
Introduction
Simulated datasets with known underlying disease 
mechanisms have been widely used to develop efficient 
statistical methods for deciphering the complex interplay 
between the genetic and environmental factors respon-
sible for complex human diseases, such as hypertension, 
diabetes and cancer [1-3]. Although genetic and environ-
mental risk factors have been identified for various 
human diseases, little is currently known about how 
genes interact with environmental factors in these 
diseases. Because the number of possible interactions 
between and within genetic and environmental factors is 
large, it is difficult to specify and simulate samples for a 
disease caused by multiple interacting genetic and 
environ mental factors. Consequently, existing studies 
have focused on simple models with low-order inter-
actions between a few genetic and environmental factors, 
using specialized simulation programs. Here, I discuss a 

recent article by Amato and colleagues in BMC Bioin-
formatics [4], which describes a mathematical model to 
characterize gene-environment interactions (GxE) and a 
computer program that simulates them using biologically 
meaningful inputs. I evaluate the usefulness of the 
authors’ method for simulating samples with GxE for 
future studies.

Specifying a GxE model for disease risk
A disease model is needed before a sample can be 
simulated. If the number of genetic factors that cause a 
disease is G, we can denote each genetic factor by gi 
(where i = 1,…,G), and each of these will have three 
diploid genotypes. Similarly, with E environmental factors, 
we can denote these xj, and each would have bj possible 
discrete values (where j = 1,…,E). A complete GxE model 
would then have 3G × ΠE

j=1bj possible items for each 
combination of genetic and environmental factors. In 
addition, the model would require this same number of 
parameters to specify the risk associated with each item. 
Although such models can be used to specify arbitrary 
gene-gene and gene-environment interactions, estimat-
ing a large number of parameters from empirical data is 
challenging and usually not feasible.

Amato et al. [4] propose a statistical model, called the 
Multi-Logistic Model (MLM), that is designed to 
describe disease risk in datasets that simulate case-
control samples. MLM, which is a natural extension of 
logistic models used by others [2,3], allows the specifi-
cation of disease risks caused by all genetic factors and by 
interactions between genotype and all environmental 
factors. It reduces the required number of parameters to 
3G × (1 + E) by making the following assumptions: that 
the log odds ratios of environmental factors are additive; 
and that the different environmental factors are 
independent and additive. �e latter assumption means 
that only 1 + E parameters are required for each com-
bina tion of genotypes because the impact of bj levels of 
exposure for each environmental factor is represented by 
one parameter and no interaction between environmental 
factors is allowed. �ese assumptions limit the applica-
tion of MLM in studies with correlated environmental 
factors (for example, smoking and drinking [5]). �e 
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simplified model therefore cannot be used to model 
complex GxE structures, such as the development of lung 
cancer caused by smoking and genetic factors because 
the impact of smoking is highly correlated with age, 
which is a common covariate in such models. Despite 
this limitation, the MLM approach could be made more 
generally applicable by making adjustments, such as by 
applying principal component analysis, to the 
environmental factors to ensure their independence.

Even with the reduction of parameters afforded by the 
assumption of independence, the number of parameters 
in an MLM is still large if multiple genetic and environ­
mental factors are involved. For example, an MLM 
requires 18 parameters when there are two genetic 
factors and one environmental factor. This is why the 
authors [4] focused on a version of MLM with only one 
genetic factor and one environmental factor (giving only 
six parameters), which they implemented in Matlab in 
their program Gene-Environment iNteraction Simulator 
(GENS). Furthermore, users of GENS can choose from 
four simpler models of GxE (Figure 1): a genetic model 
(no environmental factors, three parameters), an environ­
mental model (no genetic factors, two parameters), a 
gene-environment interaction model (genotypes do not 
directly affect disease risk, four parameters), and an 
additive model (environmental factors have the same 
effect in all genotypes, four parameters). These models, 
although incomplete, should be sufficient for most 
theoretical studies of GxE models with one genetic factor 
and one environmental factor.

Because changing an interaction item might change 
many properties (such as the marginal effects of a model) 
in an unpredictable way, it is difficult for users to adjust 
parameters in a GxE model to control for key epidemio­
logical features of a disease such as population incidence. 
Amato et al. [4] used an innovative system, the 
Knowledge-Aided Parameterization System (KAPS), to 
translate user input in familiar epidemiological 
terminologies, such as model of inheritance, into the 
parameters used in MLM, which makes it easy for users 
to specify model parameters that are epidemiologically 
sensible. Other constraints, such as relative risk between 
homozygotes and heterozygotes, are added to facilitate 
the search for suitable parameters. KAPS works well for 
models with one genetic and one environmental factor 
because the number of epidemiological variables that 
users need to input is similar to the number of model 
parameters. For a general GxE model with multiple 
genetic and environmental factors, the number of 
epidemiological features of the disease and individual 
genetic and environmental factors will be far less than 
the number of model parameters because of the large 
number of interaction terms in MLM. Because multiple 
models with different interaction terms could have the 

same epidemiological features, additional constraints are 
required to limit the number of plausible models, and a 
complex search algorithm might be needed to 
parameterize MLM with sensible interaction parameters. 
An example of fitting a more complex model was 
presented by Moore et al. [6], who used a genetic 
algorithm to discover, among a large number of plausible 
theoretical models, a special set of high-order gene-gene 
interaction models in which genes influence disease risk 
only through interactions with other genes, without any 
main effects.

Applicability of the simulation tool
Various different methods have been used to simulate 
case-control samples based on penetrance models. 
Before applying their GxE model, Amato et al. [4] 
simulated a population to determine the affection status 
of each individual (that is, whether or not that individual 
is affected by the disease). There are two possible ways of 
doing the simulation. The first method is to simulate a 
large population and then select case-control or other 
types of samples, such as pedigrees, from it. This 
approach allows maximum flexibility in the specification 

Figure 1. Four GxE interaction models provided by the 
Knowledge-Aided Parameterization System (KAPS): (a) a genetic 
model, (b) an environmental model, (c) a gene-environment 
interaction model and (d) an additive model. Each curve 
represents the relationship between disease risk (y-axis) and 
an environmental factor (x-axis) for individuals with a particular 
genotype (AA, Aa or aa) at a disease-predisposing locus (DPL). The 
environmental model has only one curve because the relationship 
between environmental exposure and disease risk is identical for all 
genotypes. Adapted from Amato et al. [4].
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of a penetrance model and is usually used in a forward-
time approach in which a population is simulated by 
evolving from a founder population forward in time 
under the influence of multiple genetic and demographic 
forces [7]. This method can be inefficient if the disease is 
so rare that a large population needs to be simulated to 
obtain enough cases. If, alternatively, a disease model is 
simple enough, Pr(gi, xj | affection status) (that is, the 
probability that the genotype is gi and the environmental 
factor value is xj given the affection status) can be deter­
mined from Pr(affection status | gi, xj) together with other 
parameters, such as frequencies of these factors and 
disease prevalence. If this is the case, genotype and 
environmental factors can be simulated directly and only 
the required number of cases and controls needs to be 
simulated. This second approach has been used by many 
simulation programs, such as HapSample [8], hapgen [9] 
and GWAsimulator [10]. As a compromise between these 
two approaches, a rejection-sampling algorithm can be 
used to simulate samples without simulating a large 
population (for example, genomeSIMLA [11]). This 
method repeatedly simulates individuals, assigns affec­
tion status, and collects cases and controls until enough 
samples have been simulated. This approach is suitable 
for situations in which environmental factors can be 
independently simulated for each individual, and could 
be used to improve the efficiency of GENS.

Because genotypes at the disease-predisposing loci 
(DPL) of a genetic disease might not be available, many 
statistical methods rely on linkage disequilibrium (LD) 
between DPL and their surrounding markers to indirectly 
map the DPL. GENS does not consider LD between DPL 
and surrounding genetic markers, so more sophisticated 
simulation methods are needed to simulate linked markers 
using genetically related individuals. Existing approaches 
include: resampling from existing data (for example, 
HapSample [8] or hapgen [9]); reconstructing from 
statistical properties obtained from existing sequences 
(GWAsimulator [10]); simulating a complete genealogy 
(coalescent tree) of a sample or population (for example, 
cosi [12], GENOME [13]); and evolving forward in time 
from a population [7,11]. The power, flexibility, perfor­
mance and quality of simulated samples vary greatly from 
program to program. For example, forward-time methods 
are most flexible because they can follow the evolution of a 
real population closely, but they are inefficient because 
they simulate all ancestors, including those who do not 
have offspring in the simulated population. GWAsimulator 
[10] retains the short-range LD structure of the human 
population (or more specifically, the HapMap sample) 
but discards long-range LD because the method 
simulates haplotypes according to short-range LD 
patterns obtained from the HapMap sample [14] using a 
sliding-window approach.

Although it is generally possible to simulate large 
populations using these methods and then apply the GxE 
disease model proposed by Amato et al. [4], several 
obstacles remain. For example, many coalescent-based 
simulation methods [13,15] simulate markers with 
varying location and allele frequency, so it is difficult to 
apply a fixed-disease model to replicate simulations. If a 
forward-time approach is used to simulate samples with 
the same set of markers, sample frequencies of the DPL 
will vary because of the impact of random genetic drift, 
unless special algorithms are used to control allele 
frequencies [7]. Even if samples with the same allele 
frequencies are simulated, the individuals generated may 
not have enough genetic variations to allow adequate 
modeling with a GxE model because of insufficient 
combinations of genetic and environmental factors. For 
example, from a sample of 20,000 sequences of 40 tightly 
linked markers over a 100 kb region on chromosome 17 
simulated using hapgen [9], there were only 74 unique 
haplotypes because all the haplotypes were derived from 
the 63 unique haplotypes in the HapMap CEU sample 
[14] using an imputation approach.

Conclusions
Amato et al. [4] have provided a mathematical model for 
the specification of interactions between genetic and 
environmental risk factors. Their simulation program 
GENS can be used to generate simple, independent case-
control samples with clear epidemiological interpreta­
tions and can be used to validate a statistical method or 
compare the performance of several statistical methods 
under specific assumptions. However, because real-world 
studies usually involve a large number of linked markers, 
a useful statistical method should be able to identify 
informative variables (DPL and environmental factors) 
from a large number of markers and covariates [16], or be 
efficient enough to be used to search for GxE signals 
exhaustively [17]. The performance of statistical methods 
that detect GxE in complex human diseases, including 
sensitivity, specificity and ability to handle linked loci, 
should be tested against simulated samples of long 
genome sequences with realistic disease models and LD 
patterns. Although progress has been made in both the 
simulation of long genome sequences [10,15] and GxE 
disease models [4], the combination of these two 
approaches would produce realistic samples that could 
greatly aid the study of GxE in complex human diseases.
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