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Abstract

Background: With over 350,000 estimated deaths worldwide in 2018, prostate cancer (PCa) continues to be a
major health concern and a significant cause of cancer-associated mortality among men. While cancer in general is
considered a disease of the human genome, there is a growing body of evidence suggesting that changes to the
healthy microbiota could play a vital role in cancer development, progression, and/or treatment outcome.

Methods: Using a metatranscriptomic approach, we annotated the microbial reads obtained from total RNA
sequencing of 106 prostate tissue samples from 94 PCa patients (discovery cohort). We investigated microbial
dysbiosis associated with PCa by systematically comparing the microbiomes between benign and malignant tissue
samples, between less vs. more-aggressive PCa, and between patients who had biochemical recurrence as opposed
to those who did not. We further performed differential gene expression and cell type enrichment analysis to
explore the host transcriptomic and cellular responses to selected microbial genera. A public dataset (GSE115414)
of total RNA sequencing reads from 24 prostate tissue samples (8 benign and 16 malignant) served as the
validation cohort.

Results: We observed decreased species diversity and significant under-representation of Staphylococcus
saprophyticus and Vibrio parahaemolyticus, as well as significant over-abundance of Shewanella in malignant as
compared to benign prostate tissue samples in both the discovery (p < 0.01) and validation (p < 0.05) cohorts. In
addition, we identified Microbacterium species (p < 0.01) to be significantly over-abundant in pathologically
advanced T3 tumors compared to T2 in the discovery cohort. Malignant samples having high vs. low Shewanella
counts were associated with downregulated Toll-like receptor signaling pathways and decreased enrichment of
dendritic cells. Malignant samples having low vs. high V. parahaemolyticus counts were enriched for olfactory
transduction and drug metabolism pathways. Finally, malignant samples were enriched for M1 and M2
macrophages as compared to benign tissue samples.
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Conclusions: The results from this exploratory study support the existence of an important biological link between
the prostate microbiota and PCa development/progression. Our results highlight Shewanella, V. parahaemolyticus,
and Microbacterium sp. as interesting candidates for further investigation of their association with PCa.

Keywords: Prostate cancer, Microbiome, Metatranscriptome, Vibrio parahaemolyticus, Microbacterium sp., Shewanella,
Dendritic cells

Background
Prostate cancer (PCa) remains the most prevalent cancer
among men in Denmark and the second most incident
cancer among men worldwide [1]. While mortality rates
associated with PCa have shown a declining trend in
some European countries [2], PCa still contributes to a
significant fraction of global cancer mortality among
men [1] with a continued rise globally due to population
growth and increasing population age [1, 2].
While major risk factors for PCa include ethnicity, age,

genetic predisposition, and a family history of PCa [3, 4],
the role of inflammation in relation to PCa development
and progression has also garnered scientific attention
(reviewed in [5, 6]). Given the intricate relationship be-
tween inflammation and the host microbiota [7], the hu-
man microbial ecosystem is increasingly being
implicated in the occurrence of various cancers with
causal relationships reported in a few instances, e.g.,
Helicobacter pylori infection and gastric carcinoma [8].
Cancer tissue may also harbor unique microbial signa-

tures that could be of diagnostic, prognostic, and/or
therapeutic potential. For example, a recent large-scale
study [9] found microbial signatures in tumors in several
cancer types (e.g., stomach and lung adenocarcinomas)
that were unique to each. Few earlier and smaller-scale
studies specifically investigating microbial signatures in
benign and malignant prostate tissue have also found
some evidence to support a PCa-specific microbiota [10,
11]. However, other small-scale studies have failed to
clearly discriminate benign vs. malignant prostate tissues
based on either metagenomic or metatranscriptomic
data [12], suggesting considerable variation in the pres-
ence of microbial signatures between patient cohorts.
For example, it has been reported that prostate tumor
tissue from African patients might harbor different mi-
crobial loads compared to Australian patients [13].
Nevertheless, all these studies support the existence of a
non-sterile prostate microenvironment.
Currently, although no single pathogenic species has

been implicated in PCa development, it is believed that
microbial dysbiosis (i.e., changes to the healthy micro-
biota) could play a significant role in disease occurrence,
progression, and/or treatment outcome [14], even
though this area is still understudied. Hence, in order to
study any potential dysbiosis associated with PCa devel-
opment and progression, we analyzed the microbiome of

benign (adjacent normal) and malignant (tumor) pros-
tate tissue samples from a total of 94 Danish men with
PCa. Using total RNA sequencing (RNAseq), we ob-
tained and annotated microbial reads from all samples
and systematically compared the microbiomes between
benign and malignant tumor tissue, less vs. more-
aggressive PCa, and between patients who had biochem-
ical recurrence (BCR) as opposed to those who did not
(BCR-free). We further characterized the host transcrip-
tional regulation in response to increased/decreased
abundance of specific organisms within the malignant
tissue samples and subsequently performed cell type en-
richment to explore differences in cellular composition
within malignant tissue samples having high vs. low
count of specific organisms.

Methods
Patient cohorts
Our PCa discovery cohort consisted of 114 prostate tis-
sue samples from 102 patients who underwent curatively
intended radical prostatectomy (RP) for histologically
verified, clinically localized PCa, at the Department of
Urology, Aarhus University Hospital (AUH), Denmark
(2004–2017). Immediately following surgery, fresh tissue
biopsies were obtained and stored at −80°C in TissueTek
until further processing. Prior to RNA extraction, all tis-
sue specimens were marked as either benign or malig-
nant (PCa) based on histopathological examination of
the H&E stained tissue sections by an experienced path-
ologist at AUH. Eight malignant tissue samples were ex-
cluded due to very high unmapped read counts,
contributed primarily by known contaminant taxa [15].
Thus, the final cohort consisted of 106 tissue samples
(23 benign and 83 malignant) from 94 patients (Add-
itional file 1: Fig. S1). Clinical follow-up for this cohort
was updated in November 2019.
For validation, we used a publically available dataset of

total RNA sequencing data from a small cohort of PCa
patients recruited in France [16, 17]. Collection of be-
nign and tumor biopsy specimens was done retrospect-
ively from the patients who gave informed consent. The
cohort consisted of 24 prostate tissue samples (8 benign
and 16 malignant) from men who underwent radical
prostatectomy (Additional file 1: Fig. S1). Formalin-fixed
paraffin-embedded tissue samples were used for total
RNA extraction and sequencing. Clinicopathological

Salachan et al. Genome Medicine            (2022) 14:9 Page 2 of 18



characteristics for the discovery cohort and the valid-
ation cohort are given in Table 1.

Total RNA extraction and sequencing
For the discovery cohort, total RNA was extracted
from fresh-frozen prostate tissue samples using the
RNeasy Plus Mini Kit (Qiagen). The concentration
and quality of RNA was assessed using a NanoQuant
and an Agilent 2100 Bioanalyzer (RIN≥7), respectively.
Sequencing libraries were generated using either the
ScriptSeq RNA-seq Library Kit with the Ribo-Zero™
Magnetic Gold Kit from Illumina (37 malignant and 5
benign samples) or the KAPA RNA HyperPrep Kit
with KAPA RiboErase Kit from Roche (46 malignant
and 18 benign samples). All libraries were sequenced
using Illumina NovaSeq or NextSeq 500. All reads
were QC checked and aligned to the human reference

genome hg38 using STAR [18]. On average, each
sample bam file contained approximately 76 million
75bp reads (38 million read pairs) and approximately
60 million reads per sample aligned to hg38. We ob-
tained approx. 1 million read pairs per sample that
had both the mate pairs unmapped which we used
for microbial read processing (Table 1).
For the validation cohort [16], we downloaded a public

dataset of total RNA sequencing reads from the gene ex-
pression omnibus portal (accession number GSE115414
[17]). Alignment of the reads was performed as described
above. On average, each sample bam file contained
approximately 300 million reads and approximately 170
million reads per sample aligned to hg38. We obtained
approx. 2.7 million read pairs per sample that had both
the mate pairs unmapped which we used for microbial
read processing (Table 1).

Table 1 Clinicopathological and sequencing characteristics

Clinicopathological characteristics

Characteristic Discovery cohort Validation cohort

Patients, N 94 24

Tissue samples, N 106 24

Age at RP, median (range) 65.7 (45.7–76.6) N/A

Tumor status

Benign, N (%) 23 (21.7%) 8 (33.3%)

Malignant, N (%) 83 (78.3%) 16 (66.6%)

Pathological Gleason score

≤ 7, N (%) 63 (75.9%) 9 (56.2)

> 7, N (%) 20 (24.1%) 7 (43.7)

Pre-operative PSA (ng/ml)

≤ 10, N (%) 39 (47%) N/A

>10, N (%) 39 (47%) N/A

Unknown, N (%) 5 (6%) N/A

Pathological T-stage

pT2, N (%) 51 (61.4%) 4 (25%)

pT3, N (%) 31 (37.4%) 10 (62.5%)

Unknown/pT4, N (%) 1 (1.2%) 2 (12.5%)

Biochemical recurrence status

BCR, N (%) 28 (33.7%) 6 (37.5%)

BCR-free, N (%) 53 (63.9%) 10 (62.5%)

Unknown, N (%) 2 (2.4%) --

Median follow-up, months (range) 52.4 (17.6–178.9) N/A

Sequencing characteristics

Characteristic Discovery Cohort Validation cohort

Total reads in bam per sample, mean (SD) 76,688,094 (11,296,752) 304,920,301 (49,502,192)

Reads per sample mapped to hg38, mean (SD) 60,131,687 (7,869,239) 170,390,820 (16,853,739)

Unmapped read pairs per sample, mean (SD) 970,526 (280,812) 2,734,147 (421,428)

RP radical prostatectomy, PSA prostate-specific antigen, SD standard deviation, Hg human genome
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Host read processing
Host transcript levels were quantified using kallisto [19]
with hg38 as the reference transcriptome. Transcripts
were aggregated to gene level using tximport [20]. Batch
effects were either adjusted for in the design formula
(for differential gene expression analyses) or removed
using the RemoveBatchEffect function (for cell type en-
richment analyses) within Limma [21].

Microbial read processing
We followed a modified version of the SAMSA2 pipeline
[22] for microbial read processing and differential micro-
bial abundance analysis. Briefly, fastq files of reads that
did not map to the human reference genome hg38 were
generated from bam files using BEDTools [23] and
thereafter paired-end reads were merged using PEAR
[24]. DIAMOND [25] sequence aligner was used to align
and annotate the unmapped reads against NCBI RefSeq
bacterial non-redundant protein sequences database
[26]. For annotation against viral sequences, additional
viral protein sequences were downloaded from NCBI
RefSeq database [26]. Custom python and R scripts
provided with the SAMSA2 pipeline [22] were used for
aggregating and merging the annotation files. The aggre-
gated files with microbial read counts were subsequently
used for downstream analysis.

Comparison of overall microbial diversity
For both cohorts, we compared the microbial species di-
versity within malignant and benign prostate tissue sam-
ples by estimating the alpha diversity as implemented in
the R phyloseq [27] and vegan [28] packages. Alpha di-
versity measures the total number of species (i.e., species
richness) and their relative proportions in a population
(i.e., evenness). Accordingly, differences in alpha diver-
sities between malignant and benign prostate tissue sam-
ples would signify microbial dysbiosis and could be
associated with disease occurrence. For visualizing alpha
diversity, we used six different measures: Observed,
Chao1, and ACE capture aspects of species richness,
whereas Shannon, Simpson, and Inverse Simpson cap-
ture both species richness and evenness [29–31]. A Wil-
coxon rank sum test was used to compare each diversity
estimate between the two groups. P values were cor-
rected for family wise error rate using the Bonferroni
method [32] and significance was determined at a p
value cut-off less than 0.05. We consider differences in
alpha diversity between groups to be reliable only if the
Shannon, Simpson, and Inverse Simpson diversity esti-
mates showed a significant difference as these are more
robust measures of alpha diversity [33].
In addition, alpha diversity was also estimated for the

samples in the comparisons between low vs. high Glea-
son scores, low vs. high pre-operative Prostate-Specific

Antigen (pre-op PSA) levels, pathological T-stage 2 vs.
3, and BCR vs. BCR-free groups for the discovery cohort
(Additional file 1: Fig. S1). Due to the limited sample
size, we did not include these analyses for the validation
cohort.

Differential microbial abundance analysis
Differential abundances between malignant (n = 83) and
benign prostate tissue samples (n = 23) of microbial
counts (as well as for other comparisons) in the discov-
ery cohort were tested using the DESeq2 package [34] in
R, and p values were adjusted for multiple testing using
Benjamini-Hochberg [35] corrections. We used an ad-
justed p value less than 0.01 to make statistical infer-
ences, as this would allow us to make five comparisons
if the original significance level was at 0.05 (accounting
for family-wise error rate from multiple comparisons
made on the same dataset). Further, species having a p
value less than 0.01 were considered to be significantly
over-represented if they had a log2 fold change greater
than 0.58 (corresponding to a fold change of 1.5) in the
given comparison and under-represented if the log2 fold
change was less than −0.58 in any given comparison. In
order to avoid potential biases from species with low
read counts, we filtered out the low abundance species
having a mean normalized count of fewer than 10 across
all samples. Since our samples were prepared using two
different RNAseq library preparation kits, we accounted
for batch effects in the differential abundance analysis by
including the batch factor in the design formula.
In order to investigate microbial dysbiosis in less vs.

more-aggressive PCa, we systematically compared malig-
nant tissue samples from patients having low (≤ 7, n =
63) vs. high (>7, n = 20) Gleason scores, low (≤ 10 ng/
ml, n = 39) vs. high (> 10 ng/ml, n = 39) pre-operative
Prostate-Specific Antigen (pre-op PSA) levels, and a
pathological T-stage 2 (pT2, n = 51) vs. 3 (pT3, n = 31).
We further looked for differences in microbial abun-
dance in patients who had BCR (n = 28) after RP com-
pared to those who did not (BCR-free, n = 53).
Postoperative BCR was defined as a PSA ≥ 0.2 ng/ml.
Patients not suffering BCR were censored at their last
normal PSA measurement. An overview of the different
comparisons is given in Additional file 1: Fig. S1.
To validate the differentially abundant organisms iden-

tified between malignant and benign prostate tissue sam-
ples in the discovery cohort, we compared their
differential abundance between malignant (n = 16) and
benign prostate tissue samples (n = 8) in an independent
set of samples (validation cohort). Due to the limited
sample size (and composition) in this validation cohort,
we could not test for differential abundance between less
vs. more-aggressive PCa.
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Differential host transcriptional regulation
For the species identified as differentially over/less abun-
dant in the malignant as compared to the benign tissue
samples in both the cohorts, we performed host differen-
tial gene expression (DGE) analyses for elucidating the
host transcriptional regulation in response to high (n =
42) or low (n = 41) species counts. Low species count
was defined as a mean normalized count less than the
median count. DGE analyses were performed similar to
the methodology described above using the DESeq2
package [34] in R, however, with a significance cut-off of
adjusted p value less than 0.05. Genes identified as dif-
ferentially upregulated or downregulated were each used
for Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway analyses using DAVID bioinformatics resources
[36]. A false discovery rate (FDR) less than 0.05 was used
as a cut-off for determining significant pathways.

Cell type enrichment analyses
For determining the cellular composition of the malig-
nant tissue samples harbouring high (n = 42) or low (n
= 41) counts of the species identified as either differen-
tially over-abundant or differentially less abundant in the
malignant samples in both the cohorts, we performed
cell type enrichment analyses using xCell [37] in R for
the tissue samples in the discovery cohort. Using this ap-
proach, we explored the stromal, epithelial, and immune
cell types within the malignant tissue samples. Associa-
tions between the species abundance and the host cell
types were tested using a Wilcoxon test with an FDR
cut-off less than 0.05 used for determining significant
associations.
Similarly, we also explored the host cellular compos-

ition between benign (n = 23) and malignant (n = 83)
tissue samples using xCell, in order to find associations
between specific immune/stromal cell types and PCa,
which in turn may be linked with microbial dysbiosis in
PCa.

PCR validation of selected species
To validate the presence of microbial species within tis-
sue samples, we selected Bacteroides fragilis as a candi-
date organism, due to its frequent presence in prostate
tissue samples as identified from our microbiome ana-
lysis. Primers specific to B. fragilis were selected from
the literature [38]. RNA extracted from 6 fresh-frozen
RP tissue samples (3 malignant and 3 benign) was re-
verse transcribed using a mix of oligo dT and random
hexamer primers. cDNA was amplified by PCR with a
total reaction volume of 15 μl as follows: initial denatur-
ation at 95°C for 5 min followed by 35 cycles of 94°C for
30s, 50°C for 1 min, and 72°C for 1 min. A final exten-
sion was performed at 72°C for 10 min. The PCR prod-
uct was run on a 1% agarose gel, and the presence of a

495-bp amplification product was verified using a gel
doc system. Next, 10μl PCR product was used for PCR
clean-up and subsequent Sanger sequencing to verify the
B. fragilis sequence. Forward and reverse reads from the
sequencing were assembled into contigs using GeneStu-
dio. Local alignment search against 16s ribosomal RNA
sequences was performed using NCBI BLAST [39] opti-
mized to retrieve highly similar sequences (megablast).
Uncultured and environmental sample sequences were
excluded from the search.

Results
For metatranscriptomic analyses, we used a set of total
RNA sequencing data from benign and malignant pros-
tate tissue samples, annotated against known microbial
reads in NCBI. The dataset included 106 tissue samples
from 94 PCa patients (discovery cohort, Additional file
1: Fig. S1). The median patient age at RP was 65.7 years.
Almost 76% of the tissue samples had a Gleason score ≤
7 and 24% had a score greater than 7. An equal repre-
sentation of samples had a pre-op PSA value ≤ 10 (47%)
and > 10 ng/ml (47%), whereas approx. 61% and 37% of
the samples had a pathological T-stage of pT2 and pT3,
respectively. Almost 64% of the samples were from pa-
tients without BCR, while approx. 34% experienced BCR
(median follow-up of 52.4 months). Using this discovery
cohort, we compared differences between benign (n =
23) and malignant prostate tissue (n = 83) microbial pro-
files. We also systematically compared microbial species
associations with more/less aggressive PCa using key
clinicopathological factors known to be associated with
PCa aggressiveness (pre-operative PSA level, Gleason
score, T-stage) as well as post-operative BCR status
(Table 1, Additional file 1: Fig. S1). Finally, for the spe-
cies identified as differentially over/less abundant in the
malignant as compared to the benign tissue samples, we
performed host differential gene expression (DGE) ana-
lyses for elucidating the host transcriptional regulation
in response to high (n = 42) vs. low (n = 41) species
counts, followed by cell type enrichment analyses for ex-
ploring the differences in the cellular composition of the
prostate tumor microenvironment (TME). Cell type en-
richment analysis was also performed for comparing cel-
lular differences between benign (n =23) and malignant
(n =83) tissue samples.

The microbial environment in primary prostate tumor
tissue (radical prostatectomy specimens)
We first investigated the microbial species that were
most abundant in primary prostate tissue samples from
patients with PCa in the discovery cohort. We included
both benign (n = 23) and malignant (n = 83) prostate tis-
sue samples in order to get a first impression of the spe-
cies that were predominant in prostate tissue samples
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from our cohort of Danish men who had undergone rad-
ical prostatectomy. Using the full sample set (n = 106),
we found that the most abundant microbial reads
belonged to Enterobacter hormaechei, accounting for
23.9% of the microbial reads in all the samples (Table 2).
Other highly abundant microbial reads belonged to
Streptococcus pneumoniae (6.9%), Acinetobacter bauman-
nii (6.4%), Mycobacterium sp. (5.8 %), Salmonella enterica
(5.4%), Escherichia coli (3.7%), Campylobacter jejuni
(3.6%), Clostridioides difficile (3.6%), Mycobacterium
abscessus (3.4%), and Bacillus cereus (1.1%) (Table 2).
However, seven genera (Acinetobacter, Enterobacter,
Streptococcus, Escherichia, Bacillus, and Mycobacterium)
of the 10 highly abundant species that we identified (Table
2) are known to be common contaminants in sequencing-
based microbiome studies [15, 40, 41]. The remaining
three of the highly abundant species that we detected (S.
enterica, C. jejuni, and C. difficile) are not known to be
contaminants, and hence likely reflect the “true” prostate
microbial ecosystem. While we were able to detect viral
species in the prostate tissue samples, we did not observe
any viruses with high relative abundances across all sam-
ples, corroborating previous research [13] and suggesting
that viruses are not predominant members of the prostate
microbial ecosystem.

Microbial species diversity between benign and
malignant PCa
Next, using six different measures of alpha diversity, we
investigated overall differences in species richness (i.e.,
total number of species: Observed, Chao1, and ACE)
and their evenness (i.e., relative abundances: Shannon,
Simpson, and Inverse Simpson) between benign (n = 23)
and malignant prostate tissue samples (n = 83) in the
discovery cohort. Differences in alpha diversity between
benign and malignant prostate tissue samples would

indicate microbial dysbiosis that could be associated
with PCa.
Visual inspection of the data suggested an overall reduc-

tion in species diversity in malignant tissue compared to
benign tissue across all alpha diversity measures (Fig. 1A).
A Wilcoxon rank sum test showed that these differences
were also statistically significant for all the diversity mea-
sures (Additional file 1: Table S1), indicating decreased
species richness and evenness in malignant tissue as com-
pared to benign prostate tissue. A similar trend with an
overall reduction in species diversity in the malignant (n =
16) compared to the benign tissue (n = 8) was also ob-
served in the smaller validation cohort (Fig. 1B), although
the differences were statistically significant for only Ob-
served, ACE and Chao1 (Additional file 1: Table S1).
Nevertheless, an overall reduction in the species diversity
within malignant as compared to benign tissue samples
indicates microbial dysbiosis associated with PCa develop-
ment/progression.

Differential abundance of species in benign vs. malignant
prostate tissue samples
We next performed differential abundance analysis be-
tween benign (n = 23) and malignant tissue (n = 83)
samples in order to see whether any particular organism
or group of organisms were under- or over-represented
in PCa tissue in the discovery cohort. We used a cut-off
criteria of an adjusted p value less than 0.01, a log2 fold
change greater than |0.58|, and a normalized mean
count greater than 10 across all samples, for assigning
differentially abundant species. Using these criteria, we
found the genus Shewanella to be significantly over-
abundant in the malignant as compared to benign pros-
tate tissue samples. Similarly, we found four microbial
organisms (including a virus) to have significantly lower
abundances in the malignant tissue as compared to the

Table 2 Most abundant microbial species in the prostate tissue of patients who had PCa

Species Total reads across all samples
(n = 106)

Relative proportions
(% of all reads)

Mean number of
reads per sample

Standard deviation

Enterobacter hormaechei* 674,201 23.9 6360.3 2749.8

Streptococcus pneumoniae* 195,368 6.9 1843.1 1185.9

Acinetobacter baumannii* 181,489 6.4 1712.1 2856.3

Mycobacterium sp.* 164,496 5.8 1551.8 1174.1

Salmonella enterica 153,667 5.4 1449.6 1078.6

Escherichia coli* 104,243 3.7 983.42 913.3

Campylobacter jejuni 102,543 3.6 967.3 515.7

Clostridioides difficile 102,525 3.6 1235.2 4082.6

Mycobacterium abscessus* 98,079 3.4 925.2 476.9

Bacillus cereus* 33,484 1.1 1455.8 883.4

Other 1,002,742 35.6 9459.8 5067.9

*Genera of these species are known to be common contaminants in sequencing based microbiome studies
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benign tissue (Fig. 2, Table 3). These included Bacter-
iodes fragilis, Staphylococcus saprophyticus, Vibrio para-
haemolyticus, and Saimiriine betaherpesvirus.
In order to validate the association between PCa and

the five microbial species identified as differentially
abundant between benign and malignant tissue samples
in the discovery cohort, we tested for their differential
abundance between benign (n = 8) and malignant tissue

(n = 16) samples using an independent validation cohort
(Additional file 1: Fig. S1). Of the five species identified,
we were able to validate the differential abundance of
three species (Shewanella, V. parahaemolyticus, and S.
saprophyticus) at a significance cut-off adjusted p value
less than 0.05 and a fold change greater than 1.5. Shewa-
nella was significantly over-abundant, whereas V. para-
haemolyticus and S. saprophyticus had significantly

Fig. 1 Differences in overall alpha diversity between benign and malignant tissue samples as measured using six different measures of alpha
diversity for the discovery (A) and validation (B) cohorts. Observed, Chao1, and ACE capture aspects of species richness, whereas Shannon,
Simpson, and Inverse Simpson capture both species richness and evenness. A Wilcoxon rank sum test was used to compare the diversity
estimates between the two groups. Compared to the benign, malignant tissue samples showed an overall reduction in the species diversity in
the discovery cohort which was significant at a p value cut-off of 0.05. While this trend was also observed in the validation cohort, the p values
did not reach statistical significance for some of the diversity estimates. ns not significant

Salachan et al. Genome Medicine            (2022) 14:9 Page 7 of 18



Bacteroides fragilis

Saim
iriine betaherpesvirus

Shew
anella

Staphylococcus saprophyticus
Vibrio parahaem

olyticus

M
icrobacterium

 sp.

−3
−2
−1

0
1
2
3

Differentially abundant organisms

lo
g2

 F
ol

d 
C

ha
ng

e

                                           Malignant vs. Benign                                               pT3 vs. pT2A

0 1 2

Benign
Malignant

Bacteroides
fragilis

B

0 1 2

Benign
Malignant

Saimiriine 
betaherpesvirus

C

0.0 0.5 1.0 1.5

Benign
Malignant

Shewanella D

0 1 2 3

Benign
Malignant

Staphylococcus 
saprophyticus

E

0.0 0.5 1.0 1.5 2.0

Benign
Malignant

Vibrio 
parahaemolyticus

F

0 1 2 3

pT2
pT3

Microbacterium 
sp.

G

Normalized counts (log
10

)

Fig. 2 A Differentially abundant microorganisms (adjusted p value < 0.01) identified in the comparisons between malignant and benign tissue
samples, and pathological T-stage 3 vs. 2 (pT3 vs. pT2). Error bars correspond to the standard error of the log2 fold change. Malignant tissue sample
was associated with over-abundance of Shewanella, and under-representation of Bacteroides fragilis, Saimiriine betaherpesvirus, Staphylococcus
saprophyticus, and Vibrio parahaemolyticus. Pathologically advanced T3 stage tumors were associated with significantly increased abundances of
Microbacterium species. Dotted line corresponds to a log2 fold change cut-off value of |0.58|. B–H Normalized microbial read counts (x-axis) for each
patient sample (y-axis) of B. fragilis (B), S. betaherpesvirus (C), Shewanella (D), S. saprophyticus (E), V. parahaemolyticus (F), and Microbacterium sp. (G).
Values are given on a log10 scale. Vertical lines denote mean values. Missing bars represent a normalized count value of zero

Table 3 Differentially abundant microbial reads in various comparisons in the discovery cohort

Organism name Base mean Log2 fold change lfcSE Wald statistic p value p adj

Malignant vs. benign tissue (discovery cohort)

Shewanella 11.61 1.08 0.28 3.83 0.0001 0.0042

Bacteroides fragilis 115.60 −0.76 0.17 −4.33 1.45e−05 0.0008

Saimiriine betaherpesvirus 40.72 −1.56 0.34 −4.56 4.99e−06 0.0004

Staphylococcus saprophyticus 21.99 −2.82 0.59 −4.77 1.80e−06 0.0002

Vibrio parahaemolyticus 11.78 −1.36 0.22 −6.08 1.15e−09 5.19e−07

Pathologic T-stage 3 vs. 2 (discovery cohort)

Microbacterium sp. 56.12 2.24 0.45 4.92 8.35e−07 0.0049

Note: Showing all differentially abundant microorganisms with an adjusted p value less than 0.01 and a base mean greater than 10. Base mean, mean of the
normalized count across all samples. lfcSE standard error of the log2 fold change, p-adj Benjamini-Hochberg adjusted p value
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Fig. 3 A Differentially abundant organisms between malignant and benign tissue samples identified in the discovery cohort were tested for their
differential abundance in an independent validation cohort. Of the five organisms tested, three showed a significant difference in their
abundance (adjusted p value < 0.05; marked by asterisk). Malignant tissue sample was associated with significant over-abundance of Shewanella,
and significant under-representation of Staphylococcus saprophyticus, and Vibrio parahaemolyticus, as compared to the benign tissue samples.
Bacteroides fragilis and Saimiriine betaherpesvirus showed a trend similar to that seen in the discovery cohort, although the differences did not
reach statistical significance in the validation cohort. Error bars correspond to the standard error of the log2 fold change. Dotted line corresponds
to a log2 fold change cut-off value of |0.58|. B–H Normalized microbial read counts (x-axis) for each patient sample (y-axis) of B. fragilis (B), S.
betaherpesvirus (C), Shewanella (D), S. saprophyticus (E), and V. parahaemolyticus (F). Values are given on a log10 scale. Vertical lines denote
mean values

Table 4 Validation of species identified as differentially abundant between malignant and benign tissue samples in the discovery
cohort

Organism name Base mean Log2 fold change lfcSE Wald statistic p value p adj

Malignant vs. benign tissue (validation cohort)

Shewanella 10.97 1.49 0.32 4.64 3.33e−06 1.6e−05*

Bacteroides fragilis 276.86 −0.08 0.24 −0.35 0.7253 0.7253

Saimiriine betaherpesvirus 17.75 −0.58 0.37 −1.54 0.1214 0.1517

Staphylococcus saprophyticus 180.95 −1.67 0.68 −2.44 0.0145 0.0242*

Vibrio parahaemolyticus 60.13 −0.62 0.19 −3.30 0.0009 0.0024*

Note: Species identified as differentially abundant in the discovery cohort were tested for their differential abundance in the validation cohort. Significance was
determined at an adjusted p value less than 0.05 (marked by asterisk). Base mean, mean of the normalized count across all samples. lfcSE standard error of the
log2 fold change, p-adj Benjamini-Hochberg adjusted p value
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lower abundance in the malignant samples as compared
to the benign samples (Fig. 3, Table 4), corroborating
the results seen in the discovery cohort. Differences in B.
fragilis and S. betaherpesvirus counts between benign
and malignant tissue samples were not statistically sig-
nificant in the smaller validation cohort but did show a
trend towards lower abundance in the malignant sam-
ples, similar to that seen in the discovery cohort (Fig. 3,
Table 4). The observed presence of differentially abun-
dant (both under- and over-represented) microbial spe-
cies in malignant tissue suggests to a possible microbial
dysbiosis associated with PCa.
To demonstrate the validity of the microbial read pro-

cessing pipeline, we performed reverse transcription
PCR using species specific primers to detect B. fragilis in
the RNA samples. We detected the presence of B. fragi-
lis in all the prostate tissue samples tested (n = 6, Fig. 4),
which was also validated by Sanger sequencing of PCR
amplicons (Additional file 1: Table S2), thereby confirm-
ing the presence of the species in the tissue as opposed
to errors in bioinformatics sequence annotation. To-
gether with the detection of all five species (Shewanella,
V. parahaemolyticus, S. saprophyticus, B. fragilis, and S.
betaherpesvirus) in the validation cohort, these findings

support that our results are most likely to be “true” sig-
nals from the prostate tissue microbiome.
Furthermore, to test whether malignant prostate tissue

samples were associated with an altered immune cell
composition that might be linked with microbial dysbio-
sis, we performed cell type enrichment analysis in the
discovery cohort comparing malignant (n=83) vs. benign
(n=23) tissue samples. We observed significant (FDR <
0.05) associations between PCa and the presence of mac-
rophages (including both M1 and M2 macrophages),
endothelial cells, and smooth muscle cells (Fig. 5A).
Macrophages had significantly higher enrichment scores
in the malignant (n =83) as compared to the benign (n =
23) tissue samples (Fig. 5B–D), suggesting a possible link
between macrophage mediated immune regulation and
microbial dysbiosis in PCa.

Associations between microbial presence and PCa
aggressiveness
Next, we looked for overall differences in species diver-
sity between less vs. more aggressive PCa using alpha di-
versity estimates and further used differential abundance
analysis to characterize microbial species that were more
likely to be associated with aggressive PCa. For these
analyses, we made subsets of the malignant tissue sam-
ples in the discovery cohort based on several clinico-
pathological factors (Table 1) including Gleason scores,
pre-op PSA levels, pathologic T-stage, and BCR status.
Due to the limited sample size, these analyses were not
performed in the validation cohort.
For 83 malignant tissue samples, we compared samples

having a low (≤7, n = 63) Gleason score with those having
a high (>7, n = 20) Gleason score. We observed an overall
increase in the species diversity in the high as compared
to the low Gleason score tissue samples (Additional file 1:
Fig. S2A). However, there were no differentially abundant
organisms present in either low or high Gleason score
groups at an adjusted p value less than 0.01, likely reflect-
ing our stringent filtering criteria for the DGE analyses
which filtered species with very low counts. Similarly, we
did not find any significantly under- or over-represented
species when we compared malignant tissue samples from
patients having a low (≤10 ng/ml, n = 39) vs. high (>10
ng/ml, n = 39) pre-op PSA levels, while some alpha diver-
sity estimates suggested higher species richness in tumors
from patients with higher pre-op PSA levels (Additional
file 1: Fig. S2B). For the comparison between pathological
T2 (n = 51) vs. T3 (n = 31) stages, we observed an overall
increased species diversity in pT3 vs. pT2 (Additional file
1: Fig. S2C). Differential abundance analysis between these
groups identified Microbacterium sp. to have significantly
increased abundances in the more advanced pT3 stage tis-
sue samples (adjusted p < 0.01, Table 3) compared to the
less advanced pT2 tissue (Fig. 2). This suggests an

Fig. 4 Reverse transcription PCR detection of Bacteroides fragilis
showing expected band around 495bp. Lanes 1, 2, and 3 are benign
tissue samples. Lanes 4, 5, and 6 are malignant samples. M 100bp
marker. N negative control
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association between Microbacterium sp. and PCa disease
progression; however, further investigations are
warranted.
In order to test whether microbial dysbiosis could be asso-

ciated with BCR, we compared malignant tissue samples (n

= 81) from patients in the discovery cohort who had BCR (n
= 28) to those who did not (BCR-free; n = 53). However, in
this cohort, we did not find any organisms to be significantly
differentially abundant in the patients who had BCR com-
pared to those who did not, but some alpha diversity
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estimates suggested higher species richness in tumors from
patients suffering BCR (Additional file 1: Fig. S2D).

Host transcriptional regulation in PCa with high vs. low
counts of Shewanella, Vibrio parahaemolyticus, or
Staphylococcus saprophyticus
To test whether malignant tissue samples harbouring
high (n = 42) vs. low (n = 41) species counts of Shewa-
nella, or low (n=41) vs. high (n=42) counts of V. para-
haemolyticus and S. saprophyticus, respectively, were
associated with altered host gene expression, we per-
formed DGE analyses for the tissue samples in the dis-
covery cohort. For the analyses comparing high vs. low
Shewanella count groups, we identified 501 genes to be
differentially expressed between the two groups at an ad-
justed p value < 0.05. Of these, 71 genes were upregu-
lated, whereas 131 genes were downregulated in the
high as compared to the low Shewanella count group at
a fold change cut-off of |1.5| (Fig. 6A, Additional file 2:
Table S3). KEGG pathway analyses of the genes upregu-
lated in the high vs. low Shewanella count groups
showed significant (FDR < 0.05) enrichment of oxidative
phosphorylation and metabolic pathways (Table 5), indi-
cating increased energy utilisation by the malignant tis-
sue samples with high abundance of Shewanella.
Furthermore, genes that were downregulated were

significantly enriched for Toll-like receptor signaling
pathway (Table 5), indicating a downregulated immune
system in prostate tumors with high abundance of
Shewanella.
While no significant KEGG pathways were observed

for the analyses of S. saprophyticus, pathways relating to
olfactory transduction, retinol metabolism, steroid hor-
mone biosynthesis, and cytochrome P450 mediated drug
and xenobiotic metabolism pathways were significantly
enriched in the malignant samples having low (vs. high)
abundance of V. parahaemolyticus (Additional file 3:
Table S4 and Additional file 1: Table S5). The enrich-
ment of, e.g., drug metabolism and steroid hormone
biosynthesis pathways, could suggest that patients
with low V. parahaemolyticus counts might be more
prone to developing drug resistance. Furthermore,
genes involved in pathways relating to focal adhesion,
mineral absorption, regulation of actin cytoskeleton,
ECM-receptor interaction, vascular smooth muscle
contraction, and cardiomyopathy were significantly
downregulated in the malignant samples having low
(vs. high) V. parahaemolyticus counts (Additional file
3: Table S4 and Additional file 1: Table S5). This
may indicate altered regulatory interactions between
the TME and PCa cells in tumors with low abun-
dance of V. parahaemolyticus.
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Host cell type enrichment in PCa with high vs. low counts
of Shewanella, Vibrio parahaemolyticus, or Staphylococcus
saprophyticus
Finally, to test whether malignant tissue samples har-
bouring high vs. low species counts of Shewanella, and
low vs. high counts of V. parahaemolyticus and S. sapro-
phyticus, respectively, were associated with an altered
immune/stromal architecture, we performed cell type
enrichment analysis using xCell [37]. For the comparison
between high (n = 42) vs. low (n = 41) Shewanella
counts group within the malignant samples, we observed
a significant (FDR < 0.05) inverse association between
Shewanella genera counts and dendritic cells (DC,
Fig. 6B) with the high Shewanella count group having
a lower DC enrichment score compared to the low
count group (Fig. 6C). This corroborates the down-
regulation of immune related genes observed in the
DGE analyses and indicates an important role for
DCs in PCa pathophysiology.
Further, malignant samples having a low (n = 41) vs.

high (n = 42) V. parahaemolyticus counts had a signifi-
cantly (FDR < 0.05) lower enrichment score for adipo-
cytes, fibroblasts, and smooth muscle (Additional file 1:
Fig. S3A-C) and a significantly higher enrichment score
for monocytes, B cells, CD8+ T cells, mast cells, M2
macrophages, T regulatory cells (Additional file 1: Fig.
S3D-I), and neutrophils (borderline significant, not
shown), suggesting altered host immunity and dysregu-
lated TME architecture, as also indicated by the

downregulation of genes and pathways involved in, e.g.,
focal adhesion, regulation of actin cytoskeleton, and
ECM-receptor interaction, that were identified in our
DGE and KEGG pathway analyses, respectively. How-
ever, for S. saprophyticus, we did not observe any signifi-
cant associations with the host stroma or immune cell
types.

Discussion
Over the past decade, a more holistic approach towards
understanding human diseases has led us to the holo-
biont nature of many diseases, including cancer. The
role of the human microbiome in cancer has increasingly
garnered attention from the scientific community, both
in terms of its direct and indirect roles in carcinogenesis,
as well as its diagnostic and prognostic potential [42–
44]. So far, no single pathogenic species has been caus-
ally associated with PCa, but a growing body of evidence
suggests that changes to the healthy microbiota (i.e., mi-
crobial dysbiosis) could play a major role in disease oc-
currence, progression, and/or treatment outcome
(reviewed by 14). Thus, it is important to map the
microbiota of the benign and diseased prostate tissue en-
vironment to better understand the link between PCa
and the prostate microbiome.
A number of factors can determine the resident human

microbial ecosystem, including diet, ethnicity, and geog-
raphy which often distinguishes populations [45, 46]. We
here aimed to investigate the role of prostate microbiota
in PCa development or progression in a cohort of Danish
men and provide a comprehensive analysis of the benign
(adjacent normal) and diseased (malignant) prostate tissue
microbiome. Using a metatranscriptomic approach, we
found several bacterial species to have very high relative
abundances in the prostate tissue among Danish men who
had PCa (discovery cohort). These included genera such
as Enterobacter, Acinetobacter, Streptococcus, and Escheri-
chia which have also been reported to be abundant in
prostate tissue in other studies [12, 47], but are also
known to be common contaminants in sequencing-based
microbiome studies [15, 41]. Thus, whether these are true
representative species of the prostate microbiome or
whether these are introduced during procedural handling
requires further investigation.
Additionally, we identified Mycobacterium sp. and Sal-

monella enterica at high relative proportions in this Da-
nish PCa discovery cohort. Of the species that have not
previously been reported as contaminants in sequencing
studies, we found S. enterica, C. jejuni, and C. difficile to
have relatively high abundances in the prostate tissue of
PCa patients, perhaps more accurately reflecting the
“true” microbial ecology of the prostate.
While many studies have reported Propionibacterium

acnes (renamed Cutibacterium acnes) to be abundant in

Table 5 Results from Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway analysis. Upregulated and
downregulated host genes identified from the comparison
between high vs. low Shewanella count group were used for
KEGG pathway analysis

Significant KEGG pathways in upregulated genes

Pathway Fold
enrichment

p value p adj

Oxidative phosphorylation 21.88 1.32e
−11

4.74e
−10

Parkinson’s disease 20.49 2.56e
−11

4.74e
−10

Metabolic pathways 3.25 1.77e
−05

2.19e
−04

Cardiac muscle contraction 17.63 1.38e
−04

0.0012

Alzheimer’s disease 7.87 0.0029 0.0215

Huntington’s disease 6.89 0.0046 0.0289

Significant KEGG pathways in downregulated genes

Pathway Fold
enrichment

p value p adj

Toll-like receptor signaling
pathway

12.61 1.31e
−05

8.91e
−04

p-adj p value corrected for false discovery rate
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prostate tissue [12, 47], P. acnes did not represent a major
taxa across all samples in this patient cohort. Thus, our re-
sults do not indicate an association between PCa and the
pro-inflammatory effects of P. acnes as suggested in other
studies [11, 48, 49]. It is noteworthy that Propionibacter-
ium is a common contaminant in sequencing studies [15,
40, 41], and most sequencing-based microbiome studies
have failed to account for this possibility, perhaps explain-
ing the contradictory results that we observed. In addition,
factors such as differences in patient cohorts, sample
types, sample handling, sample size, and the data analysis
methodology employed can all influence which microbial
species are detected, partly explaining discrepancies in the
results between our study and previous studies.

Microbial dysbiosis between malignant and benign tissue
samples identified through differential abundance
analysis
We observed an overall reduction in the species diversity
within the malignant as compared to the benign tissue
samples from patients with PCa in both the discovery
cohort from Denmark and the validation cohort from
France. Corroborating these findings, our differential
abundance analysis comparing malignant vs. benign tis-
sue samples revealed four species to have significantly
lower abundances in the malignant tumor tissue. Valid-
ity of these findings and of the microbial annotation
pipeline was demonstrated by performing a reverse tran-
scription PCR which successfully detected the presence
of Bacteroides fragilis in all tested samples, as also con-
firmed by Sanger sequencing of the PCR amplicons. The
presence of these species were also validated in an inde-
pendent cohort in which two of the four species also
showed significantly lower abundance in the malignant
vs. benign tissue samples.
Interestingly, the observed lower abundances of B. fra-

gilis in the malignant as compared to the benign tissue
samples in the discovery cohort is in contrast to the sus-
pected role played by this organism in colon and rectal
cancers [50]. For example, rectal cancer was associated
with higher abundances of B. fragilis in the tumor but
not non-tumor tissue samples [51]. Such a result is how-
ever not surprising, given an organism can potentially
have different roles in different organs. For example, in-
creased tissue abundances of the genus Lactobacillus is
reported to be associated with breast cancer [52],
whereas a lower abundance of lactobacilli in the cervico-
vaginal microbiome is thought to be associated with
ovarian cancer [53].
The only microbe showing significantly higher abun-

dance in malignant tissue as compared to the benign tis-
sue in the discovery cohort and validated in the
independent cohort belonged to the genus Shewanella.
This genus has not been reported in PCa previously,

although higher abundances of Shewanella have been re-
ported in the colon mucosa of patients with rectal and
distal cancers as opposed to proximal colorectal cancer
[54]. This could suggest to an association between She-
wanella and at least some cancer types, making it a
highly interesting candidate for further studies.

Altered host immune regulation associated with
increased Shewanella abundance
Differential expression and KEGG pathway analyses be-
tween tissue samples in the discovery cohort having high
vs. low Shewanella count revealed significant downregu-
lation of key immune related genes and pathways in the
high Shewanella count group, including Toll-like recep-
tors (TLR) such as TLR1, TLR6, and TLR8. Human
TLRs are expressed by leukocytes such as dendritic cells
(DC) and forms part of the innate immune system that
is involved in pathogen recognition [55]. Downregula-
tion of the TLR signaling pathway in the malignant tis-
sue samples with high Shewanella count could indicate
pathogen associated immune dysregulation. However, no
tissue inflammation within the prostate was evident in
the histology for a majority of the patients with malig-
nant tumor (77/83, data not shown). Thus, it may be un-
likely that Shewanella induces tissue inflammatory
responses that could lead to PCa development. It is
more likely that decreased immune activity in the malig-
nant tumor of these patients might provide a conducive
tumor microenvironment for the growth of this bacteria.
Decreased enrichment scores for dendritic cells in the

high vs. low Shewanella group also suggest the existence
of a downregulated adaptive immune-system, since DCs
have a crucial role in antigen presentation to T cells
[56]. Decreased DC activity within these malignant tissue
samples could perhaps enable immune evasion by She-
wanella. However, we did not find any significant differ-
ences in other immune cell types between high vs. low
Shewanella count group, which is also consistent with
the absence of histologically visible tissue inflammation
in most patients. While the observed link between She-
wanella and DC remains to be investigated in more
depth, our results suggest that presence of high levels of
Shewanella in the tumor may increase vulnerability to-
wards cancer immunotherapy that targets TLR in DCs
[57]. Further characterization of the TLRs within the
malignant tissue is necessary to validate whether these
TLRs are in fact associated with DC.

Altered host gene expression associated with decreased
V. parahaemolyticus abundance
Differential gene expression and KEGG pathway ana-
lyses between tissue samples in the discovery cohort
having low vs. high V. parahaemolyticus count re-
vealed significant upregulation of genes involved in
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olfactory transduction pathways in the low V. para-
haemolyticus count group. Genes encoding twenty-
two different olfactory receptors (OR) were upregu-
lated in this group. ORs are G-protein-coupled re-
ceptors that detect odorants (chemosensation). They
are mainly expressed in the olfactory epithelium, but
have also been shown to be over-expressed in pros-
tate tumor cells [58], where they could play a role in
promoting cancer invasiveness and metastasis [59].
Interestingly, five of the OR genes that we identified
(OR51T1, OR51S1, OR51G2, OR51A7, and OR51F2)
were also significantly upregulated in abiraterone/
enzalutamide resistant VCap xenograft tumors as
compared to tumors prior to castration; Pre-Cx [60].
Of note, OR51T1 and OR51S1 were also significantly
upregulated in the castration resistant PCa (CRPC)
vs. Pre-Cx VCap tumors in the same study. Taken
together with the upregulation of genes involved in
steroid hormone biosynthesis and drug metabolism
pathways in low vs. high V. parahaemolyticus counts
group as observed in our study, these findings sug-
gest that patients with a low abundance of V. para-
haemolyticus might be more likely to progress
towards a castration resistant phenotype and/or
might be more prone to developing drug resistance
following treatment with abiraterone/enzalutamide.

Species associated with advanced disease stage
Comparisons of malignant tissue microbiome from
patients with pathological T-stages pT2 and pT3 re-
vealed significantly higher abundances of Microbac-
terium sp. in pT3 prostate cancer samples in the
discovery cohort. Microbacterium sp. are nosocomial
infectious agents that have also been reported in the
blood of, e.g., lung, and pancreatic cancer patients,
although disease stage of the underlying malignancy
was not significantly correlated with Microbacterium
sp. infection rate [61]. While we detected Microbac-
terium sp. within malignant tissue samples in the
validation cohort (mean number of reads = 54.3,
standard deviation = 29.1), we did not test for its
differential abundance due to the limited sample size
in this cohort. Thus, further validation of its associ-
ation with PCa using a larger cohort is warranted.
Whether these could be a potential novel target for
therapeutic intervention in patients having more ad-
vanced pathological tumor stages also remains to be
explored.
Our study has some limitations. First, we did not test

for possible sources of contamination during procedural
handling as all analyses were based on existing total
RNAseq data. However, we took a more conservative ap-
proach and excluded samples that had very high abun-
dances of taxa that are known to be contaminating

sequences from reagent kits based on previously pub-
lished studies. Additionally, by using metatranscriptomic
analysis, it is possible that we missed microbial taxa that
are not actively transcribing or have a low level of tran-
scription, which could have been captured by metage-
nomic analysis. Our study did not yield microbial read
counts in sufficient numbers to enable elucidation of the
functional relevance of the prostate microbiome and its
association with PCa. Finally, the lack of non-PCa con-
trol samples limits our conclusions to differences be-
tween benign (adjacent normal) and malignant tumor
tissue. However, collection of truly normal prostate tis-
sue is ethically challenging and also difficult for men in
this age group (mean approx. 65 years), where occult
PCa and/or benign prostatic hyperplasia is commonly
observed [62].

Conclusions
In conclusion, we show that prostate cancer is associated
with dysbiosis of the prostate microbial ecosystem with
reduced overall species diversity in the malignant as
compared to the benign tissue samples. Differential
abundances (both higher and lower) of certain species in
the malignant prostate tissue could provide diagnostic
and/or prognostic potential in the future. In particular,
Shewanella genera might be associated with malignant
transformation of the prostate tissue that could be facili-
tated by a decreased host immune response. Down-
regulation of genes involved in TLR signaling pathway
and decreased enrichment of DCs were both associated
with increased Shewanella counts and could be candi-
date targets for future immunotherapy. Upregulation of
genes involved in olfactory transduction, drug metabol-
ism, and steroid hormone biosynthesis pathways was as-
sociated with decreased V. parahaemolyticus counts and
might be indicative of patients who are more susceptible
to developing treatment resistance. Microbacterium sp.
is an interesting candidate for further investigations on
its association with PCa aggressiveness. Our results thus
support the existence of an important biological link be-
tween the prostate microbiota and PCa development/
progression. These aspects should be further investigated
in future research including histologically visualizing the
localization of these bacteria as well as relevant host cells
(e.g., epithelial/tumor, stromal, and immune cells) within
intact prostate tissue specimens using in situ detection
methodologies.
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