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Abstract

We present Beyondcell, a computational methodology for identifying tumour cell subpopulations with distinct drug
responses in single-cell RNA-seq data and proposing cancer-specific treatments. Our method calculates an
enrichment score in a collection of drug signatures, delineating therapeutic clusters (TCs) within cellular
populations. Additionally, Beyondcell determines the therapeutic differences among cell populations and generates
a prioritised sensitivity-based ranking in order to guide drug selection. We performed Beyondcell analysis in five
single-cell datasets and demonstrated that TCs can be exploited to target malignant cells both in cancer cell lines
and tumour patients. Beyondcell is available at: https://gitlab.com/bu_cnio/beyondcell.
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Background
Tumour heterogeneity (TH) refers to genetic and epi-
genetic differences of the same tumour type between pa-
tients, between tumours in a single patient, and within
the cells of a tumour. It contributes to the medical com-
plexity of cancer treatment and can lead to drug resist-
ance, therapeutic failure and higher lethal outcome [1].
TH is closely related to tumour evolution which has
been described as branching clonal evolution due to the
accumulation of somatic mutations [2]. The heterogen-
eity of cancer cells, tumour evolution and clonal dynam-
ics introduce significant challenges in designing effective
treatment strategies. Unfortunately, these issues are not
satisfactorily addressed in routine clinical practice as sys-
tematic efforts to consider inter-patient TH when choos-
ing therapies are still limited, while they are extremely
rare for intra-TH [3, 4].

Single-cell RNA sequencing (scRNA-seq) has become
an established technology to dissect TH at the transcrip-
tional level, revealing high-resolution cellular compos-
ition and dynamics and offering an unprecedented
opportunity to address TH therapeutically [5–7]. For in-
stance, scRNA-seq studies have been successfully
employed to identify novel cancer cell subpopulations
[8], tumour biomarkers [9], drug resistance pathways
and therapeutic targets [10]. In addition, large-scale pro-
jects focused on obtaining a comprehensive molecular
and pharmacological characterisation of the cancer cell
lines have provided valuable datasets relating gene ex-
pression signatures with drug response and treatment
sensitivity. Some examples include the Cancer Cell Line
Encyclopedia (CCLE) [11], the Genomics of Drugs Sensi-
tivity in Cancer (GDSC) [12], the Cancer Therapeutic
Response Portal (CTRP) [13] and the Drug Repurposing
Hub/LINCS [14].
In this situation, it is reasonable to hypothesise that

drugs (or drug combinations) capable of targeting TH at
single-cell resolution can be identified by integrating
drug response profiles and scRNA-seq data in order to
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discover therapeutic clusters (TCs), which we have de-
fined as groups of cells with a similar drug response.
This would help to address the tumour therapeutic com-
plexity, revealing the impact of TH in response to drugs
and the scope of tumour cells whose therapeutic ap-
proach could be managed with approved drugs, clinical
trials or drug repositioning strategies. However, there
are no current computational methodologies capable of
relating single-cell gene expression and high-throughput
drug screening datasets to suggest knowledge-driven
treatments. To address these challenges, we developed
Beyondcell (https://gitlab.com/bu_cnio/beyondcell) [15],
a novel method for detecting tumour cell subpopulations
with distinct drug response in order to estimate the
tumour therapeutic complexity and propose differential
drugs to target cell subpopulations, experimental condi-
tions or phenotypes in scRNA-seq experiments. Our
analysis covers the detection of TCs as well as the visual-
isation of results for biological and clinical interpret-
ation. We have applied Beyondcell to five different
studies focused on cancer therapeutic heterogeneity,
spanning cancer cell lines [16–18], primary cancer sam-
ples [19] and mouse-derived xenografts [5]. Our results
demonstrated that Beyondcell can characterise single-
cell variability in drug response and recapitulate the biol-
ogy of the datasets analysed. Beyondcell is able to reveal
sensitive, innate and acquired drug-resistant cell subpop-
ulations in cell lines and propose drugs to target them.
Beyondcell also allowed us to explore tumour heterogen-
eity in patients relating it to clinical drug response data
predicting responders and non-responders to immuno-
therapy in melanoma and suggesting drugs to overcome
drug resistance in lung cancer patients.

Methods
Dataset processing
A re-analysis of the samples was applied using the bol-
lito pipeline (https://gitlab.com/bu_cnio/bollito) [20],
which enables to perform automated cell filtering, data
normalisation and integration, cell cycle regression, ex-
pression cluster detection and differential expression via
Seurat v3 [21].

Beyondcell workflow and therapeutic clusters
An analysis with Beyondcell (https://gitlab.com/bu_cnio/
beyondcell) [15] starts with a single-cell expression
matrix and a collection of drug signatures: the drug per-
turbation (PSC) and the drug sensitivity (SSC) collections
containing 4690 and 819 signatures respectively [11–14].
PSC captures the transcriptional changes induced by a
drug, while SSC contains signatures reflecting the tran-
scriptional status of sensitivity or resistance prior to drug
treatment (Fig. 1a).

Our method calculates the Beyondcell Score (BCS)
which estimates, for each cell in the preprocessed single-
cell expression matrix, the enrichment in every drug sig-
nature in the specified collections. The BCS ranges from
0 to 1 and measures the cell perturbation susceptibility
(using the PSC) or the predicted sensitivity to a given
drug (using the SSC). The BCS can also evaluate the
cells’ functional status using functional gene sets such as
molecular pathways, or cancer hallmarks. The calculated
BCS matrix allows the determination of therapeutic clus-
ters (TCs) within cellular populations defined as ‘a set of
cells that share a common response to a set of drugs’. In
order to find potential TCs, a clustering analysis is ap-
plied to the BCS matrix where cells are grouped by their
differential response to the selected drugs. For each
drug, Beyondcell also calculates the switch point (SP),
which reflects the homogeneity of the drug response
throughout the single-cell dataset (Fig. 1b). Thus, the
most therapeutically homogeneous tumours would be
those in which each and every one of their cells re-
sponds in the same way to a certain drug, either with a
sensitivity (SP = 0) or resistance (SP = 1) response, while
a heterogeneous response would be represented by
intermediate SPs. Then, the BCS matrix and the SP are
used to generate a Uniform Manifold Approximation
and Projection (UMAP), enabling the visualisation of the
TCs reflecting the homogeneity in the drug responses
within cellular populations, and to highlight in TC drug
response, experimental conditions, cell subtypes, bio-
marker expression and cellular functional activity. Add-
itionally, Beyondcell determines therapeutic differences
among cell populations and generates a prioritised rank-
ing of the differential sensitivity drugs between chosen
conditions to guide drug selection (Additional file 1:
Supplementary Methods and Figures).

Data description
The Library of Integrated Network-based Cellular Signa-
tures (LINCS, http://www.lincsproject.org) [14] is a cata-
logue of gene expression data associated with cell lines
exposed to a variety of perturbing agents, such as small
molecules (about 5500), FDA drugs (~ 1300) and shRNA
silencing (22,119 genetic perturbagens). LINCS, based
on L1000 high throughput technology, is an extension of
the Connectivity Map, which has been successfully used
for drug repositioning [22]. From the ~ 20 K small mole-
cules tested in the LINCS L1000 dataset, only those with
an identifiable common drug name were selected. This
reduced the number of drugs to 4690. In the CCLE [11],
28 drugs were tested, and the mRNA expression of 1037
cell lines was profiled using Affymetrix U133Plus2 ar-
rays. The gene-centric RMA-normalised mRNA expres-
sion data, the cell line information and the drug
response data from Cancer Cell Line Encyclopedia were
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downloaded from the CCLE data portal (https://portals.
broadinstitute.org/ccle/home). In the CTRP [13], 545
drugs (single or combination) were tested against 887
cell lines. We downloaded the drug response data of the
CRTP 2.1 project from the CTD2 Data Portal (https://
ocg.cancer.gov/programs/ctd2/data-portal). The gene ex-
pression data used in order to obtain the CTRP expres-
sion signatures were those of the CCLE. Of the 887 cell
lines, 805 were present in the CCLE dataset. In the
GDSC data [12], 265 compounds corresponding to 250
different drugs were tested against 1074 cell lines. Cell
lines were profiled for gene expression using the Affy-
metrix Human Genome U219 array. Expression data
were normalised using RMA [23]. Drug response data
and preprocessed mRNA gene expression data were
downloaded from the GDSC web portal (http://www.
cancerrxgene.org/downloads). The release 21Q1 of the
Achilles dataset was downloaded from the DepMap por-
tal [24].

Signature generation
A gene expression signature is a general model for the
representation of the transcriptional changes associated
to a given biological phenotype or perturbation. In this
study, we have considered two expression signature collec-
tions: the PSC captures the transcriptional changes induced
by a drug; while the SSC captures the sensitivity to the drug

effect. In both cases, these expression signatures are ob-
tained from a differential expression analysis, although
using different designs. Despite its different biological in-
terpretations, both types of signature were represented as
the two gene sets formed by the N most upregulated and
downregulated genes (the UP and DN genesets). Several N
were tested (50, 100, 250 and 500), and no significant
disagreement was found between the top synergistic and
antagonistic interactions (data not shown). Thus, following
Iorio et al. rationale [25], N was taken as 250.

Drug perturbation signature collection (PSC)
Drug-induced expression signatures were obtained from
experiments in which the transcriptional state of the cell
is measured before and after treatment with the drug.
This makes it possible to study the transcriptional effect
of the drug, that is, it informs on whether the transcrip-
tional state of each cell is more similar to that of un-
treated or treated cells. But it also allows us to predict
sensitivity under the signature reversion principle, which
aims at the identification of drugs inducing a transcrip-
tional response complementary to that of the disease. In
order to obtain consensus expression signatures for each
drug, a differential expression analysis was performed on
control vs treated cells using limma [26]. Full details of
PSC signature collection are available at Additional file 1:
Supplementary Methods and Figures.

Fig. 1 The Beyondcell workflow and Beyondcell switch point. Beyondcell is a methodology for the identification of drug vulnerabilities in scRNA-
seq data. Using Beyondcell, we have identified the presence of therapeutic clusters in our data, defined as sets of cells sharing a common
behaviour towards a collection of drugs. a Given two inputs, an scRNA-seq expression matrix and a drug signature collection—either the drug
perturbation (PSC) or the drug sensitivity (SSC) collections or a user-provided GMT file/ranked matrix—Beyondcell calculates a score (BCS) for each
drug-cell pair. The resulting BCS matrix is used to determine the presence of therapeutic clusters, which can be visualised using a UMAP in
Beyondcell. A sensitivity-based ranking can be obtained in order to prioritise the best hits. b The scaled BCS ranges from 0 to 1 and measures the
cell perturbation susceptibility (when using the PSC) or the predicted sensitivity to a given drug (when using the SSC). The BCS can also be used
to evaluate the cells’ functional status if functional signatures are applied. Furthermore, a switch point (SP) is calculated for each analysed
signature, by determining the value in the 0 to 1 scale where cells switch from a down-regulated status to an up-regulated one. Thus, the most
therapeutically-homogeneous tumours would be those in which each and every one of their cells responds with the same directionality to a
certain drug, either towards sensitivity (SP = 0) or resistance (SP = 1), while a heterogeneous response would be represented by intermediate SPs
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Drug sensitivity signature collection (SSC)
Drug-induced expression signatures were obtained from
pharmacogenomics experiments in which the pharmaco-
logical response to a drug and the transcriptional state
before treatment were considered. In order to obtain the
expression signature, we considered the area under the
curve (AUC) as a measure of drug response. For each
drug, we performed a differential expression analysis be-
tween AUC high cell lines and AUC low cell lines by
considering the AUC as a continuous variable using the
limma R package. The area under the curve (AUC) was
used as the measure of drug response; as contrary to
IC50, it can always be estimated without extrapolation
from the dose-response curve and also because it has
shown more accuracy in the prediction of drug response
[27]. In all the projects considered, the tumour origin of
the cell lines were considered as confounding variables.
In the CCLE, the covariate was created by combining
the Site.Primary and the Histology information of the
cell line. In the GDSC 2.0, the variable Site and in the
CTRP, the ‘CCLE primary Site’ was used.
Further details of SSC signature collection are available

at Additional file 1: Supplementary Methods and
Figures.

Functional pathways
The Beyondcell package [15] also includes a small col-
lection of curated functional pathways obtained from the
Molecular Signatures Database (MSigDB) [28]. These
are meant to give the user some insight about the cells’
viability and status. These pathways are related to the
regulation of the epithelial-mesenchymal transition
(EMT), cell cycle, proliferation, senescence and apop-
tosis. Furthermore, the package is able to accept external
signatures in GMT format or as ranked matrices

Beyondcell score calculation
The Beyondcell score evaluates the activity of a signature
of interest in a single-cell RNA-seq experiment. The
transcriptomics data needs to be pre-processed, meaning
that proper cell-based quality control filters, as well as
normalisation, scaling and clustering of the data, should
be applied prior to the analysis with Beyondcell. When
analysing a bidirectional gene signature (a signature with
separate sets of upregulated and downregulated genes),
the Beyondcell score is independently obtained for each
signature mode. The individual sum of the expression is
calculated and divided by the number of genes in the
given signature that are present in the single-cell expres-
sion matrix. The obtained raw scores are normalised in
order to penalise cells with a great number of zeroes
and/or with outliers. The individual up and down nor-
malised scores are summed and rescaled between 0 and
1 by calculating their switch point (SP). In cases where

the gene signature is unidirectional, all steps remain the
same, although the rescaling will only be applied to one
set of normalised scores (see full details in Additional
file 1: Supplementary Methods and Figures).

Drug-background selection
In order to obtain TCs, the Beyondcell methodology can
optionally generate a background score matrix. The
background score matrix allows the user to reduce the
computation time. It aims to characterise the heterogen-
eity of the drug responses in the whole dataset, by using
a reduced collection of drugs that is able to capture the
main differences between individual cells. To generate
this background selection, the drug specificity score
(DSS) of the whole PSC collection has been calculated
and the first and last decile have been selected. Here, the
rationale is the following: for each drug, the DSS score
quantifies the similarity between the induced expression
patterns across cell types. And while some drugs induce
similar patterns across distinct cell types, the majority of
them have different effects across all of them [29].

Regression of unwanted sources of variation
After obtaining the normalised and scaled Beyondcell
scores, we observed that the normalisation step was not
sufficient to avoid the correlation between sample-level
metrics (number of genes, number of UMIs or even cell
cycle status) and the calculated scores. To correct for
this, we have implemented a regression function. bcRe-
gressOut removes the effect of all unwanted sources of
variation from the scoring matrix in two steps: first, it
imputes missing data (if necessary) using a k-nearest
neighbours (KNN) algorithm; second, it obtains the re-
siduals derived from the regression model via QR de-
composition. The obtained residuals can then be used
for the downstream dimensional reduction steps.

Therapeutic clusters
The BCS matrix, including the computed scores for all
drugs of interest, can be used as an input for a dimen-
sionality reduction and clustering analysis. In this step,
cells are grouped by their differential response to the
analysed drugs. A Uniform Manifold Approximation and
Projection (UMAP) allows the visualisation of the identi-
fied TCs. With this analysis, cells can be classified into
distinct TCs, which represent sets of cells sharing a
common response to a particular drug exposure.

Drug prioritisation
The bcRank function computes the BCS matrix statis-
tics. In particular, it calculates the switch point, mean,
median, standard deviation, variance, minimum, max-
imum, proportion of NaN and residuals’ mean of each
signature. We recommend prioritising drugs taking into
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account both the switch point and the residuals. The
Beyondcell package includes the function bc4Squares,
which helps to visualise this prioritisation. A 4 squares
plot consists in a scatter plot of the residuals' means (x-
axis) vs the switch points (y-axis) of a specified cluster
(either a TC or a group defined by experimental condi-
tion or phenotype). The 4 quadrants are highlighted: the
top left and bottom right corners contain the drugs to
which these cells are least/most sensitive, respectively.
The centre quadrants show the drugs to which the se-
lected cells are differentially insensitive or sensitive when
compared to the other clusters.

Summary of datasets analysed to validate Beyondcell
We have applied Beyondcell to 5 studies featuring sc-
RNASeq: (i) the Ben-David et al. study [16] focused on
dissecting the therapeutic heterogeneity of 27 strains
from the MCF7 cancer cell line after exposure to 321
anti-cancer compounds; (ii) Ho. and colleagues dataset
[17], which identified drug-resistant cellular populations
in melanoma cell lines, after exposure to BRAF inhibi-
tors; (iii) the Pan-Cancer scRNA-seq dataset consisting
on 198 cancer cell lines analysed by Kinker et. al. [18];
(iv) Jerby-Arnon et al. [19] studying malignant cells from
melanoma patients resistant to immunotherapy and (v)
Stewart et al. [5], focused on circulating tumour cells de-
rived from mouse xenografts of small cell lung cancer
patients undergoing chemotherapy, Further details about
the preprocessing steps and Beyondcell analysis [15] are
available in Additional file 1: Supplementary Methods
and Figures.

Results
Reliability of the Beyondcell score and its application in
cancer cell lines under drug exposure
We applied Beyondcell to the Ben-David et al. dataset
[16] to demonstrate the reliability of the BCS and to val-
idate its usefulness for identifying drug-response cell
subpopulations. This study dissects the genetic and tran-
scriptional heterogeneity within cancer cell lines, provid-
ing an scRNA-seq dataset that includes 7101 cells
obtained from one single-cell-derived clone from the
MCF7 cell line (MCF7-AA) exposed to bortezomib.
Cells were collected before and after 12, 48 and 96 h of
drug exposure (t0, t12, t48 and t96) to study its antipro-
liferative effects. Also, a drug screening of 321 anticancer
compounds was performed to study drug response het-
erogeneity across 27 strains of the MCF7 breast cancer
cell line.
First, to demonstrate the reliability of the BCS, we com-

puted BCS for each compound using SSC drug signatures
to the collected MCF7-AA cells at t0. We found that me-
dian BCS obtained with SSC signatures for cells at t0 correl-
ate significantly (R = − 0.19, p = 8e−03) with MCF7-AA

cell viability measures reported by Ben-David et al. [16]
after treatment, demonstrating that BCS reflects drug sensi-
tivity (Fig. 2a). When we employed PSC signatures, drugs
were then classified in three groups: chemotherapy, tar-
geted therapy and others (including immunotherapy, hor-
mone therapy and photodynamic therapy). The BCS for
targeted therapies showed a significant correlation with
MCF7-AA cell viability (R = − 0.24, p = 8.4e−03) (Add-
itional file 1: Fig. S1A) while the rest of the therapies were
not found significant. This could suggest that PSC signa-
tures for targeted therapies reflect more accurately which
cells are more likely to respond than chemotherapy
signatures.
Next, we were interested in evaluating Beyondcell’s ability

to identify distinct drug-response cell subpopulations before
and after bortezomib exposure. Beyondcell’s analysis with
the PSC collection clearly separates the cells into discrete
clusters, in contrast to the mixed cell groups found using
transcriptional profiles. The resulting therapeutic clusters
not only separated bortezomib-treated and untreated cells
but also retrieved drug exposure time-points. By focusing
on a PSC bortezomib expression signature, t12 and t48 cells
reflected the perturbation status induced by bortezomib in
contrast to t0 cells. Interestingly, t96 cells reverted to a pre-
perturbation status for the bortezomib signature, highlight-
ing the reversible inhibitory capacity of this proteasome in-
hibitor [30] (Fig. 2b). In particular, cells were more sensitive
to bortezomib when combined with SNX-2112, an HSP90
inhibitor, than in treatment with bortezomib alone, suggest-
ing its role as a sensitiser to bortezomib treatment (Add-
itional file 1: Fig. S1B). Finally, we applied Beyondcell
removing the expression signatures of bortezomib from the
PSC collection in order to demonstrate that the therapeutic
clusters are not solely driven by the effect of bortezomib
signatures and that the remaining signatures are able to res-
cue the biology of untreated and treated cells (Additional
file 1: Fig. S1C). In summary, in this study, we validate the
BCS as a measure of drug sensitivity, determining its signifi-
cant correlation with drug screening experimental data. In
addition, we demonstrate Beyondcell’s utility to recapitulate
drug response in the MCF7 cancer cell line and propose
single and drug combinations to sensitise the cells.

Analysis of BRAF inhibitor sensitive and resistant
subpopulations in melanoma cells
Next, using data from a 451HLu human melanoma cell
line treated with BRAF inhibitors (BRAFi), we evaluated
Beyondcell’s ability to identify drug-resistant cellular
populations and to propose drug treatments [17].
Beyondcell analysis with SSC drug signatures recapitu-
lated ‘parental’ and ‘BRAFi-resistant’ cell populations
and identified 6 different therapeutic clusters shown in a
Beyondcell UMAP plot where cells are coloured accord-
ing to the treatment condition or the Beyondcell
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therapeutic cluster. Therapeutic cluster 5 (TC5) included
both parental and resistant cells. A small fraction of the
parental cells in TC5 (15%) expressed BRAFi-resistance
markers like AXL, NRG1, DCT and FGFR1 that are also
expressed in BRAFi-resistant cells, showing that they were
clonally selected from the parental population contribut-
ing to the resistance (Fig. 2c; Additional file 1: Fig. S2).
Additionally, Beyondcell identified specific drugs to

target TC5, BRAFi-resistant and parental cells. For

instance, cells in cluster 5 are differentially sensitive to
dasatinib (SRCi) and unresponsive to dinaciclib (CDKi)
and gemcitabine. On the other hand, cells in the resist-
ant condition are differentially sensitive to bardoxolone
methyl (NF-kBi) and unresponsive to AZD6482 (PIK3i)
(Additional file 1: Fig. S3; Additional file 2: Table S1).
MEK inhibitors (MEKi) are shown to target 451HLu
cells including pre-resistant clones (TC5). For instance,
trametinib had positive Beyondcell scores in each

Fig. 2 Reliability of the Beyondcell score and its application in cancer cell lines under drug exposure. a Median BCS obtained with SSC signatures
for cells at t0 correlate negatively (R = − 0.19, p = 8e−03) with MCF7-AA viability measures reported by Ben-David et al. [16]. b Using BCS
obtained with PSC signatures, Beyondcell is capable of clustering MCF7-AA cells treated with bortezomib [16] into therapeutic clusters that
overlap with treatment times. Left: UMAP plot of the integrated Seurat object coloured by treatment time; Centre: UMAP plot of the Beyondcell
object also coloured by treatment time; Right: UMAP plot of the Beyondcell object coloured by bortezomib BCS. Untreated cells (t0) are sensitive
to bortezomib whereas cells undergoing treatment (t12 and t48) are insensitive. After treatment during 72 h followed by drug wash and 24 h of
recovery, cells at 96 h (t96) restore their sensitivity to this drug. c Beyondcell UMAP plot for the Ho et al. [17] dataset and the SSC drug signatures.
Top left: cells coloured according to the treatment condition; Top right: cells coloured by Beyondcell’s therapeutic clusters; Bottom: Beyondcell
UMAP plot showing the summed expression of several BRAF inhibitor-resistant biomarkers (JUN, WNT5A, PDGFRB, EGFR, NRG1, FGFR1 and AXL).
d Histogram representing trametinib Beyondcell scores in each therapeutic cluster
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therapeutic cluster obtained for SSC drug signatures,
showing a higher BCS score (higher sensitivity) in TC5,
and therefore, it could be proposed to target BRAFi-
unresponsive cells. In fact, MEKi is a standard treatment
in advanced melanoma patients in combination with
BRAFi (31) (Fig. 2d; Additional file 1: Fig. S4A). We ob-
served that TC5 cells were also grouped in expression
UMAPs overlapping with the scRNA-seq expression
cluster 2 (EC2), suggesting a direct relationship between
the drug response profiles and gene expression patterns
(Additional file 1: Fig. S4B). In order to identify novel
genes involved in BRAFi-resistance, we performed a dif-
ferential gene expression analysis for TC5, revealing 572
significantly overexpressed genes (|log2(FC)| > 2, FDR <
0.05) (Additional file 3: Table S2), including some
known BRAFi-resistance biomarkers (e.g. AXL and
NRG1). In addition, vemurafenib and dabrafenib BCSs
obtained using SSC showed that TC5 had lower sensitiv-
ity to RAF inhibitors than the rest of the TCs, confirm-
ing that TC5 cells are pre-resistant to BRAFi (Additional
file 1: Fig. S4C). This validation demonstrates that
Beyondcell is able to identify therapeutic clusters that re-
capitulate drug effects on cells, propose drugs to target
sensitive and resistant cells and identify drug-response
biomarkers.

Beyondcell characterises single-cell variability in drug
response in pan-cancer cell line data
We also applied Beyondcell to describe the therapeutic
heterogeneity in 198 cell lines from 22 cancer types [18].
Using SSC drug signatures, we found 5 TCs where 12 of
22 cancer types were overrepresented in at least one of
these TCs. TC0 was mostly constituted by cells from
skin cancer (melanoma) and endometrial/uterine cancer
cell lines, while TC1 included cells from bladder, gall-
bladder and pancreatic cancer cell lines. TC3 was
enriched in breast and colon/colorectal cancer, while gli-
omas were exclusively located in TC2 together with kid-
ney and thyroid cancer (Additional file 1: Fig. S5;
Additional file 4: Table S3). TC4 was mainly constituted
by two cell lines: the osteosarcoma (HOS) and sarcoma
(A204) cell lines. Interestingly, 11 out of 12 brain cancer
cell lines clustered together in TC2 independently of
whether the lineage is astrocytoma or glioblastoma, with
the exception of the single medulloblastoma cell line
that is located in TC0. These results suggest that the cell
lines from these 12 cancer types that tend to cluster in
the same TCs have a common drug response.
In contrast, cancer types such as lung, gastric and

ovarian among others showed high cellular therapeutic
heterogeneity. For instance, the four bile duct cancer cell
lines are each grouped in a different TC showing differ-
ent drug response profiles despite belonging to the same
cancer type (Additional file 1: Fig. S6A). Interestingly,

lung cancer cell lines are distributed between the TCs
regardless of whether they are squamous or adenocar-
cinoma subtype showing diverse drug response (Add-
itional file 1: Fig. S6B). We also tested whether these
lung cancer cell lines expressing this distinct drug re-
sponse pattern exhibit a unique pattern of mutations
and genetic vulnerabilities. For this, we used the CCLE
mutation dataset [32] as well as the Achilles dataset [24]
of genome-wide CRISPR knockout screens to map
known driver mutations in lung cancer (e.g. KRAS,
EGFR, PI3KCA) and the genes identified as essential for
proliferation. These analyses showed that lung cancer
cell lines did not cluster together; therefore, TCs de-
tected by Beyondcell are not driven by mutational and
essentiality events (Additional file 1: Fig. S6C).
We hypothesised that the heterogeneous therapeutic

landscape observed in cancer cell lines could also be an
opportunity to infer drug repositioning strategies to tar-
get cell lines with different tissue origin or genetic back-
ground but clustered together in Beyondcell by similar
drug responses [33]. For instance, most of the colon/
colorectal cancer cell lines were clustered in TC3 except
cells from the NCIH747 colorectal cell line, which are
mostly concentrated in TC1 where bladder, gallbladder
and pancreatic cancer cell lines are located (Additional
file 1: Fig. S7). This suggests that the NCIH747 cell line
could respond to tyrosine kinase inhibitors (TKIs) pre-
scribed by Beyondcell for these tumour types such as
EGFRi and also to inhibitors to target members from
MAPK pathway (MEK and SRC). Interestingly,
NCIH747 cell line has shown experimental sensitive re-
sponse to selumetinib, a MEKi, this drug being the most
differential sensitive drug for TC1 and for bladder and
pancreatic cancer in our results. These findings highlight
Beyondcell’s ability to propose drugs for repurposing,
providing additional drug response information using
transcriptional data that could complement diagnostic
information (i.e. tissue origin, stage, mutational status,
etc.) that commonly guide cancer treatment.
Overall, global expression profiles clustered cells by

cancer type; however, the TCs did not show such separ-
ation, suggesting less variability in the drug response.
More specifically, 172 of 198 cell lines were overrepre-
sented in the same TC, indicating that these cell lines
had a lower cellular therapeutic heterogeneity than the
rest of the cell lines (n = 26), which were spread across
the different TCs (Additional file 4: Table S3). The high-
grade serous ovarian cancer cell lines are a clear example
of high therapeutic heterogeneity, since cells from these
cell lines are mostly distributed between TCs (Additional
file 1: Fig. S8). This observed differential drug sensitivity
led by varying patterns of gene expression could result
from clonal dynamics and continuous genetic instability
that translates into heterogeneity in cancer cell lines [16].
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Beyondcell results for SSC revealed 136 differential
sensitivity drugs for TCs and 183 drugs in cancer type
comparison. In general, TC1 and TC4 showed higher
sensitivity to EGFR and topoisomerase inhibitors re-
spectively while TC0 and TC3 both showed higher sen-
sitivity to PLK and CDK inhibitors (Fig. 3a; Additional
file 1: Fig. S9). Using PSC 174 drugs showed differential
sensitivity for TCs and 569 drugs in cancer type com-
parison (Additional file 5: Table S4). However, TCs did
not form discrete clusters so we expect that changes in
drug responses are subtle, with a lot of commonalities.
Beyondcell was also used to compute drug-response
similarity correlation modules using BCS matrix (Add-
itional file 1: Fig. S10; Additional file 6: Table S5). These
correlation modules could be used to infer therapeutic
mechanisms of action (MoA) for those drugs with un-
known targets.
We validated Beyondcell results using a recently gen-

erated dataset of clinical compounds screened across
578 cell lines [33]. Differential drug vulnerability analysis
showed that TC1 and TC2 are the most relevant clusters
in terms of drug sensitivity, with TC1 featuring sensitiv-
ity to multiple drug families (EGFR, MEK, AKT and
Aurora kinase inhibitors) compared to TC2 with lower
sensitivity (Additional file 7: Table S6). TC1 and TC3
are enriched in cell lines with higher sensitivity to EGFR
inhibitors, while TC2 showed decreased sensitivity, con-
firming Beyondcell results. Cell lines from TC1 (but not
TC3) are differentially sensitive to MEK inhibitors com-
pared to those from TC2. Interestingly, Beyondcell pre-
dicts not only that EGFRi is the most enriched drug for
TC1, but also for bladder and gallbladder cancer (Add-
itional file 1: Fig. S11; Additional file 8: Table S7). More-
over, EGFR is overexpressed in up to 74% of bladder
cancer tissue specimens but has a relatively low expres-
sion in normal urothelium suggesting that it could be a
potential therapeutic target. In addition, EGFR is an in-
dependent predictor of decreased survival and stage pro-
gression in bladder cancer [34].
Beyondcell calculates an SP for every drug, providing a

measure of drug response homogeneity and sensitivity in
each cell line. For instance, cell line NCIH1568 (NSCLC,
metastatic) presented higher drug response heterogen-
eity than RERFLCAD1 (NSCLC, primary), evidencing a
more variable drug-response behaviour in the metastatic
cell line. We found that 48% of cancer cell lines show >
60% of drug homogeneity (SP = 0 or SP = 1) suggesting
low cell variability in drug response. A total of 88% of
the cell lines have a median SP > 0.7, meaning that they
contain a greater number of insensitive than sensitive
cells, and 17% of cell lines have a median SP > 0.9, indi-
cating that none of the cells would exhibit sensitivity
against half of the therapeutic options (Additional file 1:
Fig. S12; Additional file 9: Table S8).

To explore the functional properties of the TCs, we
correlated BCS and 12 expression programs known to
be recurrently heterogeneous within cancer cell lines
(RHPs). Cells enriched in the epithelial senescence-
associated (EpiSen) program correlated (r > 0.6) with
high sensitivity to EGFRi, in agreement with experimen-
tal validations performed by Kinker and colleagues [18]
(Fig. 3b). The EMT program (EMT-II) presented higher
activity in TC2 cells and correlated with high sensitivity
to PI3K and HMGCR inhibitors. In contrast, TC0 and
TC3 cells correlated with low EMT-II activity and high
sensitivity to HDAC inhibitors, in agreement with previ-
ous studies [35, 36] (Additional file 1: Fig. S13; Add-
itional file 10: Table S9). Interestingly, EMT-high TC2—
mostly represented by brain cancer cell lines—presents a
more undifferentiated transcriptional state in contrast to
the rest of the therapeutic clusters (p = 8.3e−13) [36].
TC2 differential expression analysis showed an up-
regulated mesenchymal profile and enrichment of the
EMT pathway (Additional file 1: Fig. S14; Additional file
11: Table S10), with Beyondcell results also showing a
lower sensitivity to EGFRi (Additional file 5: Table S4),
confirming previous results where undifferentiated cell
lines showed decreased sensitivity to EGFRi (Additional
file 12: Table S11) [37]. This result shows that distinct
cell functional states lead to different drug responses
which are successfully detected by Beyondcell TCs.
Overall, our study reveals the therapeutic landscape in
multiple cancer cell lines, finding recurrent patterns of
drug heterogeneity shared by specific cancer types, cell
lines, as well as their relationship with functional status.

Beyondcell characterises single-cell variability in drug
response in cancer patients
We also employed our method to study more heteroge-
neous samples such as primary tumour samples. First,
we used an scRNA-seq dataset from 16 melanoma pa-
tients treated with immune checkpoint inhibitors (ICIs)
and 15 untreated patients. This prospective study aimed
to detect transcriptional cell states related to responsive-
ness to ICIs and identify a transcriptional ICI-resistance
program expressed by malignant cells associated with T
cell exclusion and immune evasion which predicts clin-
ical responses to immunotherapy in melanoma patients
[19]. Beyondcell revealed 7 TCs, where TC2 and TC5
mainly contained cells from the untreated patients
Mel79 and Mel81 respectively, whereas TC4 and TC6
included ICI-resistant patients (Additional file 1: Fig.
S15). Non-responder patients were predicted by calculat-
ing the activation level of the ICI-resistance program
with Beyondcell, thus tumour cells showing high BCS
would have low response to ICIs. As expected, TC4 and
TC6 defined by ICI-resistant patients showed high BCS
values. TC5, which included the untreated patient
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Mel81, also had a high BCS, so we concluded that this
patient could not respond to ICIs (Fig. 4a). Beyondcell
showed that Mel81 would respond to CDK inhibitor
(CDKi) drugs such as alvocidib, which has been pro-
posed for use in combination with immunotherapy to
improve the response in ICI-resistant patients. Con-
versely, ICIs in monotherapy would be the preferred
treatment for Mel79 (Fig. 4b; Additional file 1: Fig. S16).
This validation demonstrated that Beyondcell correctly
identified non-responders to ICIs, confirming that CDKi
can be a therapeutic option to overcome ICI-resistance.
In a second study, we wanted to dissect therapeutic

heterogeneity and propose novel therapeutic strategies
in small-cell lung cancer patients (SCLC) patients
treated with cisplatin [5]. In general, SCLC patients’ ini-
tial responses occur in > 60% of patients; however, most
patients relapse within 6months. After relapse, approved
therapies are effective in < 20% of patients with a median
overall survival of about 10 months, indicating a dra-
matic shift towards resistance [38]. This remarks the
need both to improve first-line treatments and to offer
second-line therapies for refractory SCLC patients. With
this aim, we applied Beyondcell to analyse a selection of
SCLC circulating tumour cell-derived xenografts (CDX)
models that included both platinum-sensitive and
platinum-resistant samples. After Beyondcell analysis,
we observed how the TCs were primarily driven by the
patient/CDX origin regardless of response to platinum,
thus underscoring the SCLC intertumoural heterogen-
eity (Fig. 4c). In addition, Beyondcell proposed drugs to
target platinum-resistant cells including known inhibi-
tors as well as approved drugs for repurposing (Add-
itional file 13: Table S12). Interestingly, we found DNA
repair inhibitor (bendamustine), AURKA inhibitors
(GSK1070916), CHEK inhibitors (BX-912) and BCL in-
hibitors (navitoclax) inhibiting known therapeutic targets
in SCLC [39, 40]. Beyondcell also proposes to target the
MYC signalling pathway and EMT process using mTOR
and PI3K inhibitors to overcome platinum-resistance
(Fig. 4c).

Discussion
Addressing TH is a critical factor for the design of ef-
fective treatments in cancer and a current challenge for
precision oncology [41]. Consequently, there is a need

for methodologies to detect tumour clone-specific drug
sensitivities in order to properly characterise drug re-
sponses in cancer and, more importantly, to prioritise
those treatments that could be clinically more effective
for each patient. Here, we aim to address this challenge
by introducing Beyondcell, the first method to define
tumour cell subpopulations of differential drug response
and propose cancer-specific treatments using single-cell
RNA-seq data. A key concept in Beyondcell is the
“therapeutic cluster”, defined as a group of cells sharing
a common drug response, which aims to address tumour
therapeutic heterogeneity. For this purpose, Beyondcell
uses a single-cell expression matrix and LINCS/CMap,
GDSC, CCLE and CTRP drug-signature collections to
calculate the Beyondcell score, an indicator for each cell
of its degree of sensitivity to a drug. Then, the method
also calculates the SP, a quantitative measure of the drug
response homogeneity throughout the single-cell dataset
reflecting the cellular variability. Finally, Beyondcell
makes it possible to uncover and visualise TCs, provid-
ing a drug sensitivity ranking that prioritises the best hits
to target TCs, cell subpopulations, experimental condi-
tions or phenotypes.
As a proof of concept, we applied Beyondcell in five

independent datasets comprising cancer cell lines [16–
18] and patients [5, 19]. We observed that Beyondcell
successfully identifies tumour subpopulations based on
therapeutic response and can detect differential treat-
ments amongst a range of experimental conditions or
cell clusters. In addition, Beyondcell recapitulates the
biology of the datasets analysed and easily reveals sensi-
tive, innate and acquired drug-resistant cell subpopula-
tions in cell lines under drug exposure. Furthermore,
Beyondcell is able to propose a possible treatment strat-
egy to overcome such resistance and identifies drug-
response markers [16, 17]. We also successfully applied
Beyondcell to characterise single-cell variability in drug
response in a pan-cancer cell line dataset, identifying
cellular functional activities and associating them with
common patterns of drug response shared by specific
cancer types and cell lines [18]. In addition, Beyondcell
allowed us to explore tumour heterogeneity in patients
relating it to clinical drug response data to successfully
predict responders and non-responders to immunother-
apy in melanoma [19] and suggest second-line therapies

(See figure on previous page.)
Fig. 3 Beyondcell characterises single-cell variability in drug response in pan-cancer cell line data. a Heatmap depicting both the cluster and
cancer-specific drugs with a heterogeneous sensitivity pattern found in Kinker et al. [18]. The heatmap has been ordered according to the
detected therapeutic clusters, while drug signatures have been clustered based on their BCS. Furthermore, the distinct cancer types have been
colour coded. Only drugs with a mechanism-of-action (MoA) annotation are shown. b The heatmap depicts the correlation score between each
BCS and the described RHPs. Here, we found EGFR inhibitors to be highly correlated with the Epithelial Senescence, EMT III and p53-dependent
senescence programs, while tyrosine kinase inhibitors or topoisomerase inhibitors were anticorrelated. Further details are available in Additional
file 1: Supplementary Methods and Figures
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to overcome platinum-resistance in SCLC [5]. Overall,
Beyondcell allows an in-depth exploration of the TH im-
pact in cancer therapeutics at the transcriptional level,
addressing the variability of drug response in cancer cell
lines and patients.
Nevertheless, the therapeutic heterogeneity revealed in

our analysis pinpoints where the integration of new in-
formation is most needed. Other single-cell measure-
ments such as cell imaging, genetic and epigenetic state
or measuring gene expression at various time points
could reveal differences in the drug responses of tumour
cell populations [42]. Our results also reinforce the im-
portance of tumour evolution for cancer diagnosis and
treatment. Since tumour heterogeneity is related to the
processes of clonal evolution, the identification of clonal
populations, the clonal dynamics under selective pres-
sure and the potential for competitive release of drug-
resistant tumour subclones should be considered to pre-
scribe more effective therapies [2]. A key aspect here is
to incorporate the cells’ genetic states, including infor-
mation on druggable mutations and tumour vulnerabil-
ities that could be used to target drug-tolerant cells in
addition to considering the clonal evolution, in order to
determine the best therapeutic opportunities to prevent
or overcome tumour resistance [43].
The tumour microenvironment represents an add-

itional layer in cancer therapeutics. Immunoediting pro-
cesses—that is, the dynamic interactions between
tumour cells and the immune system—drive tumour
evolution and contribute to therapeutic failure [44]. Sev-
eral single-cell studies have suggested targeting immune
cells to overcome drug resistance in some refractory tu-
mours [45, 46]. Beyondcell application could be ex-
tended to the context of immune cells as a therapeutic
target in cancer to study its relationship with drug treat-
ments [47]. Further short-term applications of Beyond-
cell would include its application to study the
relationship between tumour spreading behaviour, devel-
opment of metastatic phenotypes [48] and Beyondcell
adaptation to the cancer single-cell spatial transcripto-
mics scenario [49].

Conclusions
In summary, understanding how TH leads drug response
in patients will help to design precise therapeutic regi-
mens (single-agent, combination or sequential treat-
ments) anticipating the appearance of relapse, managing
drug resistance mechanisms, delaying tumour growth or
even inducing complete tumour regression. Therefore,
there is an urgent need to develop methodologies to dir-
ectly address TH in the design of anticancer treatment
regimens. Beyondcell provides a valuable resource for
better understanding of the biological and therapeutic
impact of TH. Our results highlight the utility of
Beyondcell to reveal, from single-cell transcriptomics,
the cellular heterogeneity in drug response in cancer cell
lines and patients, identifying resistant and sensitive cel-
lular subpopulations and proposing drugs to target
them. Finally, Beyondcell has been implemented as an
open-source software package that can be easily com-
bined with scRNA-seq gold-standard methodologies in
custom automated analysis pipelines. Our software is
complementary to current single-cell analysis ap-
proaches, opening up a discovery space to support the
design of more effective lines of therapy.
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