, data source, diagnosis subtype, initial WBC (white blood 
cell count), PB (peripheral blood) blast percentage, BM (bone marrow) 
blast percentage, timepoint, induction regimen, EOI (end of induction) 
MRD (minimal residual disease) status, BM blast percentage at EOI, post 
induction therapy course, whether the patient relapsed or had refractory 
disease, whether the patient was alive or deceased at last f/u (follow 
up), and the time to death or last follow up (in days). Table S2. Flow 
cytometry characteristics of MPAL samples. The information includes the 
sample ID, diagnosis subtype, whether multiple blast populations were 
found, whether there was ETP-ALL or near ETP-ALL features, a description 
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of the peripheral blood flow analysis, a description of the bone marrow 
flow analysis, the bone marrow blast percentage by morphology, the 
distribution of immune cells in bone marrow based on flow, and the 
percentage of immune cell subsets in the single-cell dataset (percentage 
of entire sample). Table S3. Stemness signature that was used for stem 
cell enrichment analysis. The stem cell enriched signature of 189 genes 
associated with high expression in stem cells across multiple tissue and 
disease types was obtained from Palmer et al. [34] study. Table S4. MPAL 
subtype blast biomarker genes. The table list the gene after each filtering 
step described in Additional file 2: Fig. S1. Table S5. Sample information 
for bulk RNA-seq TARGET samples. The sample ID, acute leukemia subtype, 
vital status, overall survival, and event-free survival for each sample were 
retrieved from the TARGET web portal (https://​www.​cancer.​gov/​ccg/​
resea​rch/​genome-​seque​ncing/​target). Table S6. Top 40 differentially 
expressed genes (DEGs) between blast populations within T/My sample 
M2 and B/My sample M3. The top differentially expressed genes between 
blast subpopulations in B/My sample M3 (M3-My and M3-B) and in T/My 
sample M2 (M2-My and M2-T). DEGs analysis was performed for sample 
M3, comparing sample M3’s cells in clusters 0 versus 4, and for sample 
M2, comparing sample M2’s cells in clusters 4 and 7 versus 5. Please refer 
to Additional file 2: Fig. S2 for cluster information. Genes with adjusted 
p-value<0.05 and avg. log2FC>0.25 were considered significantly differ-
ently expressed, and the top 40 over-expressed genes were identified 
based on the highest avg. log2FC. Table S7. Significantly overexpressed 
genes in MPAL subtype blasts compared to healthy cells. The overex-
pressed genes were selected based on fold change (avg. log2FC > 0.25) 
and multiple test corrected p-value (Bonferroni correction, adjusted 
p-value<0.05). Table S8. Commonly overexpressed genes between MPAL 
subtypes. A) The significantly overexpressed genes (n=146, avg. log2FC 
> 0.25, adjusted p-value<0.05) in MPAL blast cells compared to healthy 
progenitor cells. B) The commonly significantly overexpressed genes (n = 
75) between B/My and T/My MPAL, when compared to healthy BM cells 
(Additional file 1: Table S7). Table S9. Sample information for comparison 
of MPAL with other pediatric acute and adult MPAL. The sample ID, acute 
leukemia subtype, data source, and cell count for each sample are listed 
that were used for analysis shown in Figs. 2, 3, and 4. Table S10. Enriched 
pathway for B/My MPAL and T/My MPAL blast biomarker gene sets. The 
final MPAL blast biomarker genes (Additional file 1: Table S4) were used for 
pathway enrichment analysis using the MetaCore platform that contains 
functions, pathways, and network models derived by systematically 
exploring peer-reviewed scientific literature and public databases. The 
pathways with p-value<0.05 were considered significant. Table S11. Flow 
cytometry characteristics of T-ALL samples. The information includes the 
sample ID, flow cytometry characterization, along with non-ETP, the ETP-
,ALL, and near ETP-ALL classification.

Additional file 2: Figure S1. A schematic overview describing T/My and 
B/My MPAL biomarker identification. Candidate markers were identi-
fied using the Seurat FindMarkers function, comparing MPAL subtype 
blast cell profile versus ALL, AML blast cells, and healthy immune cells 
(log2FC>0.25, adjusted p-value < 0.05, and percent expressed>0.5). The 
candidate differentially expressed genes were filtered using the Human 
Cell Atlas (HCA) healthy bone marrow dataset to identify genes with low 
expression in healthy data (average expression less than 0.5 in all clusters 
of HCA immune cells and hematopoietic stem cells (HSCs)). Figure S2. 
UMAP clusters of Mixed Phenotype Acute Leukemia and healthy cells. 
An unsupervised, KNN graph-based clustering method was applied 
to generate 26 distinct clusters of cells for the mixed phenotype acute 
leukemia (MPAL) and healthy bone marrow samples. These clusters are 
shown on dimensions UMAP_1 and UMAP_2 using the uniform manifold 
approximation and projection (UMAP) dimensionality reduction method. 
Figure S3. Dot plot with immune cell canonical marker expression for the 
MPAL and healthy cells. The y-axis shows the different MPAL blast clusters, 
and the x-axis shows the common immune cell markers. The dot color 
represents the level of expression, and the larger the dot the more of the 
cells in that cluster expressed the gene. Figure S4. Single-cell RNA expres-
sion of markers used for clinical diagnosis with flow cytometry. The violin 
plots show the log normalized, batch corrected expression values for each 
flow cytometry marker (with alternative gene names) in the MPAL sam-
ples’ blast cells. Figure S5. Feature plots highlighting cells for each MPAL 

sample. The cell locations of the four B/Myeloid MPAL samples (M1, M3, 
M5, M7) and the five T/Myeloid MPAL samples (M2, M4, M6, SCPCS000220, 
SCPCS000230) are highlighted in separate UMAP plots. Figure S6. 
Enriched GO Biological Processes in the genes significantly overexpressed 
(avg.log2FC>0.25, p-value<0.05) in MPAL subtypes. A) Top 20 enriched 
gene sets in the B/My MPAL blast cells as compared to healthy cells. B) 
Top 20 enriched gene sets in the T/My MPAL blast cells as compared to 
healthy cells. The size of the dot represents the number of genes that 
belong to a gene-set, the Gene Ratio represents the size of the overlap 
between blast cells overexpressed query genes and a given gene-set, and 
the color of the dots represent the significance of association based on 
“BH” adjusted p-values. Figure S7. UMAP single-cell clusters of Acute Leu-
kemias and healthy bone marrow cells. A) An unsupervised, KNN graph-
based clustering method was applied to generate 33 distinct clusters of 
acute leukemias and healthy bone marrow samples. B) Dot plot showing 
the percent of each blast cell type of acute leukemia contributing toward 
cell clusters. The clusters of interest are shown in the grey boxes. The dot 
size and color represent the proportional size of the cluster (number of 
cells in cluster / total cells in object) and percent contribution of blast cell 
type toward each cluster respectively. The red and blue colors represent 
th e high and low contribution of cell types in the clusters respectively. 
Figure S8. Average sample to sample distances between subtypes based 
on common over-expressed genes. The over-expressed genes (average 
log2FC>0.25 and adjusted p-value<0.05) were found when comparing 
sample blast cells to each other. To assess their differences, the Jaccard dis-
tance (1 – size of intersection divided by size of union) was calculated for 
each pair of samples. The average distance for the sample pairs between 
two subtypes was calculated and plotted on a heatmap. The blue color 
represents subtypes that are more different and pink represents subtypes 
that are more similar based on their common blast over-expressed genes 
between sample pairs. Figure S9. Expression of MPAL blast biomarker 
genes in the bulk RNA-Seq data. A) Scaled log2(expression+1) for each of 
the B/My MPAL blast biomarkers. B) Scaled log2(expression+1) for each of 
the T/My MPAL blast biomarkers. Transcripts per million (TPM) values for 
bulk RNA – Seq data were downloaded from the TARGET initiative portal 
(https://​www.​cancer.​gov/​ccg/​resea​rch/​genome-​seque​ncing/​target). The 
significance between groups was calculated using Wilcoxon rank tests, 
with “***” representing p-value<0.001, “**” representing p-value<0.01, “*” 
representing p value<0.05, and “ns” representing p>0.05. Figure S10. Path-
way enrichment of significantly over-expressed genes in MPAL subtypes 
blast cells. A) S1P2 receptor activation signaling pathway, with significant 
upregulation of HBEGF, MEK1/2 (MAP2K2), and MLCP (PPP1R12A) in the B/
My MPAL biomarker set and marked with the red square. B) S1P2 recep-
tor inhibitory signaling pathway, with PTEN, MLCP (PPP1R12A), MEK1/2 
(MAP2K2), and Alpha-actin (ACTN4) significant upregulation in the T/My 
MPAL biomarker set and marked with the red square. Figure S11. Top 
unique enriched Gene Ontology gene sets for T/My MPAL (A), non-ETP 
T-ALL (B), and near-ETP/ETP-ALL (C) blast marker sets. The gene ontol-
ogy analysis was performed using clusterProfiler and Biological Process 
GO categories with Benjamini–Hochberg P value < 0.05 are considered 
significant. Figure S12. Detailed view of IFN-alpha/beta signaling via JAK/
STAT pathway that was significantly affected (p-value<0.05) in the com-
monly over-expressed genes for Dx-Rel (future relapse) as compared to 
Dx-Rem (future remission) blast cells in both MPAL subtypes. The pathway 
enrichment analysis was performed using the MetaCore platform. The 
genes of the signaling pathway that were significantly up-regulated in 
the Dx-Rel blast cells are highlighted with a red dotted box. Figure S13. 
Cellular communication circle plots for Dx-Rel and Dx-Rem cells in MPAL 
subtypes. A) The differential number of interactions between Dx-Rel and 
Dx-Rem samples for each subtype. The cellular communication was esti-
mated based on the ligand and receptor expression between interacting 
cell types and shown with arrows. The thickness of the arrow represents 
the relative number of interactions among cell types. B) The differential 
interaction strength between Dx-Rel and Dx-Rem samples. Each arrow 
represents the relative strength of interactions among cell types. The 
arrows are colored in red and blue depending on the higher number or 
strength interactions in Dx-Rel or Dx-Rem samples respectively. C) CD70 
signaling in T/My MPAL Dx-Rel cells. The chord diagram shows the sender 
and receiver cell type, along with the ligand (CD70) and receptor (CD27).
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