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Abstract 

Background:  Three-quarters of bladder cancer patients present with early-stage disease (non-muscle-invasive blad‑
der cancer, NMIBC, UICC TNM stages Ta, T1 and Tis); however, most next-generation sequencing studies to date have 
concentrated on later-stage disease (muscle-invasive BC, stages T2+). We used exome and transcriptome sequenc‑
ing to comprehensively characterise NMIBCs of all grades and stages to identify prognostic genes and pathways that 
could facilitate treatment decisions. Tumour grading is based upon microscopy and cellular appearances (grade 1 BCs 
are less aggressive, and grade 3 BCs are most aggressive), and we chose to also focus on the most clinically complex 
NMIBC subgroup, those patients with grade 3 pathological stage T1 (G3 pT1) disease.

Methods:  Whole-exome and RNA sequencing were performed in total on 96 primary NMIBCs including 22 G1 
pTa, 14 G3 pTa and 53 G3 pT1s, with both exome and RNA sequencing data generated from 75 of these individual 
samples. Associations between genomic alterations, expression profiles and progression-free survival (PFS) were 
investigated.

Results:  NMIBCs clustered into 3 expression subtypes with different somatic alteration characteristics. Amplifications 
of ARNT and ERBB2 were significant indicators of worse PFS across all NMIBCs. High APOBEC mutagenesis and high 
tumour mutation burden were both potential indicators of better PFS in G3pT1 NMIBCs. The expression of individual 
genes was not prognostic in BCG-treated G3pT1 NMIBCs; however, downregulated interferon-alpha and gamma 
response pathways were significantly associated with worse PFS (adjusted p-value < 0.005).

Conclusions:  Multi-omic data may facilitate better prognostication and selection of therapeutic interventions in 
patients with G3pT1 NMIBC. These findings demonstrate the potential for improving the management of high-risk 
NMIBC patients and warrant further prospective validation.
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Background
Urothelial bladder cancer (UBC) is a complex disease 
both clinically and at the molecular level. Muscle-inva-
sive bladder cancer (MIBC, UICC TNM stages T2+ 
[1]) is associated with a poor prognosis which becomes 
progressively worse with disease extent—these tumours 
are aggressive, and their genomic and epigenomic aber-
rations have been extensively studied in recent years 
[2]. Although some genomic events occur with high fre-
quency (e.g. TERT promoter mutations in > 75% of cases, 
TP53 mutations in c.50%), MIBCs are heterogeneous and 
characterised by a large number of single nucleotide vari-
ants (SNVs) and copy number variants (CNVs) [2, 3]; loss 
of multiple tumour suppressors and alteration of multiple 
pathways are common. Gene expression profiling studies 
have classified MIBCs into six consensus subtypes which 
share some characteristics [4], but which remain hetero-
geneous with respect to genomic aberrations and behav-
iour; temporal and spatial plasticity in subtype has also 
been reported [5].

Non-muscle-invasive bladder cancer (NMIBC, stages 
Ta/T1/Tis [1]) accounts for over 75% of UBCs at presen-
tation and is arguably more complex than MIBC, com-
prising multiple grades of disease (based upon cellular 
appearances determined by microscopy) from well-dif-
ferentiated (grade 1, G1) to poorly differentiated (grade 
3, G3) [6]. Whilst the vast majority of MIBCs are G3 or 
high grade, NMIBCs range from lower grade Ta tumours 
(the majority of which are indolent) to higher grade T1 
tumours (with considerable risk of progression to both 
muscle invasion and metastasis) [7]. Given our current 
understanding, it is not yet possible to accurately predict 
which of the higher grade NMIBCs will progress to the 
invasive form of the disease (MIBC) or lead to adverse 
outcomes (including cancer-related death).

Low-grade tumours ordinarily harbour relatively few 
genomic aberrations (often activating point mutations 
in oncogenes such as FGFR3, PIK3CA and RAS [8]), 
typically exhibit luminal expression subtypes, and can 
be subdivided into two groups on the basis of CNVs 
(GS1 and GS2) [9]. At the genomic level, high-grade 
NMIBCs are akin to MIBCs with many CNVs and SNVs, 
loss of tumour suppressor genes [10], and a range of 
basal or luminal expression profiles [11]. The accumu-
lated evidence suggests that UBCs develop along two 
distinct pathways—papillary low-grade tumours devel-
oping from intermediate cells and non-papillary high-
grade tumours developing from basal urothelial cells 

[12, 13]; notwithstanding, early events appear com-
mon to both pathways (e.g. TERT promotor mutations, 
loss of CDKN2A) [14, 15]. Additionally, some low-
grade tumours may acquire additional genomic aberra-
tions which transform them into aggressive high-grade 
tumours [16].

Compared to MIBC, next-generation sequencing stud-
ies of NMIBC have been much more limited; amongst 
the largest exome or whole-genome sequencing studies 
are Guo et al. [17], Nordentoft et al. [18], Wu et al. [19] 
and Hurst et al. [9] (37, 20, 21 and 24 cases, respectively). 
Some studies have investigated larger NMIBC cohorts 
using targeted cancer gene panels [20, 21], and Lindsk-
rog et al. used RNA sequencing (RNA-seq) data to clus-
ter 535 NMIBCs into four gene expression classes with 
differing clinical outcomes [22]. Regarding prognosis in 
high-risk NMIBC, Bellmunt et  al. exome sequenced 62 
high-grade T1 tumours and analysed mutations in 95 
bladder-cancer associated genes [23], Robertson et  al. 
proposed a 5-class prognostic classifier based on RNA-
seq of 73 G3pT1s subsequently treated with BCG [24] 
and Damrauer et al. [25] have identified a tumour micro-
environment expression signature that shows promise for 
predicting response to BCG.

In the current study, we have performed the largest 
overlapping exome and RNA sequencing of NMIBC to 
date. The patient cohort comprised 96 prospectively col-
lected fresh-frozen NMIBCs spanning a range of stages 
and grades with a median of 4.96 years’ clinical follow-up 
[26]. We report on SNVs, indels, CNVs, mutation signa-
tures, gene expression subtypes and their impact on clini-
cal outcomes. We identify several prognostic genomic 
factors that warrant further validation in NMIBC gener-
ally and in G3pT1 disease specifically.

Methods
Patients and samples
Patients were recruited consecutively from 2005 to 2010 
from ten hospitals in the West Midlands (UK) as part of 
the Bladder Cancer Prognosis Programme (BCPP) [26]. 
Participants gave written informed consent for enrol-
ment into the present study based upon initial cysto-
scopic findings suggestive of primary BC (UK national 
research ethics approval 06/MRE04/65, East Midlands 
- Derby Research Ethics Committee). The research was 
undertaken in accordance with the ethical standards of 
the 1964 Helsinki Declaration and its later amendments. 
All patients were newly diagnosed primary NMIBC 
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cases, treatment-naïve at biospecimen collection and 
subsequently treated according to contemporary Euro-
pean Association of Urology (EAU) guidelines (including 
re-section where indicated) and EAU NMIBC risk group 
stratification [27–29]. Where necessary, tumour grade 
and stage records were amended according to the results 
of early re-resection or cystectomy. We used the 1973 
grade classification as it was in universal use in the UK 
at the time of patient recruitment and is the basis for the 
EORTC and EAU NMIBC risk categories and has com-
parable utility to the 2004/2016 classification [6]. Tissues 
were collected at the time of transurethral resection of 
bladder tumour (TURBT), snap-frozen in liquid nitro-
gen in the operating theatre, and subsequently stored at 
−80  °C. All included tumours were purely or predomi-
nantly urothelial carcinomas and were classified accord-
ing to grade (WHO 1973 [30]) and stage (UICC). During 
a median of 4.96 years’ clinical follow-up, 32 of the 96 
patients died, with UBC recorded as the cause of death 
in 17 instances. Additionally, recurrence occurred in 50 
cases and progression to MIBC in 26 cases. Patient demo-
graphics are shown in Additional file 1: Table S1. Tissues 
and blood were stored at −80 °C; DNA was extracted 
from 25 mg tissue and 100 μl paired blood using DNeasy 
Blood and Tissue kits and RNA from 25 mg frozen tissue 
using RNeasy kits (Qiagen, Hilden, Germany).

Library preparation and sequencing
Of the 96 tumour samples, 93 yielded enough DNA for 
whole-exome sequencing (WES) with paired blood ger-
mline DNA and 78 enough high-quality RNA for RNA 
sequencing (RNA-seq) [31, 32]. Thus, 75 patients had 
overlapping data from both WES and RNA-seq; 18 
patients had WES only, and 3 patients had RNA-seq only 
(75 + 18 + 3 = 96). Sequencing libraries were prepared 
using the Nextera® Rapid Capture Exome and TruSeq® 
Stranded RNA LT kits (Illumina, San Diego, USA) and 
HiSeq/NextSeq sequenced. The TERT promoter and the 
5′ end of exon 7 of FGFR3 were sequenced separately 
using PCR-based library preparation [33].

Whole‑exome sequencing (WES) data analysis
Reads were mapped to the human genome (GRCh37) using 
BWA [34]. BAM files were created using Picard tools and 
subjected to local realignment (using InDels and SNPs 
from 1000 Genomes) and base quality score recalibration 
using GATK [35]. Furthermore, a panel of normals (PoN) 
was created using the germline samples, and Mutect (v2.2) 
[36] was run for each tumour-normal pair using the PoN as 
well as polymorphic loci information from gnomAD [37]. 
VCFs were filtered using FilterMutectCalls (GATK) and 
annotated with Variant Effect Predictor [38]. The contri-
butions of COSMIC mutational signatures [39] to the total 

SNV burden in each NMIBC were calculated using decon-
structSigs [40]. Copy number changes were detected using 
CNVkit [41] on paired tumour-normal BAMs, and result-
ant copy number segments were processed using GISTIC 
[42] to identify focal copy number peaks.

Tumour cellularity and overall ploidy were estimated 
by Sequenza [43] from the paired tumour-normal BAM 
files. The Sequenza output was further analysed using the 
scarHRD package [44] to extract three indices of homolo-
gous recombination deficiency (HRD): telomeric allelic 
imbalance (HRD-TAI), loss-of-heterozygosity profiles 
(HRD-LOH) and large-scale state transitions (HRD-LST). 
The combined score (HRD score) from the sum of the three 
indices was used for downstream analyses. Full details of all 
software versions, settings and filtering steps are provided 
in Additional file 3: Additional Methods.

RNA sequencing (RNA‑seq) data analysis
Reads were mapped to the human reference genome 
(GRCh37) and transcriptome (annotation reference 
Ensembl release 87) using the STAR aligner [45]. Expres-
sion data were normalised using the voom method [46], 
and differential expression analysis was performed in the 
limma package in R. We carried out gene set enrichment 
analyses using the GAGE R Bioconductor package [47] 
based on MSigDB hallmark gene sets. The ConsensusClus-
terPlus R package [48] was used to stratify the RNA-seq 
samples into stable clusters. Details of the iterative process 
are provided in the Additional file 3: Additional Methods. 
Additionally, activities of 23 previously published regu-
lons were assessed in the RNA-seq cohort using the RTN 
(Reconstruction of Transcriptional regulatory Networks 
and analysis of regulons) package [49]. Multivariate sur-
vival analyses utilised the Kaplan-Meier method imple-
mented in R “survival” package. All statistical analyses and 
data visualization were carried out using R/Biocoductor 
packages. Comparisons of proportions between the groups 
were performed using Fisher’s exact tests; Mann-Whit-
ney tests were used to compare the means between two 
groups and Kruskal-Wallis tests for more than two groups. 
Benjamini-Hochberg correction was used to control the 
false discovery rate for multiple testing. Further details on 
somatic mutation and copy number calling, mutational sig-
nature analysis, in silico circular RNA detection and pre-
diction of immune cell infiltration status are provided in 
Additional file 3: Additional Methods.

Results
Exome analysis
Somatic mutations and copy number alterations
We obtained average exome read depths of 80× and 
25× for tumour and germline DNA, respectively. 
Mutect2 identified a total of 31,086 somatic mutations 
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(30,191 SNVs and 895 indels) which, after gene annota-
tion and filtering for polymorphic loci, left 16,090 non-
synonymous mutations (52%, 15,480 SNVs and 610 
indels, Additional file  1: Table  S2). Recurrent somatic 
alterations are summarised in Fig. 1A, Additional file 2: 
Fig. S1 and Additional file 1: Tables S2-S5. SNVs in the 
TERT promoter were the most prevalent alterations 
(77%) [33], followed by CDKN2A deletion (44%), PVRL4 
amplification (38%), HSP90AA1 deletion (35%) and 
PPARG​ amplification (34%); FGFR3 harboured SNVs in 
33% of NMIBCs and amplifications in 9%. Chromatin 
modification genes were frequently mutated, including 
EP300 (33%), KDM6A (33%), KMT2D/C (23%/16%) and 
ARID1A (8%). Loss-of-function RB1 mutations (18%) 
and CDKN2A deletions (43%) indicate cell cycle check-
point deficiency in at least 57% of NMIBCs.

Frequently altered pathways in G3pT1 tumours
Signalling pathways with multiple genes altered 
included RTK/RAS/PI3K (86% of tumours), histone 
modification (84%), TP53/cell cycle (77%), DNA dam-
age repair (28%) and the cohesin complex (21%). TP53, 
RB1, CCND1/2, CDKN1A and FBXW7 were exclusively 
altered in G3pT1 cases when compared to G1pTa; 
E2F3 was amplified in 5% of G1pTa and 35% of G3pT1 
NMIBCs (Fig.  1B). ERBB2 and RAF1 were altered in 
37% and 45% of G3pT1 tumours, respectively, but only 
in 5% and 10% of G1pTa tumours, respectively. Con-
versely, FGFR3 was more frequently altered in G1pTa 
NMIBCs (48% versus 25% for G3pT1; Fisher’s exact 
p-value = 0.095).

Tumour mutational burden (TMB) varied across 
grades and stages: G3pT1 cases had median TMB 
of 2.81 mutations/Mb  versus 1.14 mutations/Mb  for 
G1pTa (Mann-Whitney p = 0.026) (Fig.  1C). Copy 
number burden (CNB, percentage of the genome 
altered by CN segments) ranged from 0.02 to 84.6% 
(median 32.5%) and was higher in G3pT1 disease 

(median 50.3%) than in G1pTa (median 11.9%) (Mann-
Whitney p = 4.7e−05) (Fig. 1C).

APOBEC mutational signatures are abundant in NMIBCs
Estimation of relative contribution of COSMIC SBS 
(single base substitution) signatures (CS) per sample 
revealed APOBEC-related CS 2 and 13 together 111 to 
have likely contributed 48% of mutations on average 
(0% in 10 NMIBCs, > 80% in 13 NMIBCs). Other signa-
tures present with > 10% contribution in ≥ 10 samples 
included CS 1 (12% of NMIBCs), CS 3 (4%), and CS 5 and 
CS 16 (both at 3%). The cohort clustered into two groups 
(Fig. 2): APOBEC-low (high CS 1 and/or 3, 5 or 16) (n = 
36) and APOBEC-high (high CS  2 and/or 13) (n = 57). 
No associations (as per Fisher’s exact test) were observed 
between these groups and tumour stage (p = 0.672), 
grade (p = 0.349), smoking status (p = 0.085) or gender 
(p = 0.239).

Exome sequencing identifies prognostic features in NMIBC
Univariate progression-free survival (PFS) analysis of all 
NMIBCs identified high CNB, low APOBEC mutagen-
esis and high HRD score as indicators of poor progno-
sis (adjusted p-value = 0.038 in each case) (Fig.  3 top 
row); however, these observations may arise from the 
higher TMB, CNB and HRD scores observed in high-
grade compared to low-grade disease. Further inspecting 
the G3pT1 subset of tumours, low APOBEC mutagen-
esis and low TMB were associated with worse PFS in 
patients (Fig.  3 bottom row). In multivariate survival 
analysis comparing all the genome level aberration indi-
ces of TMB, CNB, APOBEC enrichment and HRD score, 
APOBEC (HR 0.31, 95% CI 0.11 − 0.88; p-value = 0.029) 
was the strongest predictor of PFS across all NMIBCs 
(Additional file 2: Fig. S2).

For gene-level prognostic features, univariate PFS 
analyses of the recurrently mutated (n = 37) genes in 
our study identified 5 candidates (PVRL4, ARNT, RAF1, 
ERBB2 and MDM2) where alterations appeared indica-
tive of worse PFS across all NMIBCs (p < 0.05, Additional 

Fig. 1  Recurrent genomic alterations and comparison of G1pTa and G3pT1 tumours. A The distribution of non-synonymous mutations and focal 
CNAs in COSMIC tier 1 genes found in ≥ 8 patients out of 93 NMIBC cases. The top panel of the figure shows the recurrently altered gene symbol 
on the left, the recurrence frequency on the right, and the area between them is divided into 93 columns, each representative of a NMIBC patient 
from the BCPP cohort. The individual colour codes within the cells are representative of the genomic alteration type. The middle panel of the 
figure represents TERT promoter mutation status (from targeted sequencing), tumour grade, tumour stage, NMIBC risk group, and gender. The 
third panel of the figure represents the six classes of base substitution (C>A, C>G, C>T, T>A, T>C, and T>G) frequency in each of the patients. B 
Comparative difference in alteration incidence (mutation and/or copy number alterations) amongst the RTK/RAS/PI(3)K and the TP53/cell cycle 
cellular pathways. Each constituent gene has two boxes beneath it in blue (left side) and red (right side) colours for G1pTa (n = 21) and G3pT1 (n 
= 51) tumours, respectively. The number within each of the boxes indicates the percentage of the patients altered (mutated/CNA) either in G1pTa 
(blue box) or G3pT1 (red box). If no alterations were detected, then the relevant boxes have no colour. C Boxplots comparing the overall distribution 
of tumour mutational burden (TMB; log2 transformed) and copy number alteration (CNA) burden in G1pTa (n = 21; blue colour) and G3pT1 (n = 
51; red colour) samples. The X-axis is the stage (G1pTa or G3pT1), and the Y-axis is the aberration index: either TMB or CNB. Mann-Whitney tests were 
performed to assess the statistical significance, and the p-values are noted above each pair of boxplots

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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file  2: Fig. S3); however, only ARNT and ERBB2 altera-
tions remained significant after multiple testing correc-
tion. Importantly, the prognostic effect of ARNT (HR 
2.63, 95% 1.08–6.40; p = 0.034) and ERBB2 (HR 2.90, 
95% CI 1.17 − 7.20; p = 0.021) retained significance even 
on multivariate survival analysis (Additional file  2: Fig. 
S4).

Transcriptome analysis
Expression subtyping
Consensus clustering revealed three stable RNA classes 
(Fig.  4A and Additional file  2: Fig. S5), designated class 
A (n = 18, 78% G3, EMT gene expression), class B (n = 
36, 97% G3, basal gene expression) and class C (n = 24, 

71% G1/G2, luminal gene expression). Most (21 of 24; 
87%) class C tumours were stage pTa, whereas pT1 stage 
tumours were enriched in class A (14 of 18; 78%) and 
class B (32 of 36; 89%).

Further, seven previously reported UBC-associated 
regulons [2] were active at different levels across the 
expression classes. FGFR3, FOXA1 and TP63 regu-
lons had the highest activity in class C, FOXM1 and 
RXRG had the highest activity in class B, and FGFR1 
and PGR had the highest activity in class A (Fig.  5A). 
The activity of the FOXM1 and FGFR3 regulons were 
positively and negatively correlated, respectively, with 
the expression of G2-M phase marker genes (CDK1, 
UBE2C, TOP2A [50]) (Additional file  2: Fig. S6; indi-
vidual correlation coefficients and p-values provided in 

Fig. 2  Single base substitution-based mutational signatures prevalent in BCPP NMIB cohort. The x-axis represents the 93 NMIBC samples, and the 
y-axis (right side) denotes the six COSMIC mutational signatures (ver.2) with ≥ 10% contribution in at least 10 samples. Additionally, above the 
heatmap are annotation ribbons for clinical phenotype features of tumour grade, stage, gender, and smoking status
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panel C), potentially indicating that these two regulons 
could have the strongest influence on cell proliferation 
in NMIBCs. As FGFR3 expression (activating muta-
tions and/or copy number amplifications) is associ-
ated with low-grade tumours (Fig. 4), FOXM1 regulon 
activity could be driving the transition from low- to 
high-grade NMIBC. Apart from protein-coding genes, 
circular RNAs (circRNAs) appear to have distinctive 
expression across the RNA classes. ANOVA analy-
sis identified 31 recurrent circRNAs (from 28 unique 
genes) discriminating between class B and classes A 
and C (Kruskal-Wallis adjusted p < 0.05), including cir-
cRNAs originating from SETD2 and the kinase STK3 
(Fig. 5B). Thus, circRNAs could contribute to the func-
tional molecular characterisation of UBC, as previously 
described [51, 52]. The immune context in tumour tis-
sues (as estimated through immunophenotyping based 
on deconvolution of bulk RNA gene expression, Addi-
tional file  3: Additional Methods) indicated low levels 
of all major types of immune cells in class C and high 
immune-infiltration in class A (Fig.  5C). The compos-
ite immune score (derived from estimated levels of 
immune cell marker genes) was significantly different 

(Kruskal-Wallis p = 2.34 × 10e−07) when compared 
across RNA classes (Fig. 5D).

Evaluation of UROMOL 2021 NMIBC subtypes within our data
Our classes A, B and C show some similarities to 
the UROMOL 2021 NMIBC subtyping (which splits 
NMIBCs into classes 1, 2a, 2b and 3) [22], especially for 
our class B/UROMOL 2a (Fig. 4B). We used our exome 
data to provide additional insight into genomic events 
across the UROMOL subtypes: classes 1 and 3 both 
exhibit low CNB (Kruskal-Wallis p-value = 3.032e−05) 
and HRD score (Kruskal-Wallis p-value = 1.87 × 
10e−05) compared to classes 2a and 2b, and between 
class 2a and class 2b, the former exhibits higher CNB, 
TMB, HRD score and ploidy (Fig. 6).

Our class A tumours are characterised by strong 
expression of immune marker genes (Fig.  4A); the 
UROMOL single-sample classifier predominantly splits 
them into classes 2a (8 of 18) and 2b (9 of 18) (Fig. 4B). 
Like our class A, UROMOL class 2b is also character-
ised by high expression of immune markers; the 8 sam-
ples from our class A that are classified as UROMOL 2a 
have somewhat lower immune marker expression.

Fig. 3  Univariate survival analysis. Kaplan-Meier plots comparing the progression-free survival (PFS; progression to MIBC) with different indices 
of genomic alteration: tumour mutational burden (TMB), copy number burden (CNB), APOBEC enrichment, and homologous recombination 
deficiency (HRD). The top row is when considering all NMIBCs (n = 93) in the BCPP cohort, and the bottom row is considering G3pT1 patients 
only (n = 51). For each of the genomic alteration indices, patients were divided into “high” and “low” based on being >/< than the median value, 
respectively. In addition to the log-rank test p-value, multiple testing correction p-values are also provided on the plot
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Fig. 4  RNA sequencing samples stratified by consensus clustering. A Three stable expression subtypes were identified from the set of 78 RNA 
sequencing samples (on the x-axis beneath the heatmap). The characteristic traits for each of the expression subtypes were determined by the 
expression levels of marker genes (on the y-axis to the right of the heatmap). The labels for the marker gene sets are noted on the left of the 
heatmap. In addition, there are annotation ribbons on top of the heatmap for the clinical phenotype features (tumour grade, stage, gender, age, 
smoking, and BCG response) and colour coding for the expression subtypes identified in this study (“BCPP_Class”) and the subtype as assigned by 
the UROMOL classifier (“UROMOL_NMIBC”). B Sankey plot showing the sample level correspondence between the BCPP RNA classification and the 
UROMOL 2021 RNA classification for the same cohort of 78 RNA sequencing samples
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Our class B tumours almost completely corre-
sponded (32 of 36; 89%) with UROMOL class 2a. Our 
class C tumours mostly fall (20 of 24; 83%) within 
UROMOL classes 1 and 3; our class C and UROMOL 
classes 1 and 3 are characterised by FGFR3 mutations 
and/or high FGFR3 gene expression and low tumour 
grade/stage (Fig. 4A).

Molecular correlates with clinical outcomes in BCG‑treated 
G3pT1 patients
In a pre-planned sub-study in G3pT1 patients who sub-
sequently had received ≥ 6 induction instillations of 
intravesical BCG (treatment-naïve at time of sample col-
lection), we compared those with subsequent “good” (n = 
12) or “bad” (n = 8) outcomes (bad outcome defined by 
progression to MIBC or death from UBC within 3 years 
of initial TURBT; good outcome defined by the absence 
of progression to MIBC or death from UBC within 3 
years of initial TURBT). Good outcomes were more 
common for class B tumours (10/14, 71%) than for class 
A tumours (2/5, 40%) (p > 0.05). Although no individual 
genes reached a statistically significant p-value (after cor-
rection for multiple testing in a differential gene expres-
sion analysis) between good and bad outcome G3pT1 
NMIBCs, a gene set level analysis revealed multiple 
cancer hallmark gene sets that were significantly down-
regulated in bad outcome tumours (Additional file  1: 
Table  S6), with interferon-alpha and interferon-gamma 
response pathways being most affected (adjusted p-value 
< 0.005).

Integration of expression subtypes with genomic 
alterations
To identify genes differentially altered (mutations and/or 
copy number alterations) between expression subtypes, 
Fisher’s exact test was applied to the 37 genes shown in 
Fig.  1 (those altered ≥ 8% cases) across the  three RNA 
classes. After multiple-testing correction, six genes were 
statistically significant (adjusted p-value < 0.05), of which 

one gene (FGFR3) was preferentially altered in class C 
(58% vs. 17% and 22% in class A and class B, respectively); 
the other five genes (PPARG​, RAF1, GATA3, CCND1 
and MDM2) were preferentially altered in class B and/or 
class A subtypes (Fig. 4A). Of note, PPARG​ and RAF1 are 
neighbours on the chr3p25.2 cytoband; hence, the major-
ity (85%) of the copy number amplifications for these two 
genes co-occur. For cancer genes predominantly altered 
by CNVs (Fig.  1 and Additional file  2: Fig. S1), losses 
resulted in a tendency towards lower gene expression 
and gains resulted in higher gene expression (Additional 
file 2: Fig. S7).

Class B NMIBCs had higher CNB and TMB than 
classes C and A (Kruskal-Wallis p-value = 3.03e−05 
and p-value = 0.027 for CNB and TMB, respectively) 
(Fig.  6). Class A and C NMIBCs were predominantly 
diploid, whereas class B NMIBCs had higher ploidy 
(median ploidy 3.1). The median HRD score was lowest 
in class C and highest in class A (Kruskal-Wallis p-value 
= 1.87e−05). Figure  6 also illustrates these alterations 
according to the UROMOL classification of our tumours.

Suppressed immune pathways in poor‑outcome ARNT/
ERBB2‑altered NMIBCs
We evaluated the gene expression differences of NMIBCs 
with and without ARNT and ERBB2 amplifications 
(Fig. 7A, B). Amplifications of both genes resulted in their 
overexpression, and like the underlying gene amplifica-
tion, expression of both genes was prognostic (Fig.  7C, 
E). Both ARNT and ERBB2 amplifications are detected 
predominantly in high-grade NMIBCs (Fisher’s exact test 
p-value = 1.58 × 10e−2 and 2.39 × 10e−2, respectively, 
when comparing distribution in G3pT1 versus G1pTa). 
Differential gene expression (controlling for tumour 
grade) between ARNT-amplified versus samples wild-
type for ARNT revealed downregulation of three inter-
leukin receptors (limma based p.adj value for IL7R = 3.04 
× 10e−02, IL21R = 3.95 × 10e−02 and for IL12RB2 = 
2.03 × 10e−02) in ARNT-amplified NMIBCs (Additional 
file 1: Table S7). To investigate whether downregulation 

Fig. 5  Transcriptome-wide characteristics of the expression subtypes identified. To further investigate the characteristics of the expression 
subtypes identified in the RNA sequencing cohort, immune deconvolution, regulon analysis, and circular RNA prediction were undertaken. A 
Regulon analysis was performed using the RTN BioConductor package, on the 23 regulons previously reported in UBC. Of the 23, seven regulons 
were detected with significant differential activity across expression subtypes. The regulon activity score as estimated by RTN is represented as 
a heatmap. B As the RNA sequencing was performed using total RNA, the potential impact of regulatory RNA was assessed using circular RNA 
(circRNA) prediction. The circular-to-linear ratio was used to perform the differential expression analysis across the expression subtypes, and 
31 circRNAs were found to be statistically significant. These belong to 28 unique genes. The gene involved and the chromosomal boundaries 
of the back-splicing junction are given on the right-hand side. C Immune deconvolution was performed (using ConsensusTME) on the bulk 
RNA sequencing data, and the proportion of the immune cell classes estimated is denoted as a heatmap. The last row in the heatmap is for the 
combined “Immune_Score” as determined by ConsensusTME. D The contrast in the immune profile of the three expression subtypes (classes) is 
further highlighted in the boxplot where immune scores (as estimated by ConsensusTME) per patient are compared. Non-parametric Kruskal-Wallis 
test was applied to determine the statistical significance

(See figure on next page.)
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Fig. 5  (See legend on previous page.)

(See figure on next page.)
Fig. 6  Boxplots showing the distribution of genomic alteration indices across the expression subtypes (classes). Non-parametric Kruskal-Wallis test 
was applied to determine the statistical significance of the differences between the RNA classes. The respective p-value is noted on the top-right 
of each boxplot. There are six panels (A–F). For each panel, the top row is the BCPP RNA class, and the bottom row is the UROMOL RNA class. The 
genomic alteration plotted in each panel are A APOBEC fraction, B copy number burden, C tumour mutational burden, D HRD score, E tumour 
cellularity, and F tumour ploidy
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Fig. 6  (See legend on previous page.)
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of interleukin receptors could be a wider phenomenon in 
ARNT amplified NMIBCs, the Gene Ontology gene set 
“Interleukin_receptor_activity” (GO: 0004907) was com-
pared: median expression of interleukin receptors was 
found to be significantly downregulated (Mann-Whitney 
p-value = 1.10 × 10e−3) in ARNT amplified NMIBCs. 
The immune score (calculated using ConsensusTME) 
was also significantly lower in ARNT amplified samples 
(Mann-Whitney p-value = 1.60 × 10e−3).

In NMIBCs with ERBB2 amplification, the most upreg-
ulated gene detected was TLK2 (limma based p.adj value 
= 2.67 × 10e−02) (Additional file 1: Table S8) which has 
been reported to suppress the innate immune system [53]. 
CD151 (a marker for T-cell activation [54] and/or mac-
rophage infiltration [55]) was also downregulated (p-value 
= 3.78 × 10e−5). The ConsensusTME immune score was 
lower in ERBB2-amplified NMIBCs but was not statisti-
cally significant (Mann-Whitney p-value = 0.12).

Gene set enrichment analysis (GSEA) revealed 
immune suppression to be a transcriptome-wide phe-
notype through multiple MSigDb hallmark pathways. 
The top three enrichments in the case of ARNT ampli-
fication identified downregulated immune-related path-
ways (adjusted p-value < 10e−5) (Fig. 7D). Similarly, for 
ERBB2 amplification, two of the top three enrichments 
identified downregulated immune-related pathways 
(adjusted p-value < 10e−5) (Fig. 7F).

Discussion
By combining transcriptomic classification with indi-
ces of genetic aberration, we are able to add further 
insight into the molecular characterisation of NMIBC. 
Our exome and transcriptome data complement previ-
ous multi-omic MIBC studies and transcriptome-based 
NMIBC studies [2, 22, 56]. Overall, the findings reported 
herein suggest a considerable overlap between abnormal 
pathways in high-grade NMIBC and those in MIBC [4] 
(Additional file  1: Table  S9). Approximately half of the 
somatic SNVs could be attributed to APOBEC muta-
tional activity. Recurrent mutations were observed in 
genes from processes such as histone modification, cell 
cycle regulation and apoptosis, DNA damage repair, and 

RTK signalling. We find that high CNB, low APOBEC, 
high HRD and amplification of ARNT and ERBB2 are 
indicators of shorter PFS across all NMIBCs. For G3pT1 
NMIBCs, low APOBEC and low TMB are indicators of 
poor prognosis. We applied HRD scoring [57] to stratify 
NMIBCs, and although the use of HRD scores in UBC 
requires independent validation, we propose that HRD 
score could be used to select patients likely to benefit 
from PARPi or chemotherapy [58]. In addition to the 
most-commonly altered COSMIC Tier 1 genes, there is 
a long tail of both cancer-associated and other mutated 
genes that may play a role in urothelial carcinogen-
esis and require further investigation; examples include 
BIRC6, the catalytic arg-200 of GNA13, and Q383H in 
AHR (Additional file 1: Table S2) [59].

Consensus clustering based on gene expression identi-
fied 3 classes showing some similarity to the UROMOL 
2021 subtypes [22]: our class C subtype mostly classified 
as UROMOL class 1 or 3, our class B subtype as class 2a 
and our class A subtype as class 2a or 2b. The class C sub-
type is typically low grade and stage NMIBCs with a dip-
loid genome, low TMB/CNB/HRD score and APOBEC 
signatures, high expression of luminal marker genes and 
regulons, and frequent FGFR3 mutations. The class B 
subtype tumours are predominantly G3 and exhibit high 
TMB/CNB/HRD/APOBEC signatures and expression of 
basal markers. The class A subtype expresses basal mark-
ers but have lower TMB/CNB/HRD score, high expres-
sion of mesenchymal genes and high levels of immune 
infiltration. Furthermore, the contrast between class 
B and C subtypes is reflected in regulon activities, with 
FOXM1 and FGFR3 regulons observed to have strong 
correlations with G2-M phase marker genes, but with 
opposite trends. This contrast may signify two ends of the 
spectrum of low- to high-grade NMIBC. High FOXM1 
expression has been reported to be an indicator of worse 
prognosis in UBC and other cancers [60–62] and our 
findings suggest the potential for FOXM1 inhibition ther-
apies. Beyond protein-coding genes, potential regulatory 
RNAs from back-splicing events (circRNAs) demonstrate 
a distinctly lower level of expression in class B tumours 
which should be further investigated functionally (in 

Fig. 7  Suppressed immune phenotype in ARNT- and ERBB2-altered NMIBC patients. A Boxplots comparing ARNT-altered versus wild-type 
samples with Mann-Whitney p-values noted beneath. The first three boxplots are for the interleukin receptor genes. The fourth boxplot 
compares the median expression of the Gene Ontology gene set (GO: 0004907) for interleukin receptor activity. The fifth boxplot compares 
the ConsensusTME-derived immune score. B Boxplots comparing ERBB2-altered versus wild-type samples with Mann-Whitney p-values 
noted beneath. The first and second boxplots compare the TLK2 and CD151 gene expression, respectively. The third boxplot compares the 
ConsensusTME-derived immune score. C, E Kaplan-Meier plot comparing the progression-free survival (PFS) with ARNT (C) or ERBB2 (E) expression 
level. The third quartile from the distribution of respective expression values (n = 74) was taken as the cut-off to assign “ARNT-High”/“ERBB2-High”, 
or “ARNT-Low”/“ERBB2-Low” samples. The depicted p-values are from the log-rank test. D, F The top three pathways from the gene set enrichment 
analysis (GSEA) in ARNT- (D) and ERBB2-altered (F) samples, respectively. “NES” is the normalised enrichment score, and the negative sign here 
indicates that the enrichment was found amongst the downregulated genes

(See figure on next page.)
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particular, those originating from cancer-related genes) 
and may represent predictors of class B with future 
opportunities for patient stratification.

We explored the exomes and transcriptomes from 
G3pT1 NMIBC to identify prognostic molecular charac-
teristics which could potentially inform clinical decisions 

Fig. 7  (See legend on previous page.)
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regarding bladder preservation or cystectomy. Given that 
multiple combinations of environment, host genome and 
tumour genome may influence outcome, most studies are 
underpowered for patient numbers (ours included) and 
are influenced by treatment effects [63]. Treatment-naïve 
at the time of sample collection, our cohort comprises 
patients who have subsequently received various com-
binations of guideline-driven therapies and which influ-
ence outcomes; this represents a limitation. However, our 
exome data identified alterations in ARNT and ERBB2 as 
poor prognostic indicators and high APOBEC and high 
TMB as good prognostic indicators regarding progression 
to MIBC. High APOBEC and high TMB are known prog-
nostic indicators in MIBC [2] and were recently reported 
to be associated with good outcomes in high-grade T1 
UBC by Bellmunt et  al. [23]; however, ARNT was not 
included in the Bellmunt study and ERBB2 amplifications 
were not reported. Importantly, we identified significant 
downregulation of immune-related pathways in NMIBCs 
with ARNT and ERBB2 amplifications. This is consistent 
with an immune-suppressed phenotype leading to poorer 
outcomes in high-risk NMIBC. High ERBB2 expression 
has recently been reported as a predictor of shorter RFS 
in pT1 disease [64], and amplification of the chr1q cyto-
band (where ARNT resides) has been reported to indi-
cate poor prognosis in multiple cancer types [65, 66]. 
Although ARNT amplification could be a proxy for chr1q 
amplification (and other genes in this region, such as 
SETDB1, might functionally contribute to prognostic dif-
ferences), it is an interesting candidate for future inves-
tigation: it is the only COSMIC cancer gene within the 
amplified region, germline polymorphisms in ARNT are 
associated with an increased risk of bladder cancer [67], 
and the protein encoded by ARNT dimerises with the 
protein encoded by the AHR gene which is recurrently 
mutated in UBC [59]. Other genetic alterations identified 
as significant prognostic indicators by Bellmunt [23] were 
not significant in our cohort. The results of our analyses 
should be interpreted in the context of the limited size 
of our cohort, and the observed variability between our 
and previous studies suggests that larger patient numbers 
are required to determine robust prognostic indicators. 
Hence, re-analysis of combined data from all sequenc-
ing studies of G3pT1 tumours with available treatment 
and outcome data could be worthwhile. We had limited 
capability for detection of sub-clonal events in UBC, due 
to a lack of multi-region sampling and/or longitudinal 
sampling in the study cohort. Nevertheless, the estimated 
median tumour cellularity was > 85%, and so we are con-
fident of the recurrent somatic aberrations identified and 
the transcriptome-based sub-typing undertaken. We 
also investigated potential markers for BCG treatment 
response, albeit for a small subset of high-grade (G3pT1) 

samples; we identified differentially regulated immune-
related pathways (interferon-alpha and -gamma response 
pathways) that warrant further investigation. This find-
ing, along with TMB being a poor prognostic indicator 
and the downregulation of immune-related pathways in 
poor-prognosis ARNT- and ERBB2-amplified NMIBCs, 
suggests that the immunological properties of NMIBCs 
are likely important determinants of future progression.

Conclusions
We have presented the largest combined exome and tran-
scriptome analyses of NMIBC to date. Our data confirm 
that low APOBEC signature is a poor prognostic indi-
cator in the tumours from NMIBC patients, including 
those with G3pT1 disease and that high expression of 
interferon response pathways may be indicative of either 
good prognosis or good response to BCG therapy. An 
immune-suppressed phenotype associated with ARNT 
and ERBB2 amplification is associated with poorer pro-
gression-free survival and we highlight these genes as 
candidates for further studies. We have also identified 
differences in FGFR3 activation and immune marker 
expression between our transcriptome classes and those 
of UROMOL 2021, highlighting the importance of multi-
omic profiling in accurately classifying NMIBCs.
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