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METHOD

Ontology‑aware deep learning enables 
ultrafast and interpretable source tracking 
among sub‑million microbial community 
samples from hundreds of niches
Yuguo Zha1†  , Hui Chong1†, Hao Qiu1, Kai Kang1, Yuzheng Dun2, Zhixue Chen3, Xuefeng Cui3,4* and 
Kang Ning1* 

Abstract 

The taxonomic structure of microbial community sample is highly habitat-specific, making source tracking possi-
ble, allowing identification of the niches where samples originate. However, current methods face challenges when 
source tracking is scaled up. Here, we introduce a deep learning method based on the Ontology-aware Neural Net-
work approach, ONN4MST, for large-scale source tracking. ONN4MST outperformed other methods with near-optimal 
accuracy when source tracking among 125,823 samples from 114 niches. ONN4MST also has a broad spectrum of 
applications. Overall, this study represents the first model-based method for source tracking among sub-million 
microbial community samples from hundreds of niches, with superior speed, accuracy, and interpretability. ONN4MST 
is available at https://​github.​com/​HUST-​NingK​ang-​Lab/​ONN4M​ST.
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Background
With the rapid accumulation of microbial community 
samples from various niches (biomes) around the world, 
as well as the huge volume of sequencing data deposited 
into public databases, such as those from the “Human 
Microbiome Project” [1, 2] and the “Earth Microbiome 
Project” [3, 4], knowledge about microbial communi-
ties and their influence on the environment and human 
health has grown rapidly [5, 6]. Such massive microbial 

community samples provide the opportunity to study the 
inconspicuous evolution and ecological patterns among 
microbial communities, especially habitat-specific 
patterns.

Taxonomic composition of a microbial community 
sample is usually represented by hierarchically-struc-
tured taxa and their relative abundances (also referred 
to as the community structure), and these taxa are 
functioning in concert to maintain the stability of the 
microbial community and its adaptation to the specific 
environment (also referred to as the niche or biome) [7, 
8]. Biomes are well organized into a hierarchical structure 
with multiple layers [9], and the hierarchy is reflected 
by the parent-child relationships between biomes (i.e., 
“Human-Digestive system”). In MGnify project’s defini-
tion (for which we follow), layer one is the highest layer 
containing only one biome “Root,” and layer six is the 
lowest (bottom) layer containing biomes such as “Fecal.” 
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The hierarchical structure is also considered as an ontol-
ogy in our work, which is widely accepted by current 
microbiome researches, and profiled in both MGnify [8] 
and GOLD [9]. In general, microbial community samples 
from the same biome tend to have similar community 
structures, while such similarities are highly dependent 
on the biome layers.

The rapid accumulation of microbial community sam-
ples has provided the opportunity to investigate the 
interactions among microbes, human health, and envi-
ronment, while they have created an enormous hurdle 
for characterizing the potential inputs from other associ-
ated biomes, calling for fast and accurate source tracking 
[10–12]. Considerable attention has been paid to explore 
the interactions on small scales, such as the disease diag-
nosis, early development, pregnancy, and immigration, 
while integrative, large-scale, and scalable investigations 
have been understudied. Such investigation is challeng-
ing for reasons: firstly, as the number of samples easily 
exceeds millions [8], while the number of niches exceeds 
hundreds, the microbial source tracking has already 
become a very complex task. Secondly, the noises that 
existed in the rich-sourced data might hire important 
patterns invisible for traditional methods. Coupled with 
the fact that many biomes are dependent with each other, 
previous models would be theoretically inapplicable.

Several methods for microbial community source 
tracking have already been proposed [12–16]. They can 
generally be divided into two categories: distance-based 
methods such as Jensen-Shannon Divergence (JSD) [17], 
Striped UniFrac [14], and Meta-Prism [18]; unsupervised 
machine learning methods such as SourceTracker [16, 
19] based on Bayesian algorithm and FEAST [12] based 
on Expected-Maximization algorithm. However, the lim-
itations of these methods are apparent: Firstly, currents 
methods are suitable in small-scale source tracking stud-
ies, yet unsupervised methods face a tradeoff between 
source tracking accuracy and efficiency [12], thus are lim-
ited to source track for only a few hundreds of samples 
from a handful of biomes within a reasonable time. Sec-
ondly, when the background of source tracking research 
occurs in an extremely complex environment, research-
ers usually have little background knowledge about sam-
ples, leading to low source tracking accuracy. Under all 
of these situations, the knowledge about actual source 
biomes is often hidden in the large fraction of unknowns.

To address these limitations, we developed ONN4MST, 
an Ontology-aware Neural Network (ONN) computa-
tional model for microbial source tracking. The ONN 
model employs a novel ontology-aware approach that 
encourages prediction satisfying the “biome ontology.” In 
other words, the ONN model can utilize the biome ontol-
ogy information to model the dependencies between 

biomes, and estimate the proportion of various biomes 
in a community sample. Published studies about ontol-
ogy-aware hierarchical classifiers have shown advantages 
of encoding ontology structure into a neural network, 
such as PHENOstruct [20] and DeepPheno [21]. It is 
worth noting that ONN4MST uses a large amount of 
data (125,823 samples from 114 biomes, accounting 
for more than half of the MGnify project, as of the year 
2020) to train the model, which allows it to be appli-
cable for source tracking samples from many biomes. 
ONN4MST has provided an ultrafast (less than 0.1 s) and 
accurate (AUC higher than 0.97 in most cases) solution 
for searching a sample against a dataset containing hun-
dreds of potential biomes and millions of samples, and 
also out-performed state-of-the-art methods in scalabil-
ity and stability. The ability of ONN4MST on knowledge 
discovery is also demonstrated in various source tracking 
applications: it enables source tracking of samples whose 
niches are previously less studied or unknown, detec-
tion of microbial contaminants, as well as identification 
of similar samples from ontologically-remote biomes, 
showing the unique importance of ONN4MST in knowl-
edge discovery from a huge amount of microbial commu-
nity samples of heterogeneous biomes.

Methods
Datasets
We evaluated the performances of ONN4MST and other 
source tracking methods based on five different datasets 
(Additional file 1: Table S1). These five datasets comprise 
samples from different niches, which are representative 
of high-quality samples in public resources.

The “Combined dataset” consists of 125,823 micro-
bial community samples collected from the EBI MGnify 
database [8] (https://​www.​ebi.​ac.​uk/​metag​enomi​cs/), 
accessed as of January 2020 (Additional file 1: Table S1). 
This is a comprehensive dataset containing samples from 
114 biomes (Additional file 1: Table S2), and the 125,823 
microbial community samples represent more than half 
of the samples in EBI MGnify (as of January 1, 2020). 
These samples contain taxonomic information for 225 
phyla, 6232 families, 16,081 genera, and 45,477 species.

The “Human dataset” consists of 53,553 micro-
bial community samples selected from the Com-
bined dataset, representing a subset of samples from 
the human niches (Additional file  1: Table  S1). Spe-
cifically, these samples are collected under these 
biomes: “Root-Host_associated-Human-Skin,” “Root-
Host_associated-Human-Circulatory_system,” “Root-
Host_associated-Human-Digestive_system,” and 
“Root-Host_associated-Human-Reproductive_system” 
(biomes at a higher layer). This dataset contains 53,553 
samples from a total of 25 biomes. These samples 

https://www.ebi.ac.uk/metagenomics/
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contain taxonomic information for 204 phyla, 2801 
families, 6523 genera, and 16,135 species.

The “Water dataset” consists of 27,667 microbial 
community samples selected from the Combined 
dataset, representing a subset of samples from the 
water niches (Additional file  1: Table  S1). Specifi-
cally, these samples are collected under these biomes: 
“Root-Environmental-Aquatic-Freshwater,” “Root-
Environmental-Aquatic-Marine,” and “Root-Environ-
mental-Aquatic-Non-marine_Saline_and_Alkaline” 
(biomes at a higher layer). This dataset contains 27,667 
samples from a total of 44 biomes. These samples con-
tain taxonomic information for 222 phyla, 6040 fami-
lies, 15,261 genera, and 36,406 species.

The “Soil dataset” consists of 11,528 microbial com-
munity samples selected from the Combined dataset, 
representing a subset of samples from the soil niches 
(Additional file 1: Table S1). Specifically, these samples 
are collected under these biomes: “Root-Environmen-
tal-Terrestrial-Soil,” and “Root-Host_associated-Plants-
Rhizosphere” (biomes at a higher layer). This dataset 
contains 11,528 samples from a total of 16 biomes. 
These samples contain taxonomic information for 201 
phyla, 2962 families, 6753 genera, and 12,769 species.

These three datasets (Human, Water, and Soil data-
sets) were designed with several reasons in consid-
eration. Firstly, these three datasets are representative 
enough and frequently used subsets from the Com-
bined dataset. Secondly, these three datasets are also 
distinct, since the Alpha diversity of samples from each 
of these datasets is significantly different from the other 
two: while samples from soil niches are considered 
more complicated, those from human and water niches 
are considered less so. Finally, samples from these 
niches are more comprehensively explored than other 
less studied niches, and they are of relatively higher 
quality of samples from these three niches.

The “FEAST dataset” consists of 10,270 microbial 
community samples selected from the datasets used 
in the Lax et al. [12] (Additional file 1: Table S1). Spe-
cifically, these samples are all collected from three 
biomes (“Root-Host_associated-Human,” “Root-
Host_associated-Human-Digestive_system-Large_
intestine-Fecal” and “Root-Mixed”). These samples 
contain taxonomic information for 133 phyla, 1118 
families, 3389 genera, and 5762 species. The “FEAST 
dataset” is the smallest dataset used in this study, and 
it is the simplest dataset with regard to the number of 
biomes involved. Yet it is a dataset of unique impor-
tance, as the source tracking methods evaluated in 
this study could be benchmarked on this medium-
sized and credible human gut dataset [12, 16] for a 
fair assessment of accuracy and efficiency.

The dataset used in the case study of centenarian was 
collected and studied by Bian et al. [22] (accession num-
ber SRP107602) and Biagi et  al. [23] (from multiple 
sources). The dataset used in the case study of explor-
ing the association of niche and microbes was from the 
EBI MGnify database [8] (Study MGYS00001056). The 
dataset used in the case study of detecting microbial 
contamination in a built environment was collected and 
studied by Lax et al. [24] (accession number ERP005806). 
The dataset used in the case study of less studied biomes 
was collected and studied by Alsalah et al. [25] (accession 
number PRJEB9501). The dataset used in the case study 
of bird biome was from EBI MGnify database [8] (Study 
MGYS00005593). The dataset used in the case study of 
Hadza people’s gut microbial communities was collected 
and studied by Samuel et  al. [26] (accession number 
PRJNA392012, PRJNA392180).

Biome ontology
We constructed a comprehensive biome ontology using 
114 biomes (Additional file  1: Table  S2) collected from 
the EBI MGnify database [8] (https://​www.​ebi.​ac.​uk/​
metag​enomi​cs/​biomes). In this process, we organized 
the biome ontology as a tree, by treating a biome with 
multiple parent biomes in the higher layer (e.g., “Human-
Digestive_system” and “Mammal-Digestive_system”) as 
separate biomes. Next, the ontology tree containing 6 
layers and 133 nodes (representing 114 biomes) was con-
structed, by using Python-3.7.4 and Treelib-1.5.5. As a 
result, each biome was represented by at least one node 
in the ontology tree. The ontology tree has “Root” at the 
first layer, biomes (nodes) including “Environmental,” 
“Host_associated,” and “Engineered” at the second layer, 
and 7, 22, and 56 biomes (nodes) at the third to fifth lay-
ers respectively, with 43 biomes (nodes) including “Coral 
reef,” “Fecal,” and “Saliva” at the bottom (sixth) layer 
(Additional file 1: Table S2).

Sample labeling
In all experiments, we used microbial samples each with 
a label annotated by using 6-layers biome ontology to 
validate our model. For example, there are 22 samples 
labeled as “Root-Host_associated-Human-Digestive_sys-
tem-Oral-Throat” in the Combined dataset (by separat-
ing different layers with the “−” symbol).

Data representation
ONN4MST takes species abundance table as input, 
which can be generated by using standard programs 
(e.g., Qiime) based on 16S rRNA data or metagen-
omics data. Then, we generated the Matrix for each 
microbial community sample based on the species 
abundance table, so that the abundances for all taxa at 

https://www.ebi.ac.uk/metagenomics/biomes
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seven taxonomic levels including super-kingdom, king-
dom, phylum, class, order, family, and genus (simply 
referred to as “sk,” “k,” “p,” “c,” “o,” “f,” and “g”) can be 
retained. The abundance of taxa at different levels was 
filled in the Matrix (Fig.  1). Within the Matrix, seven 

columns respectively represent seven taxonomic levels. 
And 44,668 rows respectively represent relative abun-
dance for 44,668 taxa (also referred to as features). For 
a detailed description and an example of the data repre-
sentation, see Additional files 2 and 3.

Fig. 1  Building and using the ONN model for microbial source tracking. a The sample data representation and training process of ONN model. 
(i) Sample data are transformed into the Matrix. With the Matrix, each column represents a taxonomic level and each row represents a feature; 
(ii) In parallel, samples are mapped to biome ontology according to their niches; (iii) The model is built and updated according to both samples’ 
abundance matrices and biome ontology information. More details about building, testing, and using the ONN model for source tracking 
are illustrated in Supplementary Figs. 1 and 2. b An illustrated example of microbial source tracking procedure using ONN4MST. (i) The input 
is the community structure of a real microbial community sample (this sample is from the biome “Root-Host_associated-Human-Digestive_
system-Oral-Saliva”) that has been preprocessed and the Matrix has been provided into the model; (ii) Source tracking process at different layers. 
The red arrows indicate the search process from layer 1 to layer 6, accompanied with source contribution annotated in red. To compare with 
the procedure of ONN4MST, the yellow and blue arrows indicated the source tracking results (among the overall top 5 sources) of FEAST and 
SourceTracker, together with their source contributions, respectively. The actual biome is annotated by a red checkmark; (iii) The predicted biomes 
(with source contributions) by ONN4MST, FEAST, and SourceTracker
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Feature selection
To improve the efficiency and accuracy of ONN4MST, 
we conducted feature selection by using a random forest 
regression model (Python-3.7.4 and Scikit-learn-0.22.1). 
An abundance-based pre-filtering and an importance-
based selection were performed in sequential order. In 
doing so, we treated each row (representing the abun-
dances of a taxon, see Additional file  2) of the Matrix 
as a feature. Then, a series of adaptive thresholds ( CRl  
and CIl  ) were applied to different taxon levels, in which 
Rl  and Il  stand respectively for the relative abundance 
and the feature importance. level ∈ {sk, k, p, c, o, f, g} and 
the coefficient C was set to 0.001. As a result, we have 
selected 1,462 features with relative abundance and fea-
ture importance above the thresholds from all 44,668 fea-
tures involved in this study.

The ONN4MST model
The training and query processes are built based on two 
data structures: microbiome samples represented by its 
community structure, as well as the biome ontology rep-
resented by a hierarchy O. In the training process, we 
employed an Ontology-aware Neural Network to learn a 
mapping M(s) from a series of source samples s ∈ D to 
their biome sources xs =

(

x2s , . . . , x
6
s

)

 , with source contri-
butions ys =

(

y2s , . . . , y6s
)

 , where D is the source sample 
dataset, xis is source biome, yis is source contribution for 
source sample s in the ith layer of O. In the query process, 
we apply M on query q to determine the source biomes 
and maximum contributions for the query sample q: 
Considering a query sample q, we quantify contributions 
yq(x) from every biome source x to q, and determine the 
biome source xq =

(

x2q , . . . x
6
q

)

 that could maximize 
yq =

(

y2q , . . . , y6q

)

 as the source tracking result.

Architecture of the Ontology‑aware Neural Network
The architecture of the ONN could be described in four 
functional layers, including feature extracting layer, fea-
ture encoding layer, feature incorporating layer, and 
ontology-aware layer (Additional file  1: Fig. S1). The 
feature extracting layer (input layer) is used for extract-
ing the basic feature of microbial community samples. 
The feature extracting layer is a fully-connected layer 
with ReLU activation. It accepts microbial community 
samples represented by the Matrix, extracts the feature 
information from the Matrix, and delivers them to the 
feature encoding layer. The feature encoding layer is used 
for encoding ontology-layer-specific features of micro-
bial community samples. The feature encoding layer is 
a fully-connected layer with ReLU activation. It accepts 
the output of the feature extraction layer and encodes 
ontology-layer-specific feature information for each of 
the six biome ontology layers. The feature incorporating 

layer is used for incorporating inter-layer information. 
The feature incorporating layer is a fully-connected layer 
with ReLU activation, which serves for inter-layer infor-
mation incorporation. The ontology-aware layer (output 
layer) is used for ontology walk-through and source con-
tribution calculation. The ontology-aware layer is a fully-
connected layer with Sigmoid activation. It accepts the 
output of the feature incorporating layer and computes 
the contribution of all biome sources on its correspond-
ing biome ontology layer.

Training and testing
We used Tensorflow-1.14 [27] to build and train the 
ONN model. The model was trained on a computational 
platform comprising Intel(R) Xeon(R) CPU E7-4809 v3 
@ 2.00GHz CPU (64 cores in total) with 315 GB RAM 
and Nvidia Tesla K80 GPU with 12 GB RAM. We chose 
8-fold cross-validation for model training and testing. For 
each dataset, we randomly split it into 8 folds, each fold 
including a training set (87.5%) and a testing set (12.5%). 
For each fold, the model was trained (in batches of 512 
samples) for 30,000 iterations or until training accuracy 
converged, and the model with the highest accuracy on 
the training set was selected for testing. The results on 
the testing set are organized in the form of a hierarchical 
prediction (with prediction results from 2nd to 6th lay-
ers), which would then be evaluated.

Other methods used in this study
Three distance-based methods, JSD [17], Striped UniFrac 
[14], and Meta-Prism [18]; two unsupervised machine 
learning methods, Expected-Maximization-based 
method FEAST [12] and Bayesian-based method Source-
Tracker [16]; and our supervised deep learning method 
(ONN4MST) were applied for microbial source track-
ing. In this study, the source tracking results (predicted 
biomes) of multiple methods were compared against 
the microbial community samples’ actual source (actual 
biomes).

The distance-based methods are based on a pair-
wise calculation of sample distances, and such meth-
ods depend heavily on the presence of species and their 
relative abundance for individual samples, regardless of 
weighted or unweighted scoring functions used. Among 
distance-based methods, JSD does not consider the phy-
logenetic relationships among species, while methods 
such as Striped UniFrac and Meta-Prism do (we have 
used Meta-Prism 2.0 for comparison in this study). How-
ever, distance-based methods have a binomial increase in 
time cost with the increase in the number of samples.

Unsupervised methods for microbial community sam-
ple comparison are based on profile-based statistical mod-
els, either the Bayesian model used in the SourceTracker 
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method or the Expected-Maximization (EM) model used 
in the FEAST method. Unsupervised methods are typically 
more accurate than distance-based methods. However, 
since unsupervised methods still do not consider the intri-
cate but important patterns of a set of samples from simi-
lar niches, their tolerance to noisy signals in samples is not 
high, hence potentially would lead to biased mismatches. 
Details about the source tracking methods other than 
ONN4MST used in this study are provided in Additional 
file 3.

Hierarchical prediction
In order to carry out a comparison of ONN4MST against 
other methods at different layers of biome ontology, all 
other methods were remolded, so that the prediction 
results of these methods (excluding ONN4MST) at differ-
ent layers could be produced. Based on the source contri-
butions of biomes at the sixth (bottom) layer, the source 
contributions of biomes for other layers were computed 
using Pf =

∑

fc∈Cf
Pfc . Where Pf is a source contribution 

for f, Cf is a set of children biomes for biome source f in the 
biome ontology. fc  is a child biome of f. We used NumPy-
1.18.1 and Treelib-1.5.5 in the process.

Benchmarking measures
To benchmark and compare the results based on 
ONN4MST and the other five methods, we used these 
measures:

(1)TPf (t) =
∑

iI
(

f ∈ Pi(t) ∧ f ∈ Ti

)

(2)TNf (t) =
∑

iI
(

f �∈ Pi(t) ∧ f �∈ Ti

)

(3)FPf (t) =
∑

iI
(

f ∈ Pi(t) ∧ f �∈ Ti

)

(4)FNf (t) =
∑

iI
(

f �∈ Pi(t) ∧ f ∈ Ti

)

(5)TPRf (t) =
TPf (t)

TPf (t)+ FNf (t)

(6)FPRf (t) =
FPf (t)

FPf (t)+ TNf (t)

(7)TPR(t) =
1

F

∑F
f=1TPRf (t)

(8)FPR(t) =
1

F

∑F
f=1FPRf (t)

where f is a biome source, Pi(t) is a set of predicted 
biomes for a microbial community sample i and thresh-
old t ∈ [0, 1] with a step size of 0.01, Ti is a set of actual 
biomes for a sample i, F is the total number of biomes, 
and I is a logical operation function, the value of I is 1 
when the result of the logical operation is TRUE, else 0.

Four evaluation metrics (Accuracy, Precision, Recall, 
and Fmax) were introduced. These evaluation metrics 
are computed with the following formulas:

where TP is true positive, TN is true negative, FP is 
false positive, and FN is false negative. Subsequently, 
we compute F1 for threshold t ∈ [0, 1] with a step size 
of 0.01 by using the average precision and average recall 
for all actual biomes that we predicted at least one time. 
Then, we select the maximum F1 as Fmax. These evalua-
tion metrics are computed with the following formulas:

Then, ROC (Receiver Operating Characteristic) 
curves, which are based on contrasting the true positive 
rate (TPR) against the false positive rate (FPR), were 
plotted. AUC (Area Under the Curve) reflects the abil-
ity of model to correctly predict the biomes (sources) of 
microbial community samples. AUC is calculated with 
the following formula:

Results
Ontology‑aware Neural Network
ONN4MST uses an Ontology-aware Neural Network 
(ONN) model for source tracking. When training the 

(9)

Accuracy(t) =
TPf (t)+ TNf (t)

TPf (t)+ FPf (t)+ TNf (t)+ FNf (t)

(10)Precisionf (t) =
TPf (t)

TPf (t)+ FPf (t)

(11)Recallf (t) =
TPf (t)

TPf (t)+ FNf (t)

(12)AvgPrecision(t) =
1

F

∑F
f=1Precisionf (t)

(13)AvgRecall(t) =
1

F

∑F
f=1Recallf (t)

(14)

Fmax = max
t

{

2 • AvgPrecision(t) • AvgRecall(t)

AvgPrecision(t)+ AvgRecall(t)

}

(15)AUC =

∫ 1

0

TPR(t)
(

−FPR′(t)
)

dt
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model, all training samples’ community structures are 
decoded, each converted to a matrix containing the taxa 
at different taxonomic levels and their relative abun-
dances (simply referred to as the Matrix). The ONN 
model uses the Matrix as input and reshapes it into ten-
sors which point to biomes at every different layer of 
the biome ontology. To fit the structure of biome ontol-
ogy, the ONN model uses multiple ontology units, each 
belonging to one of the six specific layers of biome ontol-
ogy (Fig.  1a). The architecture, the training procedure, 
and the evaluation procedure of the ONN model are 
illustrated in Additional file  1: Fig. S1 and described in 
the “Methods” section.

The source tracking procedure of ONN4MST is illus-
trated in Fig.  1b. Since ONN4MST is the first method 
available that could source track the samples at dif-
ferent layers of biome ontology, the search scheme of 
ONN4MST is completely different from other methods 
(Fig.  1b). While ONN4MST goes through the biome 
ontology to find the best possible source along different 
layers, other methods such as FEAST and SourceTracker 
treat all biomes as anarchically equal. The overall scheme 
of building the ONN model and using ONN4MST for 
source tracking is illustrated in Additional file 1: Fig. S2. 
Note that the contributions of every known biome would 
be estimated by the ONN model, respectively.

General model enables accurate source tracking with high 
scalability and stability
We constructed five datasets, representing sample col-
lections with different numbers of biomes and samples, 
covering more than 100,000 real microbial commu-
nity samples (Additional file  1: Table  S1 and Table  S2). 
These five datasets contain samples from different niches 
including “Host_associated,” “Environmental,” and “Engi-
neered” as top biomes, which are representatives of high-
quality microbial community samples in public resources 
(Additional file  1: Table  S2, Methods). Since these five 
datasets were designed to have varied complexities, each 
including a different number of samples from a different 
number of biomes, they could serve well for the evalu-
ation of ONN4MST and other methods (Fig.  2a): The 

Combined dataset contains 125,823 samples and 114 
biomes, which represents the largest dataset, as well as 
the largest model (the general model), used in this study. 
The FEAST dataset contains only 10,270 samples and 3 
biomes. While the Human dataset, Water dataset, Soil 
datasets are respectively with moderate sample sizes 
(Additional file 1: Table S1).

First and foremost, ONN4MST’s performances on all 
five datasets were evaluated. Regardless of the datasets 
used for evaluation, the predicted biomes (i.e., biomes 
with dominant contribution quantified by ONN4MST) 
were very close to the actual biomes in most cases. For 
example, ONN4MST could achieve an accuracy of 0.99 
and AUC of 0.97 on searching the Combined dataset 
with 125,823 samples from 114 biomes. When we applied 
ONN4MST on Human, Soil, Water, and FEAST datasets, 
the accuracy and AUC of ONN4MST were also higher 
than 0.98 and 0.96 for these datasets (Table 1, Additional 
file 1: Fig. S3).

ONN4MST based on selected features performed 
equally well or better than that based on all features. 
We conducted feature selection by using a random for-
est model, and 1462 features (taxa) were selected from 
all 44,668 features. ONN4MST uses a total of 44,668 
features, but ONN4MST_FS only uses 1462 selected 
features (see the “Methods” section and Additional 
file  2). Results showed that based on 1462 selected fea-
tures, ONN4MST_FS could attain slightly higher accu-
racy (0.997 vs. 0.995, on Combined dataset), AUC and 
Fmax compared to ONN4MST using all features (Table 1, 
Additional file  1: Fig. S3), which means that there is a 
certain degree of redundancy among all 44,668 features, 
and we can achieve the same accuracy with just 1462 fea-
tures compared with that using all 44,668 features. These 
results have emphasized the scalability and stability of 
the general model built based on the Combined data-
set, either based on using all features, or using selected 
features.

Furthermore, we evaluated the universality of the 
general model built based on the Combined dataset, 
by applying it directly on the Human, Water, Soil, and 
FEAST datasets. It was found that the source tracking 

Fig. 2  ONN4MST’s prediction accuracies are among the best on different datasets and different biome layers, while the performance of ONN4MST 
does not depend heavily on the number of biomes or number of samples in the dataset. a The five datasets (Combined, Human, Water, Soil, and 
FEAST datasets) with varied complexities have provided source tracking tasks with different difficulties. The complexity of the dataset is positively 
associated with the number of biomes and Shannon diversity and negatively associated with the number of samples. For example, source tracking 
tasks on the Soil dataset is difficult because of the medium number of biomes and small number of samples in the Soil dataset. b The ROC curve 
of ONN4MST and other methods on all five datasets. c The number of samples, the Shannon diversity and the source tracking results by different 
methods for the five datasets. The samples involved in each dataset are shown with blue bars, the Shannon diversity of each dataset is shown with 
red boxes, the AUC of several methods on each dataset is shown with dash lines. d The AUC of all methods on all five datasets. e The number of 
biomes and the source tracking results by different methods at different layers for the Combined dataset. The samples involved in each biome 
ontology layer are shown with blue bars, the AUC of different methods on each layer is shown with dash lines. f The AUC of all methods at different 
layers. Abbreviations: ONN4MST_FS, ONN4MST using selected features

(See figure on next page.)
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by using the general model was successful on those data-
sets which are composed of samples mostly from the 
Combined dataset’s samples (Additional file 1: Table S3, 
results on Human, Water, Soil datasets). However, when 
we applied the general model on datasets in which most 

of the samples were not previously observed in the gen-
eral model or have more detailed biome ontology com-
pared to the biome ontology used in the general model, 
the general model would not perform well (Additional 
file  1: Table  S3, results on FEAST dataset). Besides, 

Fig. 2  (See legend on previous page.)
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results showed that it was unsuccessful when we applied 
the human model (the model built based on the Human 
dataset) for source tracking on Soil and Water datasets 
(Additional file 1: Table S4).

Additionally, we have built a simple neural network 
without ontology structure, and evaluated the simple 
neural network on all five datasets. Results showed that 
the ONN model benefits a lot in accuracy and generali-
zation by encoding ontology structure into neural net-
work. For example, on the FEAST dataset, the evaluation 
results based on all features show that the AUC achieved 
by the simple neural network and the ONN are 0.890 
and 0.980, respectively (Table  1 and Additional file  1: 
Table S5). 

Comparison of ONN4MST and other source tracking 
methods
We then compared all six source tracking meth-
ods on all five datasets with different complexities 
(Fig.  2a). Results on all five datasets were evaluated 
separately (Fig. 2b,d). Among the four datasets exclud-
ing the FEAST dataset, ONN4MST was superior to 
other methods: ONN4MST reached an AUC of 0.97, 
while other methods only reached a maximum of 
0.89 (Fig.  2d). As for the FEAST dataset, ONN4MST 
reached an AUC of 0.99, while other methods also 
reached a maximum of 0.96.

The performances of ONN4MST on five datasets are 
not sensitive to the complexities of datasets (Fig.  2c). 
The complexity of the dataset is positively associated 
with the number of biomes and Shannon diversity and 
negatively associated with the number of samples. And 
the five datasets we have used have different complexi-
ties (Fig.  2a,c). ONN4MST achieved robust perfor-
mances with AUC > 0.96 on all five datasets. While 
other methods, such as FEAST and JSD, are sensitive to 
the complexities of datasets. For example, the Soil data-
set is among those with the highest Shannon diversity, 

and the AUC of the FEAST method (Fig.  2c, orange 
dash line) on the Soil dataset is lower than those on the 
Water, Human, and Combined datasets. The high AUC 
on the FEAST dataset is mainly due to the small num-
ber of biomes used in the FEAST dataset (Additional 
file  1: Table  S1). On the other hand, the performance 
of ONN4MST on each dataset did not depend heavily 
on the number of samples in that dataset (provided that 
there are at least 10,000 samples in the dataset) (Fig. 2c). 
Furthermore, the prediction accuracies were not biased 
for certain biomes (provided that there are at least 100 
samples in each biome) (Additional file 1: Table S6).

We further analyzed ONN4MST’s performances at 
different biome layers (Fig.  2e,f ). Since it is the only 
method available that could source track samples at 
different layers of biome ontology, we have remolded 
other methods’ search scheme into a hierarchical pre-
diction scheme (see the “Methods” section), so that 
their results are comparable to ONN4MST’s. Results 
have clearly shown that ONN4MST and ONN4MST_
FS reached an AUC of 0.97 in minimum at all layers for 
the Combined dataset and these were noticeably supe-
rior to other methods (Fig.  2e,f ). Thus, ONN4MST is 
not just the only method available that could source 
track at different layers, but also the best method even 
when other methods were remolded for such purpose.

Running time and memory utilization benchmark
We evaluated the time and memory cost of all meth-
ods using a computational platform comprising Intel(R) 
Xeon(R) CPU E7-4809 v3 @ 2.00GHz CPU (64 cores in 
total) with 315 GB RAM, Nvidia Tesla K80 GPU with 
12 GB RAM. For time cost comparison, all actual times 
(search time, excluding I/O time) were converted to the 
equivalent time on a single core.

ONN4MST is superior to other methods in search 
time and memory utilization where the superior-
ity expands as the number of source samples increases 

Table 1  Evaluation of ONN4MST on all five datasets

ONN4MST achieved the accuracy higher than 0.98 for all five datasets, and the AUC higher than 0.97 for all five datasets. For each dataset, we used the model trained 
on that dataset for evaluation. The evaluation procedure of the ONN model is described in the “Methods” section. ONN4MST based on all features and selected 
features were both evaluated at the bottom (sixth) layer with a threshold of 0.5

Abbreviations: Pr precision, Rc recall, Acc accuracy

Dataset No. biomes No. samples All features Selected features

Pr Rc Acc Fmax AUC​ Pr Rc Acc Fmax AUC​

Combined 114 125,823 0.826 0.662 0.995 0.740 0.971 0.868 0.774 0.997 0.820 0.977

Human 25 53,553 0.822 0.521 0.984 0.695 0.972 0.894 0.826 0.991 0.863 0.984

Water 44 27,667 0.842 0.766 0.992 0.803 0.966 0.854 0.764 0.992 0.813 0.971

Soil 16 11,528 0.915 0.778 0.986 0.850 0.974 0.892 0.881 0.989 0.890 0.982

FEAST 3 10,270 0.793 0.795 0.984 0.803 0.980 0.895 0.812 0.989 0.862 0.991
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(Fig. 3). First of all, we tested the time cost by searching 
a single query against the five datasets respectively. For 
the Combined dataset including 125,823 source samples, 
ONN4MST and ONN4MST_FS took 0.18 s and 0.04 s, 
respectively, while distance-based methods took at least 
1 s for a query. And FEAST took more than 100,000 s, 
and SourceTracker took even more time (Fig.  3a, on 
the Combined dataset, as also verified in Shenhav et  al. 
[12]). Interestingly, though the time spent by FEAST 
and Source Tracker per thousand of source samples 
were both less than those reported in Shenhav et al. [12], 
these two methods costed magnitudes more time than 
ONN4MST (Fig. 3a). When we linearly extrapolated the 
number of source samples to one million in the dataset 

to be searched, the advantage of ONN4MST over other 
methods still held (Fig.  3a, hollow bars). When search-
ing a different number of queries against the Combined 
dataset, we observed the time cost follows this trend: 
supervised methods (ONN4MST and ONN4MST_FS) 
≤ distance-based methods (JSD, Meta-Prism and Striped 
UniFrac) < unsupervised methods (FEAST and Source-
Tracker) (Fig. 3b). Again, when we linearly extrapolated 
the number of queries to one million in a batch, the 
advantage of ONN4MST over other methods still held 
(Fig. 3b, hollow bars).

When memory utilization was evaluated, we have also 
observed the superiority of ONN4MST over most of 
the other methods. Specifically, when searching a single 

Fig. 3  ONN4MST is superior to other methods in search time and memory utilization. a Running time of different methods when search one 
query against different datasets. b Running time of different methods when search queries of different sizes against Combined dataset. c Memory 
utilization of all methods when search one query against different datasets. d Memory utilization of all methods when search queries of different 
sizes against Combined dataset. Note: a hollow bar means that the value represent by this bar is the result of linearly extrapolation, both for running 
time and for memory utilization. Abbreviations: ONN4MST_FS, ONN4MST using selected features; 1M, results of linearly extrapolation with one 
million samples in use
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query against the Combined dataset, ONN4MST and 
ONN4MST_FS needed 22 GB and 2 GB of memory, 
respectively; while FEAST and SourceTracker needed 84 
GB and 18 GB of memory, respectively; and JSD needed 
47 GB of memory. Striped UniFrac and Meta-Prism 
(https://​github.​com/​HUST-​NingK​ang-​Lab/​Meta-​Prism-
2.0) were comparable with ONN4MST_FS in memory 
utilization, since they have optimized the data structure 
for sample comparison. When the number of queries in 
a batch exceeded 10,000, or the size of the dataset to be 
searched varies, ONN4MST and ONN4MST_FS remain 
the ones that needed the least memory (Fig. 3c,d). Details 
about running time and memory utilization are pre-
sented in Additional file 1: Tables S7-S10.

Utility of ONN4MST in various source tracking applications
The objective of microbial community sample source 
tracking is knowledge discovery from the huge amount 
of microbial community samples of heterogeneous 
sources. Thus, we showcased the ability of ONN4MST 
in knowledge discovery from several perspectives: firstly, 
it can ensure accurate and interpretable source tracking, 
even on distinguishing samples from ontologically-close 
biomes; secondly, when samples’ biomes are previously 
less studied or unknown, ONN4MST could provide 
accurate and interpretable clues for possible biome at 
higher layers, supplementing the information about such 
less studied biome; thirdly, ONN4MST could help for 
accurate microbial contaminant detection; finally, “open 
search” of sample among the source samples with almost 
all possible biomes could identify similar samples from 
ontologically-remote biomes, leading to novel knowledge 
discovery.

Centenarians share similar gut microbiota with young 
individuals
ONN4MST can distinguish samples from ontologically-
close biomes, thus offers a quantitative way to character-
ize the development of human gut microbial community. 
In this context, we leveraged external sources of young 
individuals (30 years old on average) to understand the 
unique properties of gut microbiota in centenarians 
(persons over 100 years old). To demonstrate this capa-
bility, we first built a self-defined ONN model with two 
layers of biome ontology: “human gut” as the first layer, 
while “Young human gut” and “Others or unknown” 
at the second layer, through using a training set which 
contains 5000 randomly selected human gut samples 
from the Combined dataset (Additional file 1: Table S1), 
together with 800 randomly selected human gut sam-
ples from young individuals in published studies [22, 23]. 
Then, samples from centenarians (30 from Italy, and 51 
from China) [22, 23] were used as queries for performing 

source tracking with the self-defined ONN model. 
Results revealed a significantly larger “Young human 
gut” contribution (Wilcoxon-test, p < 1e-3) in centenar-
ians (Additional file  1: Fig. S4), regardless of the loca-
tions where these samples were collected, which were 
consistent with the results of published studies [22, 23]. 
We further tested whether these profiles are selective to 
centenarians but not normal seniors. We collected 770 
samples of normal seniors from another published study 
[28] as queries for comparison. However, we were unable 
to detect a significant “Young human gut” contribution 
in these normal seniors (Additional file 1: Fig. S4). There-
fore, we demonstrate that the gut microbiome of cente-
narians differs from that of normal seniors and shows a 
youthful pattern.

ONN4MST can also help for inferring niche association 
in the human microbiome. The niche association analysis 
in a previous study has shown that there are body site-
specific subspecies clades [29]. Here, we used ONN4MST 
to explore the association of niche and microbes based 
on 303 samples targeting diverse body sites from the EBI 
MGnify database [8] (Study MGYS00001056). These 303 
samples belong to three human body sites, including 90 
gut samples, 183 oral samples, and 30 vaginal samples. 
Notably, these samples are not included in the Combined 
dataset. We used the ONN4MST model to predict the 
source of these samples. Results showed that ONN4MST 
could identify these samples to the actual biome (i.e., 
“Host_associated”) at the second layer. The prediction 
accuracies reasonably decreased when it comes to biome 
layer three, layer four and layer five. And about half of 
the oral sample were misclassified at the fifth layer, while 
all the vaginal samples were misclassified at the fourth 
and fifth layers (Additional file 1: Table S11). We further 
investigated these misclassified oral and vaginal samples, 
and found that about half of the oral samples were clas-
sified as the biome “Large_intestine” at fifth layer, while 
the vaginal samples were classified as the biome “Skin” 
at fourth layer. These investigations demonstrated that 
oral has non-neglected niche association with gut, while 
vagina has strong niche association with skin.

Detecting microbial contamination in built environment
To validate ONN4MST’s ability on microbial contamina-
tion detection, we analyzed microbial community data 
collected by Lax et al. [24] In this analysis, we investi-
gated microbial contamination at several indoor house 
surfaces. We used skin samples from several body parts 
(skin, foot, hand, and nose) and additional environmen-
tal, plants, and mammal samples from the Combined 
dataset (Additional file  1: Table  S1) as source samples, 
and samples from indoor house surfaces (“Bathroom 
Door Knob”, “Front Door Knob”, “Kitchen Counter”, 

https://github.com/HUST-NingKang-Lab/Meta-Prism-2.0
https://github.com/HUST-NingKang-Lab/Meta-Prism-2.0
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“Kitchen Floor”, and “Kitchen Light Switch”) as queries. 
Our analysis results by using ONN4MST have shown 
that microbial communities on these surfaces mostly 
originated from humans (Fig.  4a), largely in agreement 
with the original analyses of Lax et al. [24] using Source-
Tracker, and differs slightly from the results of Shenhav 
et al. [12] These results were reasonable considering the 
strong influence of skin microbial communities on indoor 
house surfaces [30], while they have again emphasized 
the challenge of source disambiguation for methods that 
do not consider ontology structure of the biomes. That is, 
treating each individual sample as an independent poten-
tial source would make differentiation of tiny sample dif-
ferences among ontologically-close biomes impossible, 
thus underestimating the contributions of known sources 
at higher layers. We further investigated the composition 
of the human and unknown sources existed in Fig.  4a. 
In addition to the contribution of human, we found evi-
dence for contributions from mammals (0.1–1.7%), 
soils (0.1–3.1%), barley and bean product (0.6–1.1%), 
and marine product (0.2–0.4%) for kitchen environ-
ments, and potential evidence for contributions from 
agricultural (0.7-1.1%) and coastal (0.2–0.6%) for door 

knobs, were also identified (Fig.  4b,c, Additional file  1: 
Table S12).

Source tracking of environmental samples 
from less studied biomes
This investigation was based on searching 11 ground-
water samples from another published study [25] (the 
biome “Groundwater” is less studied, with a handful 
of samples in the MGnify database, Additional file  1: 
Table  S2) against the Combined dataset. ONN4MST 
could identify significantly larger proportions of inputs 
from biome “Aquatic” (average contribution 0.32, Fig. 5b) 
compared with “Marine” (average contribution 0.09, 
Wilcoxon-test, p = 0.007, Fig. 5c), coupled with consider-
able inputs from “Terrestrial” (average contribution 0.46, 
Fig. 5b,c), suggesting that the samples might be collected 
from terrestrial water (i.e., river, lake, groundwater), or 
their sediment, rather than water from marine (ocean 
or sea). Notably, for these “Groundwater” samples, 
FEAST and SourceTracker assigned a large proportion of 
“Unknown” (Fig. 5d,e). Such differences in quantification 
are mainly due to the fact that ONN4MST could screen 
the whole biome ontology, and quantify contributions 

Fig. 4  The contribution of the unknown sources in indoor house surface samples using ONN4MST. a Mean source contributions considering 4 
human skin sources (hand, foot, nose, and skin—other across all inhabitants) using data from Lax et al. [24]. b, c Further decomposition of the 
unknown sources existed in a has revealed other microbial contaminates in built environment
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at different layers, enabling it to at least tell the poten-
tial inputs at a lower resolution but with higher fidel-
ity. Whereas FEAST and SourceTracker were designed 
without considering the biome ontology, they would 
assign "Unknown" for many of these samples. Addition-
ally, the increasing unknown sources’ contribution from 

the second layer to the sixth layer (Fig. 5a–c, Additional 
file 1: Fig. S5), as well as the large proportion of unknown 
sources’ contributions quantified by FEAST and Source-
Tracker (Fig.  5d,e), also suggest that there is indeed a 
certain degree of microbial dark matters remain to be 
discovered. Although ONN4MST may have limitations 

Fig. 5  Successful source tracking of environmental samples from a less studied biome by using ONN4MST. Results were based on using 11 samples 
from groundwater environment, which represented a biome previously less studied. a–c Source tracking results by using ONN4MST at the second, 
third, and fourth layers. d Source tracking results by using FEAST. e Source tracking results by using SourceTracker. Actual biome of query sample: 
“Root-Environmental-Aquatic-Freshwater-Groundwater.” A_1, A_2: two samples collected from a single well; B_1, B_2: two samples collected from 
another single well; C_1, C_2: two samples collected from the third single well; D-H: samples collected from other five wells, respectively
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in detecting microbial community samples with biomes 
of mixed backgrounds, especially when the number 
of training samples is few in a specific biome, or when 
samples are from biome less studied, ONN4MST could 
provide interpretable clues for possible biome at higher 
layers in the biome ontology, which could be useful in 
guiding the manual curation of these samples.

We also evaluated ONN4MST for samples from biomes 
not present in the ONN4MST model. We collected 148 
samples from the ceca of birds in the EBI MGnify data-
base [8] (Study MGYS00005593). Notably, “Bird” rep-
resents a newly introduced biome (not included in the 
biome ontology when generating the ONN4MST model) 
which belongs to the biome of “Host_associated,” and 
these 148 samples from ceca of bird are not in the Com-
bined dataset. We used the ONN4MST model to pre-
dict the source of these ceca samples from birds. Results 
showed that ONN4MST identified these ceca samples 
as from the biome of “Host_associated” at the second 
layer of biome ontology, yet from “Human” and “Mam-
mals” at the third layer of biome ontology (Additional 
file  1: Table  S13). We should emphasize that although 
ONN4MST is unable to predict the actual biome of sam-
ples from biomes which are not present in the training 
model, ONN4MST could provide interpretable clues for 
possible biome at higher layers in the biome ontology, 
which could be useful in guiding the manual curation of 
these samples.

We further evaluated ONN4MST for samples from the 
same biome but with different characteristics. Previous 
studies have reported that microbial community samples 
from the soil with different characteristics possessed high 
diversity [31]. To evaluate the capability of ONN4MST 
for predicting samples from the same biome with differ-
ent characteristics, we introduced another cohort, about 
the seasonal changes of the Hadza people’s gut microbial 
communities [26]. In this evaluation, 203 gut microbi-
ome samples of the Hadza hunter-gatherers of Tanzania 
were used for source tracking. These 203 gut microbiome 
samples are divided into “Dry” and “Wet” categories, in 
which 106 samples are from the “Dry” category meaning 
samples are collected from humans in dry seasons, and 
the other 97 samples are from “Wet” category mean-
ing samples are collected from human in wet seasons. 
Results showed ONN4MST could classify the majority 
of these samples from human gut, with a few samples 
misclassified (Additional file 1: Table S14). However, the 
proportion of samples misclassified were higher in “Wet” 
category than in “Dry” category. These findings suggest 
that ONN4MST predictions are influenced by the con-
founding factors such as seasons in which the samples 
were collected. This is reasonable, since in different sea-
sons, the Hadza people’s diets are drastically different, 

and the diets could asset strong influence on gut micro-
bial communities.

Discovery of similar samples from ontologically‑remote 
biomes
Another advantage of ONN4MST in source tracking is 
its ability for “open search” without any a priori knowl-
edge about possible biomes where the query might be 
from, enabling it for novel knowledge discovery. We 
tested ONN4MST’s “open search” results and found that 
it could discover similar samples among ontologically-
remote biomes “Engineered,” “Host_associated,” and 
“Environmental” (Additional file  1: Table  S15). While 
some of the samples from the biome “Root-Environmen-
tal-Aquatic-Marine-Intertidal_zone” share similar envi-
ronments (Baltic Sea) with the query sample from the 
biome “Root-Engineered-Wastewater-Industrial_waste-
water-Petrochemical,” the literature has also verified that 
this query sample was marine-sourced “MGYS00005175” 
(from MGnify database [8]). Such examples were plen-
tiful (Additional file 1: Fig. S6), and many had very high 
contributions (Additional file  1: Table  S15). However, 
there were also examples which might indicate possible 
mis-annotation or possible contaminations of samples 
in the MGnify database [8]. For instance, more than 10 
samples from the study “MGYS00001610” (from MGnify 
database [8]) with annotated biome “Root-Engineered-
Wastewater-Water_and_sludge” have large proportion of 
contributions from biome “Root-Host_associated-Mam-
mals-Digestive_system-Large_intestine-Fecal” (Addi-
tional file 1: Fig. S6), while Lin et al. [32] has also verified 
that these samples were collected from biogas of digested 
swine manure. These results have verified our hypothesis 
that open search of sample among the source samples 
with almost all possible biomes could reveal remotely-
similar samples, leading to novel knowledge that is never 
identified or interpreted before.

Discussion
ONN4MST was designed to address the urgent need 
for fast, accurate and interpretable microbial commu-
nity source tracking. It has been built based on an ONN 
model, which has provided a solution for source track-
ing among sub-million samples and hundreds of biomes, 
outperforming state-of-the-art methods, thus enabling 
knowledge discovery from these heterogeneous sam-
ples. Microbial community sample source tracking has 
become increasingly important, mainly due to the needs 
of source tracking in multiple areas. The requirements 
for high accuracy, high speed, and high interpretability 
have thus become critical considerations for a successful 
source tracking method, especially when faced with the 
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ever more complex situation where sub-million microbial 
community samples from hundreds of biomes are pro-
vided as possible sources for search.

The superiority of ONN4MST is established in sev-
eral contexts. Firstly, ONN4MST is very robust against 
dataset heterogeneity: from a dataset with the number 
of biomes ranging from a handful to more than a hun-
dred, as well as with the number of samples ranging 
from a few thousand to sub-million, it always provides 
the highest accuracies (AUC > 0.97) among state-of-
the-art methods compared, making it the most scal-
able source tracking method. Secondly, based on the 
Human, Water and Soil datasets, the source tracking 
accuracies are all near-perfect (AUC > 0.97), indicat-
ing that ONN4MST could provide reliable insights 
for downstream analysis on implicating taxonomic or 
functional differences between healthy and diseased 
phenotypes, or on illuminating tiny differences among 
environmental samples from even slightly different 
niches. Furthermore, ONN4MST is very efficient as 
regard to speed and memory usage. For example, when 
source tracking one hundred samples against a data-
base of sub-million samples (i.e., the Combined data-
set) on a standard computational platform (see the 
“Methods” section for details), ONN4MST would take 
about 20 s and a memory usage of 22GB during the 
search process, while FEAST method would take many 
days and a memory usage of 84 GB. The time usage 
and memory usage of ONN4MST is several orders 
of magnitude smaller than FEAST method. Finally, 
the ability of ONN4MST for ‘open search’, without 
any a priori knowledge about possible biomes where 
the query might be from, enables it for interpretable 
knowledge discovery.

The advantage of ONN4MST over other state-of-the-
art source tracking methods is essentially dependent on 
two technical advancements: the deep learning model, 
and the ontology structure. Though the currently ongo-
ing shift towards supervised learning methods is not 
surprising for the source tracking research, the superior 
performance of ONN4MST over existing methods is still 
quite pronounced. ONN4MST’s advantage also stems 
from its consideration of the ontology structure of the 
biomes: by embedding the ontology considerations into 
the deep learning model, ONN4MST naturally becomes 
suitable for solving the ontology relationships among 
biomes. Taken together, ONN4MST is a strong com-
plement to existing methods, as it could be very help-
ful and quick and perhaps be useful in determining the 
unknowns that are high with FEAST and SourceTracker.

ONN4MST is not without limitations. Most impor-
tantly, the accuracy of ONN4MST is heavily dependent 

on the ONN model built based on existing biome ontol-
ogy information. If there comes a new biome ontology with 
more detailed biomes involved (for example, if we need to 
refine the source tracking results to human gut down, to 
differentiate niches such as adult’s gut from infant’s gut), 
or simply with more biome relationships involved, then the 
ONN model should be re-trained for accurate source track-
ing. Such biome ontology-wide scalability problem could 
potentially be solved by transfer learning approaches.

Conclusions
In summary, ONN4MST is an ontology-aware deep 
learning method that has further improved micro-
bial source tracking, enabling highly accurate, ultrafast 
and interpretable source tracking against large-scale 
microbial community samples. ONN4MST has ena-
bled in-depth pattern and function discoveries among 
sub-million microbial community samples, allowing for 
tracking the potential origin of microbial communities 
with diverse niche backgrounds, as well as distinguishing 
samples from different health conditions or diverse envi-
ronments. Thus, it could have a broader area of applica-
tion, such as contamination screening, novel or refined 
biome discovery, new functional microbiome discovery, 
and even source tracking of biomes from which protein 
sequences could be supplemented for computational pro-
tein 3D structure prediction [33, 34].

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s13073-​022-​01047-5.

Additional file 1: Table S1. Samples and data used for model building 
and testing. Table S2. Biomes and number of samples used in EBI MGnify 
and this study. Table S3. Evaluation of ONN4MST using the general model 
built based on the combined dataset. Table S4. Evaluation of ONN4MST 
using the model trained on the human dataset. Table S5. Evaluation of 
simple neural network on all five datasets. Table S6. Results of five biome 
from “Human” using all features by ONN4MST at fifth layer. Table S7. 
Running time when performing source tracking with one query against 
different datasets. Table S8. Running time when performing source track-
ing with different sizes of testing sets on combined dataset. Table S9. 
Memory utilization when performing source tracking with one query 
against different datasets. Table S10. Memory utilization when perform-
ing source tracking with different sizes of testing sets on combined data-
set. Table S11. The prediction results 303 samples from diverse human 
body sites. Table S12. Average source contributions from mammals (pets) 
and soil for indoor house environments. Table S13. The prediction results 
of 148 samples from ceca of bird. Table S14. The prediction results for 
203 gut microbiome samples of the Hadza hunter-gatherers of Tanzania. 
Table S15. The open searching results by using ONN4MST against the 
combined dataset. Table S16. Databases and software parameters used 
in this study. Figure S1. The architecture of the ONN model. Figure S2. 
Overview of ONN4MST for microbial source tracking. Figure S3. ROC 
curves of ONN4MST on all five datasets. Figure S4. ONN4MST estima-
tions of source contribution to centenarians’ gut microbiome. Figure S5. 
Source tracking results of a less studied biome. Figure S6. Knowledge 
discovery of similar samples from ontologically-remote biomes.

https://doi.org/10.1186/s13073-022-01047-5
https://doi.org/10.1186/s13073-022-01047-5


Page 16 of 17Zha et al. Genome Medicine           (2022) 14:43 

Additional file 2. The features used in ONN4MST and the selected 
features used in ONN4MST_FS. There are 44,668 taxa (or features) in total 
used in ONN4MST, while ONN4MST_FS (ONN4MST based on selected 
features) has utilized only 1,462 selected features.

Additional file 3. Supplementary method about the data representation 
and other source tracking methods used in this study.

Additional file 4. Data download links for all five datasets used in this 
study.

Acknowledgements
We are grateful to Mingyue Cheng, Chuanle Xiao, Jianyang Zeng, and Qing-
yang Yu for their insightful discussions.

Authors’ contributions
KN and XC conceived of and proposed the idea, and designed the study. YZ, 
HC, HQ, KK, YD, and ZC performed the experiments and analyzed the data. YZ, 
HC, KN, and XC contributed to editing and proofreading the manuscript. The 
authors read and approved the final manuscript.

Funding
National Natural Science Foundation of China (Grant Nos. 32071465, 
31871334, 31671374, 81774008, 81573702, and 62072283) and the National 
Key R&D Program of China (Grant Nos. 2021YFA0910500, 2018YFC0910502).

Availability of data and materials
The selected samples from the Combined dataset, which were assigned to 
Human dataset, Water dataset, and Soil dataset, respectively, were annotated 
with their respective assignments in Additional file 1: Table S2. Data download 
links are provided in Additional file 4. The dataset used in the case study of 
centenarian was collected and studied by Bian et al. [22] (accession number 
SRP107602) and Biagi et al. [23] (from multiple sources). The dataset used in 
the case study of exploring the association of niche and microbes was from 
the EBI MGnify database [8] (Study MGYS00001056). The dataset used in the 
case study of detecting microbial contamination in built environment was 
collected and studied by Lax et al. [24] (accession number ERP005806). The 
dataset used in the case study of less studied biomes was collected and 
studied by Alsalah et al. [25] (accession number PRJEB9501). The dataset used 
in the case study of the bird biome was from the EBI MGnify database [8] 
(Study MGYS00005593). The dataset used in the case study of Hadza people’s 
gut microbial communities was collected and studied by Samuel et al. [26] 
(accession number PRJNA392012, PRJNA392180). All source codes have been 
uploaded to the website at: https://​github.​com/​HUST-​NingK​ang-​Lab/​ONN4M​
ST [35]. Detailed parameters of software and package we used in this study 
are provided in Additional file 1: Table S16. All datasets used in this study are 
publicly available.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei 
Key Laboratory of Bioinformatics and Molecular‑imaging, Center of AI 
Biology, Department of Bioinformatics and Systems Biology, College of Life 
Science and Technology, Huazhong University of Science and Technol-
ogy, Wuhan 430074, Hubei, China. 2 School of Mathematics and Statistics, 
Huazhong University of Science and Technology, Wuhan 430074, Hubei, 
China. 3 Institute for Interdisciplinary Information Sciences, Tsinghua University, 
Beijing 100084, China. 4 School of Computer Science and Technology, Shan-
dong University, Qingdao 266237, Shandong, China. 

Received: 12 July 2021   Accepted: 13 April 2022

References
	1.	 Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI. 

The human microbiome project. Nature. 2007;449:804–10.
	2.	 Proctor LM, Creasy HH, Fettweis JM, Lloyd-Price J, Mahurkar A, 

Zhou W, et al. The Integrative Human Microbiome Project. Nature. 
2019;569:641–8.

	3.	 Gilbert JA, Jansson JK, Knight R. The Earth Microbiome project: successes 
and aspirations. BMC Biol. 2014;12:69.

	4.	 Thompson LR, Sanders JG, McDonald D, Amir A, Ladau J, Locey KJ, et al. 
A communal catalogue reveals Earth’s multiscale microbial diversity. 
Nature. 2017;551:457–63.

	5.	 Dominguez-Bello MG, De Jesus-Laboy KM, Shen N, Cox LM, Amir A, Gon-
zalez A, et al. Partial restoration of the microbiota of cesarean-born infants 
via vaginal microbial transfer. Nat Med. 2016;22:250–3.

	6.	 Thomas S, Izard J, Walsh E, Batich K, Chongsathidkiet P, Clarke G, et al. The 
host microbiome regulates and maintains human health: a primer and 
perspective for non-microbiologists. Cancer Res. 2017;77:1783–812.

	7.	 Tokeshi M. Species abundance patterns and community structure. Adv 
Ecol Res. 1993;24:111–86.

	8.	 Mitchell AL, Almeida A, Beracochea M, Boland M, Burgin J, Cochrane G, 
et al. MGnify: the microbiome analysis resource in 2020. Nucleic Acids 
Res. 2019;48:D570–8.

	9.	 Mukherjee S, Stamatis D, Bertsch J, Ovchinnikova G, Sundaramurthi 
Jagadish C, Lee J, et al. Genomes OnLine Database (GOLD) v.8: overview 
and updates. Nucleic Acids Res. 2021;49:D723–33.

	10.	 Lladó S, López-Mondéjar R, Baldrian P. Drivers of microbial community 
structure in forest soils. Appl Microbiol Biotechnol. 2018;102:4331–8.

	11.	 Grond K, Guilani H, Hird SM. Spatial heterogeneity of the shorebird gas-
trointestinal microbiome. R Soc Open Sci. 2020;7:191609.

	12.	 Shenhav L, Thompson M, Joseph TA, Briscoe L, Furman O, Bogumil D, 
et al. FEAST: fast expectation-maximization for microbial source tracking. 
Nat Methods. 2019;16:627–32.

	13.	 Simpson JM, Santo Domingo JW, Reasoner DJ. Microbial source tracking: 
state of the science. Environ Sci Technol. 2002;36:5279–88.

	14.	 Lozupone C, Knight R. UniFrac: a new phylogenetic method for compar-
ing microbial communities. Appl Environ Microbiol. 2005;71:8228–35.

	15.	 Smith A, Sterba-Boatwright B, Mott J. Novel application of a statistical 
technique, random forests, in a bacterial source tracking study. Water Res. 
2010;44:4067–76.

	16.	 Knights D, Kuczynski J, Charlson ES, Zaneveld J, Mozer MC, Collman RG, 
et al. Bayesian community-wide culture-independent microbial source 
tracking. Nat Methods. 2011;8:761–3.

	17.	 Lin J. Divergence measures based on the Shannon entropy. IEEE Trans Inf 
Theory. 1991;37:145–51.

	18.	 Zhu M, Kang K, Ning K. Meta-Prism: Ultra-fast and highly accurate 
microbial community structure search utilizing dual indexing and parallel 
computation. Brief Bioinform. 2021;22:557–67.

	19.	 McGhee JJ, Rawson N, Bailey BA, Fernandez-Guerra A, Sisk-Hackworth L, 
Kelley ST. Meta-SourceTracker: application of Bayesian source tracking to 
shotgun metagenomics. PeerJ. 2020;8:e8783.

	20.	 Kahanda I, Funk C, Verspoor K, Ben-Hur A. PHENOstruct: Prediction of 
human phenotype ontology terms using heterogeneous data sources. 
F1000Res. 2015;4:259.

	21.	 Kulmanov M, Hoehndorf R. DeepPheno: Predicting single gene loss-of-
function phenotypes using an ontology-aware hierarchical classifier. PLoS 
Comput Biol. 2020;16:e1008453.

	22.	 Bian G, Gloor GB, Gong A, Jia C, Zhang W, Hu J, et al. The gut microbiota 
of healthy aged chinese is similar to that of the healthy young. mSphere. 
2017;2:e00327.

	23.	 Biagi E, Nylund L, Candela M, Ostan R, Bucci L, Pini E, et al. Through age-
ing, and beyond: gut microbiota and inflammatory status in seniors and 
centenarians. PLoS One. 2010;5:e10667.

	24.	 Lax S, Smith DP, Hampton-Marcell J, Owens SM, Handley KM, Scott NM, 
et al. Longitudinal analysis of microbial interaction between humans and 
the indoor environment. Science. 2014;345:1048–52.

https://github.com/HUST-NingKang-Lab/ONN4MST
https://github.com/HUST-NingKang-Lab/ONN4MST


Page 17 of 17Zha et al. Genome Medicine           (2022) 14:43 	

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	25.	 Alsalah D, Al-Jassim N, Timraz K, Hong P-Y. Assessing the groundwater 
quality at a Saudi Arabian agricultural site and the occurrence of oppor-
tunistic pathogens on irrigated food produce. Int J Environ Res Public 
Health. 2015;12:12391–411.

	26.	 Smits Samuel A, Leach J, Sonnenburg Erica D, Gonzalez Carlos G, Licht-
man Joshua S, Reid G, et al. Seasonal cycling in the gut microbiome of 
the Hadza hunter-gatherers of Tanzania. Science. 2017;357:802–6.

	27.	 Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, et al. TensorFlow: 
a system for large-scale machine learning. In:  Proceedings of the 12th 
USENIX Conference on Operating Systems Design and Implementation; 
2016. p. 265–83.

	28.	 Jeffery IB, Lynch DB, O’Toole PW. Composition and temporal stability of 
the gut microbiota in older persons. ISME J. 2016;10:170–82.

	29.	 Lloyd-Price J, Mahurkar A, Rahnavard G, Crabtree J, Orvis J, Hall AB, et al. 
Strains, functions and dynamics in the expanded Human Microbiome 
Project. Nature. 2017;550:61–6.

	30.	 Timmis K, Jebok F, Rohde M, Molinari G. Microbiome Yarns: microbiome 
of the built environment, paranormal microbiology, and the power of 
single cell genomics. Microb Biotechnol. 2018;11:575–87.

	31.	 Wu J, Song C, Dubinsky EA, Stewart JR. Tracking major sources of water 
contamination using machine learning. Front Microbiol. 2021;11:616692.

	32.	 Lin Q, He G, Rui J, Fang X, Tao Y, Li J, et al. Microorganism-regulated 
mechanisms of temperature effects on the performance of anaerobic 
digestion. Microb Cell Factories. 2016;15:96.

	33.	 Ovchinnikov S, Park H, Varghese N, Huang P-S, Pavlopoulos GA, Kim DE, 
et al. Protein structure determination using metagenome sequence data. 
Science. 2017;355:294–8.

	34.	 Wang Y, Shi Q, Yang P, Zhang C, Mortuza SM, Xue Z, et al. Fueling ab initio 
folding with marine metagenomics enables structure and function 
predictions of new protein families. Genome Biol. 2019;20:229.

	35.	 Zha Y, Chong H, Qiu H, Kang K, Dun Y, Chen Z, et al. ONN4MST: Ontology-
aware neural network for microbial community sample source tracking: 
GitHub; 2020. https://​github.​com/​HUST-​NingK​ang-​Lab/​ONN4M​ST

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://github.com/HUST-NingKang-Lab/ONN4MST

	Ontology-aware deep learning enables ultrafast and interpretable source tracking among sub-million microbial community samples from hundreds of niches
	Abstract 
	Background
	Methods
	Datasets
	Biome ontology
	Sample labeling
	Data representation
	Feature selection
	The ONN4MST model
	Architecture of the Ontology-aware Neural Network
	Training and testing
	Other methods used in this study
	Hierarchical prediction
	Benchmarking measures

	Results
	Ontology-aware Neural Network
	General model enables accurate source tracking with high scalability and stability
	Comparison of ONN4MST and other source tracking methods
	Running time and memory utilization benchmark
	Utility of ONN4MST in various source tracking applications
	Centenarians share similar gut microbiota with young individuals
	Detecting microbial contamination in built environment
	Source tracking of environmental samples from less studied biomes
	Discovery of similar samples from ontologically-remote biomes

	Discussion
	Conclusions
	Acknowledgements
	References


