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Abstract 

Background:  Malignant pleural mesothelioma (MPM) has a poor overall survival with few treatment options. Whole 
genome sequencing (WGS) combined with the immune features of MPM offers the prospect of identifying changes 
that could inform future clinical trials.

Methods:  We analysed somatic mutations from 229 MPM samples, including previously published data and 58 sam‑
ples that had undergone WGS within this study. This was combined with RNA-seq analysis to characterize the tumour 
immune environment.

Results:  The comprehensive genome analysis identified 12 driver genes, including new candidate genes. Whole 
genome doubling was a frequent event that correlated with shorter survival. Mutational signature analysis revealed 
SBS5/40 were dominant in 93% of samples, and defects in homologous recombination repair were infrequent in our 
cohort. The tumour immune environment contained high M2 macrophage infiltrate linked with MMP2, MMP14, TGFB1 
and CCL2 expression, representing an immune suppressive environment. The expression of TGFB1 was associated with 
overall survival. A small subset of samples (less than 10%) had a higher proportion of CD8 T cells and a high cytolytic 
score, suggesting a ‘hot’ immune environment independent of the somatic mutations.
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Background
Malignant pleural mesothelioma (MPM) is a rapidly lethal 
cancer of the mesothelial lining involving the pleura that 
is causally linked with asbestos exposure [1, 2]. Genomics 
studies of MPM have focused mostly on exome sequenc-
ing in combination with copy number, gene expression or 
methylation analysis [3–5]. These studies have confirmed 
that MPM is an unusual cancer predominantly driven by 
loss of tumour suppressors (BAP1, NF2 and CDKN2A) 
with a lack of oncogenic gain-of-function events. Treat-
ment options, including chemotherapy, radiotherapy and 
surgery, remain largely ineffectual. Genome-guided medi-
cine has yielded benefits in other cancer types, but the 
translation of genomic knowledge for MPM is yet to be 
realized.

Targeted HDAC, EZH2 and PARP treatments are 
being pursued based upon BAP1 status (clinical trial: 
NCT03207347) and its purported role in chromatin 
remodelling, transcriptional regulation and DNA repair, 
respectively [6]. In addition, recent combination immu-
notherapy trial results offer new treatment options 
[7–9]. With the FDA recently approving combination 
nivolumab and ipilimumab treatment for patients with 
unresectable MPM [7], a treatment that also induces 
good responses in patients with the historically intrac-
table sarcomatoid histology. Interestingly, MPM lacks 
the genomic markers that have been generally associ-
ated with immunotherapy responsiveness, such as, high 
tumour mutation burden [10–12], high neoantigen load 
and mutational signatures associated with mismatch 
repair or homologous recombination repair deficiency 
[13]. Therefore, a deep genomic or immunological char-
acterization of MPM samples may reveal alternative fea-
tures that could influence treatment choices.

We performed WGS on 58 MPM tumours with 
matched transcriptome sequencing and combined this 
with publicly available data to provide a cohort of over 
200 MPMs [3, 4]. This enabled an in-depth characteriza-
tion of mutational signatures and driver genes, plus an 
exploration of the tumour immune microenvironment.

Methods
Clinical cohort description and sample processing
We profiled 58 pathologically confirmed MPM tumour 
samples and matched germline DNA from patients with 
MPM; the data from the 58 MPM samples is referred to 

as the ‘Creaney et  al.’ data throughout the manuscript. 
The source, sample type and associated clinical details 
relating to the 58 MPM patients are in Additional file 1: 
Table S1. The 58 MPM samples were comprised of pleura 
tissue samples (n = 21), pleural effusions (n = 29) and 
low passage pleural effusion cell lines (n = 8). Samples 
were collected for genome-based studies with writ-
ten informed consent from participants and approval of 
the Dana-Farber Brigham and Women’s Cancer Center 
Institutional Review Board (Boston, MA, USA) (n = 
4 patients), University Hospitals of Leicester National 
Health Service Trust (Leicester, UK) (n = 12 patients) 
and the Sir Charles Gairdner and Osborne Park Hospi-
tal Research Ethics Committee (SCGOPH REC; Perth, 
Western Australia, Australia) (n = 42 patients). Pleural 
tumour tissue was snap frozen in liquid nitrogen after 
surgical removal. Pleural effusions were drained as clini-
cal indicated then transported to the laboratory at room 
temperature for processing. For 29 samples, tumour cells 
were enriched directly from the pleural effusions by CD45 
depletion following the manufactures directions (Stem-
cell Technologies, Tullamarine, Victoria, Australia). For 8 
samples, an aliquot of the effusion cell pellet was placed 
into RPMI-1640 media (Gibco) supplemented with 15% 
foetal calf serum, 200 mM Hepes, 10 mM 2-mercaptoe-
thanol, 1x glutamax (Gibco), 1x nonessential amino acids 
(Gibco), plus 1x sodium pyruvate (Gibco) and tumour 
cells enriched through culturing at 37oC in a 5%CO2 
humidified atmosphere for between 4 and 10 passages as 
previously described [14]. All cultures were confirmed to 
be Mycoplasma spp. free by polymerase chain reaction. 
Nucleic acids were extracted from pleura tissue, effusion, 
low passage effusion and blood samples using the Qiagen 
AllPrep Universal kit. MPM and matched normal DNA 
samples were screened using an Illumina SNP array and 
tumour purity assessed using the qpure tool [15]; samples 
with > 40% tumour cell content were selected for WGS. 
The WGS analysis was conducted at QIMR Berghofer 
with approval from the QIMR Berghofer Research Ethics 
Committee (P3521). Approval for this study was granted 
by SCGOPH REC (RGS0000001517).

Whole genome sequencing generation and processing
Whole genome sequencing was performed on 58 MPM 
and matched germline DNA samples. Sequence librar-
ies were generated from 500 ng DNA using the Illumina 

Conclusions:  We propose accounting for genomic and immune microenvironment status may influence therapeutic 
planning in the future.
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TruSeq DNA PCR-free (350 bp insert) kit and sequenced 
using paired-end sequencing reads of 150 bp with an 
HiSeq X Ten (Illumina, San Diego, CA, USA) at The 
Kinghorn Cancer Centre, Garvan Institute of Medical 
Research (Sydney, Australia) or Macrogen (Seoul, South 
Korea). Sequence reads were trimmed using Cutadapt 
[16] (v1.11) and aligned to the GRCh37 human reference 
using BWA-MEM [17] (v0.7.12). Duplicate alignments 
were marked with Picard (version 1.129, http://​picard.​
sourc​eforge.​net), and BAM files were coordinate-sorted 
using Samtools [18] (v1.3). Mean coverage was deter-
mined using qcoverage [19].

Somatic variant calling
Single nucleotide variants (SNV) were detected using a 
dual calling strategy using qSNP [20] and the GATK Hap-
lotypeCaller [21] and indels (1–50 bp) were called with 
the GATK HaplotypeCaller as previously described [22]. 
Variants were annotated with the Ensembl v75 gene fea-
ture information and transcript or protein consequences 
using SnpEff (version 4.2). Structural variants were 
determined using qSV as previously described [23] and 
annotated for their potential consequence on genes. Posi-
tions of breakpoints were annotated using the Ensembl 
v75 gene model. Copy number was determined using 
ascatNGS [24]. Samples identified as having undergone a 
whole genome duplication event had an overall ploidy of 
> 2.7 and > 50% of the genome estimated as copy number 
3 to 6 with two alleles present, i.e. heterozygosity of those 
segments with copy number gain. We grouped copy 
number alterations to high gain (copy number ≥ 6) and 
homozygous deletion (copy number 0). Recurrent copy 
number changes were detected for chromosomal regions 
using GISTIC2.0 [25]. Significant genes with focal copy 
number changes were identified using confidence level of 
0.95 and a q-value < 0.05.

Driver gene analysis
Driver genes were identified based on the frequency and 
functional impact bias of variants. We applied a con-
sensus approach using three tools to detect significantly 
mutated genes (SMG) affected by single nucleotide vari-
ants and indels. We performed SMG meta-analysis by 
merging Mutation Annotation Format (MAF) files of the 
samples from three studies: this study (Creaney et  al.), 
TCGA [4] and Bueno et  al. [3]. The SMG methods, 
including OncodriveFML [26], MutPanning [27] (V2.0) 
and MutSigCV [28], were run using default parameters. 
OncodriveFML was executed using CADD v1.0 via the 
web interface (http://​bbglab.​irbba​rcelo​na.​org/​oncod​rivef​
ml/​home). MutSigCV and MutPanning were executed 
using modules in GenePattern (https://​www.​genep​
attern.​org). We considered q-value< 0.05 threshold for 

OncodriveFML and MutSigCV and FDR < 0.05 for Mut-
Panning. Genes were considered as significantly mutated 
if they were identified by more than two tools except for 
PBRM1 gene, which was detected by MutPanning and 
has high number of SV breakpoints.

Detection of mutations in the promoter of TERT 
and estimation of telomere length
We identified TERT promoter mutations using a pileup 
approach to determine the number of bases that were 
variant from the reference. The TERT promoter positions 
assessed were c.−57 T>G (chr5:1295161), c.−124 G>A 
(chr5:1295228), c.−138 G>A (chr5:1295242), c.−139 
G>A (chr5:1295243) and c.−146 G>A (chr5:1295250) 
which were previously reported as frequently mutated 
in mesothelioma [29, 30] and/or melanoma [31, 32]. A 
mutation was considered present if the mutant allele fre-
quency was > 10%. We estimated the telomere length for 
tumour samples relative to the matched normal sample 
by counting telomere motifs in the whole genome data 
using qmotif [33].

Mutational signatures
Mutational signature analysis was performed using the 
COSMIC [34] V3 signatures and the R package YAPSA 
[35] (version 1.14.0). Single base substitutions and 
INDEL signatures were assigned to the Alexandrov [36] 
SNV PCAWG with artefacts and INDEL PCAWG signa-
tures respectively, supplied with YAPSA and downloaded 
August 16th, 2018. A cut-off of 10% was used to deter-
mine signature exposure.

Estimation of homologous recombination repair deficiency
To determine if samples were HR deficient two tools 
were used, HRDetect [37] and HRD-score [38]. HRDe-
tect was run with SNV mutational signatures identified 
with deconstructSigs [39] and SV mutational signatures 
from YAPSA [35]. Samples were considered HR deficient 
if they were predicted by both tools (HRDetect > 0.7 and 
HRD-sum > 42).

TCGA cohort data analysis
TCGA MPM exome and transcriptome data for 74 pre-
viously described [4] cases were downloaded in BAM 
format, converted to Fastq format, and sequence reads 
were analysed using the same pipeline as for the Creaney 
et al. samples. Single nucleotide substitution variants and 
indels were detected using the same pipeline as the whole 
genome analysis. Structural variants were not called in 
the exome data from TCGA. Copy number was deter-
mined using sequenza [40].

Two of the cases that underwent WGS in our cohort 
(the Creaney et  al. cohort) were previously exome 
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sequenced and reported by TCGA (MESO1701 cor-
responds to TGCA-UD-AABZ and MESO2041 corre-
sponds to TCGA-UD-AAC4) [4]. We used qsignature 
[41] to confirm the WGS and exome sequencing data 
was from the same individuals. When presenting genome 
data from TCGA, we excluded the two cases from TCGA 
and only reported the WGS data. We performed a com-
parison of the mutations detected by WGS and TCGA 
for these two cases (Additional file 2: Fig. S1).

HLA typing and neoantigen prediction
Optitype (v1.3.1) [42] was used to compute class I HLA 
genotypes for paired tumour-control whole genome 
datasets using default parameters. Somatic variants were 
annotated for wildtype and mutant peptide sequences 
with Ensembl variant effect predictor (v86) (VEP) [43]. 
High confidence somatic coding variants were used to 
predict neoantigens using pVAC-Seq (v4.0.10) [44] and 
NetMHCpan [45]. Epitopes with binding affinity Inhibi-
tory Concentration (IC50) ≤ 500 nM were considered 
to be potential neoantigens that bind to HLA alleles. 
Expressed neoantigens (IC50 ≤ 500 nM) were identified 
using qbasepileup [46] run in SNP mode to count the 
reference and mutant bases at each mutation position in 
the RNA-seq BAM files. Duplicate and poorly mapped 
reads were excluded and a mutation was considered to be 
expressed if there was a minimum of 10 reads with evi-
dence of the mutation.

Gene fusion events from RNA-seq data were predicted 
using STAR-Fusion [47] (v1.10.0) with default settings. 
Predicted gene fusion events were filtered to include only 
those with evidence of the SV in WGS data; the remain-
ing events were annotated using AGFusion [48] with 
commands ‘--middlestar’ to indicate the fusion position 
in the fusion peptide sequence and ‘--noncanonical’ to 
annotate the fusion with information from all possible 
transcripts. Annotated gene fusion events were used as 
input for pVACfuse, which is a component of pVACtools 
[44] to predict neoantigens using NetMHCpan (v4.0) 
algorithm [45] with MHC-class-I alleles.

Whole transcriptome sequencing and analysis
Sequence libraries were generated from 1 μg intact RNA 
using the TruSeq stranded mRNA kit (Illumina, San 
Diego, CA, USA) from tumour samples. Transcriptome 
paired-end sequencing reads of 100 bp were generated 
using a Hiseq 2500 instrument (Illumina, San Diego, CA, 
USA) to a targeted depth of 100 million reads per sam-
ple. Adapter sequences were removed using Cutadapt 
[16] (v1.11) and aligned using STAR [49] (v2.5.2a) to the 
GRCh37 assembly and Ensembl v75 gene model. Quality 
control metrics were computed using RNA-SeQC (ver-
sion 1.1.8), and gene expression as TPM was estimated 

using RSEM [50] (v1.2.30). Further analysis was carried 
out using TPM gene expression values to facilitate cross 
sample comparisons, deconvolution of immune cells and 
estimation of cytolytic score.

Analysis of the tumour microenvironment (TME)
The proportion of different immune cells in the tumour 
micro-environment was estimated from RNA-seq data 
using CIBERSORT [51]. The TPM counts for the Creaney 
et  al. and TCGA [4] datasets were calculated indepen-
dently and used for deconvolution of the tumour micro-
environment on a per sample basis. The CIBESORT 
algorithm was run with default settings, excluding quan-
tile normalization, for 100 permutations with the pub-
lished LM22 reference signature matrix to estimate the 
abundance of 22 immune cells types. The proportion of 
estimated immune cells for the Creaney et al. and TCGA 
[4] datasets was visualized together. Cytolytic activity was 
calculated for each sample as geometric mean of GZMA 
and PRF1 expression (using TPM, 0.01 offset) as previ-
ously described [52].

Statistical and survival analysis
All statistical analyses were performed in the R (v3.6.0) 
environment. A p value of less than 0.05 estimated using 
the Wilcoxon test was considered significant. Survival 
analysis was performed using patient overall survival 
and a log rank test. To determine an association with 
survival and the presence of whole genome duplication 
(WGD) a log rank Mantel-Cox test was performed. Sur-
vival analysis for neoantigen load and cytolytic activity 
was performed by separating samples into quartiles and 
comparing low and high quartiles. Survival analysis for 
the expression of specific genes (TGFB1, CCL2, MMP2 
and MMP14) was performed by stratifying samples into 
lower, middle and upper tertiles of log-transformed 
TPM+1 gene expression values. Kaplan-Meier survival 
curves and calculation of p value from a log-rank test 
were performed using the Survival R package (v3.3-1).

Results
Whole genome analysis of malignant pleural 
mesothelioma
Whole genome sequencing of 58 MPM and matched 
germline samples (Additional file  1: Table  S1) was gen-
erated to an average read depth of 66.7 (49.7–83.6) for 
tumour samples and 33.7 (23.5–43.7) for matched ger-
mline samples (Additional file  3: Table  S2). Data from 
the 58 MPM samples is referred to as the ‘Creaney et al.’ 
data throughout the manuscript. MPM samples included 
pleural tissues, pleural effusions and cell lines derived 
from short-term effusion cultures. The patients were 
predominantly male (76%, 44/58), with an average age 
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of diagnosis of 68 years (range 43 to 95 years). Fifty per-
cent of patients were current or previous smokers with 
an average of 17 ± 20 pack year smoking history, and 85% 
reported previous asbestos exposure (Fig. 1A and Addi-
tional file  1: Table  S1). A median of 3286 (range 594 to 
5855) somatic SNV and 274 (range 55 to 484) indels were 
detected per sample (Additional file 3: Table S2 and Addi-
tional file 4: Table S3). The average mutation burden was 
1.36 mutations per megabase (median 1.31, range 0.24 
to 2.24) (Fig.  1B and Additional file  3: Table  S2), which 
is consistent with previous studies reporting a burden of 
< 2 mutations per megabase [3, 4]. We detected a total of 
9025 somatic structural variants (SVs) (Additional file 5: 
Table  S4) including insertions and deletions, duplica-
tions, inversions and translocations, with a median of 125 
events per sample (range 5 to 466) (Fig. 1C). The majority 
(59%) of breakpoints occurred in intergenic regions, with 
38% occurring within introns and < 3% in exons of genes. 
There were 159 predicted in frame gene fusion events; 
however, none were recurrent between samples. There 
were 8 genes identified in fusion events in multiple sam-
ples; however, each event was unique with no common 
gene partners or exon usage patterns.

Whole genome duplication (WGD) was a common 
event, occurring in 29% (17 of 58) of cases (Fig.  1D). 
WGD was significantly associated with a decrease 
in overall survival (p-value < 0.01, Log rank Mantel-
Cox) (Fig. 1E). In one pleural tissue sample, loss of het-
erozygosity (LOH) affected almost 80% of the genome 
(Fig. 1D). Genomic near-haploidization, that is a genome 
wide LOH, has been previously described for five 
MPM tumours [4] which were all BAP1, PBRM1 and 
SETD2 wildtype, with all of the cases containing inac-
tivating point mutations in, or homozygous deletion 
of, SETDB1. In agreement with this, the sample with 
genome wide LOH in our cohort was also BAP1, PBRM1 
and SETD2 wildtype with a SETDB1 inactivating muta-
tion (frameshift deletion, chr1:150923937 AGAAG>-). 
The patient was male, diagnosed at 50 years of age, had 
no recorded exposure to asbestos and had never smoked.

Frequent SNV and indel events occurred around BAP1 
(chr3). Significant focal copy number changes as identi-
fied by GISTIC analysis (q-value of < 0.001) occurred 
on chromosomes 3, 9, 16 and 22 in regions that contain 

tumour suppressor genes, BAP1 (chr3), CDKN2A (chr9) 
and NF2 (chr22) (Fig.  1F). RBFOX1 at chromosome 16 
also contained a high number of breakpoints with a total 
of 67 SV events in 31 patients (Additional file 5: Table S4).

Mutational signatures from WGS
A mutation signature associated with asbestos exposure 
has not been identified, therefore we hypothesized that 
the increased unbiased coverage of the genome afforded 
by WGS would provide more power to detect signatures. 
When assigning to the known signatures from COSMIC 
database v3 [34, 36] using the 203,416 somatic SNVs and 
15,864 somatic indels from the 58 samples that under-
went WGS, we identified 16 single base substitution sig-
natures (SBS) (Fig. 2A and Additional file 2: Fig. S2) and 
11 indel signatures (ID) (Fig. 2B and Additional file 2: Fig. 
S3). In addition a total of 6 SV signatures were identified 
(Fig. 2C).

The majority of samples (54 of 58) contained either 
SBS5 or SBS40 signature at a proportion of > 50%. Both 
these signatures have been described as flat signatures 
that are similar to one another and present in multiple 
cancer types [36], which means their relative assignment 
may be uncertain. SBS40 and SBS5 have been shown to 
correlate with age of diagnosis in some cancer types [36]. 
Although there was a trend (p 0.035), we did not see a 
strong correlation of SBS40 with age in our cohort (Addi-
tional file  2: Fig. S4A). The indel signature ID5, which 
was present in most samples (38 of 58) at a proportion 
of > 40%, showed a stronger association with age (Addi-
tional file  2: Fig. S4B). Previously, it has been proposed 
that the mutational processes that underlie the age-corre-
lated signatures SBS40 and ID5 are similar [36]; however, 
we did not see a correlation in the abundance of these 
signatures in the mesothelioma cohort. Additionally, the 
proportion of SBS40 or SBS5 signatures within patients 
were not associated with asbestos exposure, smoking his-
tory or age of diagnosis.

The four samples that did not contain SBS40/5 sig-
natures had signatures that were unique or infre-
quent within the cohort (Fig.  2A). The first sample 
(MESO09746) was comprised of SBS8, SBS25 and SBS39. 
The SBS39 signature was present in 6 other samples, and 
currently, there is no known aetiology for this signature. 

(See figure on next page.)
Fig. 1  Whole genome somatic mutation burden for the Creaney et al cohort. A Clinical features of the 58 mesothelioma samples that underwent 
WGS. B Somatic variant load per megabase from single (SNV), dinucleotide (DNP) and trinucleotide (TNP) substitutions and short insertion and 
deletion (indels) variants. C Counts of structural rearrangements identified in each sample categorized by SV type. D Proportion of each tumour 
genome with copy number alteration (CNA). Evidence of whole genome duplication for 17 samples with > 90% of genome with CNA and > 70% 
of genome copy number 3-6 and a ploidy of > 2.7. E Kaplan-Meier curve showing overall survival was reduced in patients with evidence of whole 
genome duplication. F Density of mutations within the genomes of the 58 mesothelioma samples. Each plot is ordered by chromosome (x-axis). 
Plots show from top to bottom: genomic density of SNV and indel mutations; genomic density of SV breakpoints; frequency of amplifications (red) 
and deletions (green) within samples
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Fig. 1  (See legend on previous page.)
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SBS8 has been implicated in homologous recombination 
deficiency (HRD); however, we could not find any muta-
tions in the BRCA​ genes of MESO09746, and this sample 
had a low HRD-sum score (Fig. 2D) and HRDetect score 
(Fig.  2E) suggesting the sample was not HR deficient. 
SBS25 has been associated with chemotherapy treat-
ment [36], and this sample had undergone chemotherapy 
treatment. Similarly, MESO10268 was also pretreated 
and contained SBS31 also associated with platinum 

compound chemotherapy [36]. The second sample that 
did not contain SBS40/5 (MESO2041) was comprised of 
SBS39 and SBS54, the former has no known aetiology, 
while SBS54 has been described as a sequence artefact 
possibly due to germline variant contamination. This 
sample had the lowest number of mutations within the 
cohort (594 SNVs) which has impacted the ability to con-
fidently resolve signatures (Additional file  2: Fig. S2A). 
The third sample (MESO11863) contained a germline 

Fig. 2  Mutational signatures and homologous recombination deficiency scores within MPM. A The number of single nucleotide mutations 
contributing to each single base substitution (SBS) somatic mutational signature within each patient that was identified using COSMIC v3 
signatures. The major common categories are grouped together using similar colours. B The number of indel mutations contributing to each 
indel signature within each patient. Somatic indel mutational signatures estimated from indels with a size of 1 to 50pb and compared to COSMIC 
v3 signatures using cosine similarity. C The number of SV mutations contributing to each rearrangement signature within each patient. D The 
HRD-sum score for each patient. The dashed line represents the threshold for HR deficiency. E The HRDetect score for each patient. The dashed line 
represents the threshold for HR deficiency. Sample and patient features are shown below the plots
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BAP1 mutation, and was comprised of the APOBEC 
linked signatures SBS2 and SBS13, as well as SBS3. In the 
fourth sample lacking SBS40/5 (MESO9647), the only 
signature detected was SBS3.

The SBS3 HR deficient signature has previously been 
associated with HRD and germline and somatic BRCA1 
and BRCA2 mutations and BRCA1 promoter methylation 
in breast [53], pancreatic [54] and ovarian [23] cancers. 
SBS3 was present in 9 samples, with low levels (< 30%) in 
7 samples (Fig.  2A). Two of these samples (MESO0013 
and MESO0003) also contained a high ID6 signature and 
high HRD-sum and HRDetect scores suggesting these 
samples are HR deficient. A somatic frame-shift mutation 
in BRCA1 (NM_007294.4:c.1504_1508del (p.Leu502fs)) 
with LOH of the other allele accounts for the signature 
in MESO0013, while MESO0003 contains a somatic SV 
break within the BRCA2 gene which potentially results 
in a disruption of the gene. These findings suggest a low 
prevalence of HR deficiency in a subset of MPM. Another 
DNA damage signature present at low prevalence (< 30%) 
in 10 samples was SBS30 which has been associated with 
base excision repair deficiency due to inactivating muta-
tions in NTHL1 [55]. However, we did not detect NTHL1 
mutations in our cohort.

Somatic driver gene analysis and frequently disrupted 
genes
Driver oncogenes for MPM have not been previously 
identified. In order to generate increased power for iden-
tifying such genes, we combined the protein coding sub-
stitution and indel variants in our cohort with published 
studies from TCGA [4] and Bueno et  al. [3] and used 
three approaches to identify significantly mutated genes 
(SMG). The driver gene meta-analysis of 229 patients 
identified 7 driver genes (BAP1, NF2, TP53, SETD2, 
LATS2, DDX3X and SETDB1) which were significant 
in two SMG approaches (q-value of < 0.05) (Fig. 3A and 
Additional file 6: Table S5), all of which have previously 
been reported as MPM tumour drivers [3, 4]. Another 
gene, PBRM1, which is known to frequently undergo 
copy number loss in MPM [56] was found to be signifi-
cantly mutated by only one approach (Additional file  6: 
Table  S5). Interestingly, the meta-analysis highlighted 
low frequency mutations in LATS1 and SETD5 genes, 
which although not significant are family members of 
the known MPM driver genes (Fig.  3A). A significantly 
mutated or candidate driver gene was detected in 61.2% 
(140/229) of the samples (Fig. 3A).

In addition to this, we analysed the Creaney et al. WGS 
dataset in isolation to incorporate the WGS-derived 
gene breakage (SV), copy number alterations (CNA) and 
gene promoter mutations. The chromosome breakpoints 
increased the mutational frequency of BAP1, NF2, TP53, 

SETD2, LATS2 and LATS1 (Fig.  3B) and highlighted 
other recurrently affected genes including CDKN2A 
(which was also significant by GISTIC (Fig.  1F)) and 
RBFOX1. We also found mutations in the promoter of the 
TERT gene in 3 of 58 samples (5.2%) (Fig. 3B) confirming 
previous reports of frequent mutations in the TERT pro-
moter [29, 30, 57, 58]. The presence of TERT promoter 
mutations was not associated with a high tumour muta-
tion burden, a low SV number or relative tumour tel-
omere length (Additional file 3: Table S2). In agreement 
with previous reports [30], we found that TERT muta-
tions were mutually exclusive to BAP1 mutation, as the 3 
samples with TERT promoter mutation and an additional 
sample with TERT amplification did not contain loss of 
function BAP1 mutations (Fig. 3B).

The RNA-seq data was used to assess the impact of 
mutation on expression of these genes. There was a sig-
nificant difference in expression of BAP1 between BAP1 
mutated and wild type samples in the WGS pleura (p 
0.042) (Additional file  2: Fig. S5), but not in the sam-
ples from TCGA (Additional file  2: Fig. S6). One sam-
ple (MESO1147) was wild type for BAP1 mutation but 
contained a low expression of BAP1. There was also a 
significant association with mutation and low expres-
sion for NF2 in samples from cell lines (p 0.042), pleura 
(p 0.00017) and effusions (p 0.0047). Although only sig-
nificant in effusion samples (p 0.005) and TCGA data (p 
0.038), the majority of samples of both cohorts with a loss 
of function mutation in CDKN2A also contained lower 
expression compared to wild type samples.

Neoantigens in MPM tumours
Somatic mutations may create tumour specific neoantigens 
that could be important in immune recognition. We used 
the SNV and indel somatic mutations to predict and found 
a median of 37 neoantigens per sample (range 3–93) in 
the Creaney et al. WGS data presented in this manuscript 
(Fig. 4A) and 18 neoantigens per sample (range 1–116) in 
data from TCGA (Fig. 4A). The number of predicted neo-
antigens correlated with number of SNV in the Creaney 
et  al. (Fig.  4C) and TCGA data (Fig.  4D). The Creaney 
et  al. cohort was comprised of samples derived from the 
pleura, effusions or short-term cell cultures, but the neo-
antigen load was not associated with sample type (Fig. 4E). 
The neoantigen load in the pleural tissue samples from the 
Creaney et al. cohort was significantly higher than TCGA 
(p 0.00023, Fig. 4E). This difference may be associated with 
differences in tumour purity between the cohorts or dif-
ferent sequencing approaches possibly due to WGS hav-
ing the potential to produce more even read depth across 
the genome and may include coding regions not targeted 
by the exome sequencing. The RNA-seq was used to deter-
mine which of the somatic mutations that were predicted 
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Fig. 3  Overview of genomic alterations in driver genes of MPM. Genes are shown if they were identified as significantly mutated, have recurrent 
promoter mutations, were present in GISTIC analysis or contained a high number of breakpoints. A Somatic SNV and indel mutations across three 
cohorts. The colour bar at the top indicates the sample cohort: Creaney et al. (purple), TCGA (pink) and Bueno et al. (light blue). The histogram 
shows the number of mutated driver genes in each sample. The oncoplot shows the mutations in each gene. The number of samples with 
mutations in each gene is shown in the bar chart on the right. The type of SNV or indel mutation is shown using colour codes. B Analysis is 
restricted to the samples in the Creaney et al. cohort which underwent WGS. The histogram shows the number of mutated driver genes in each 
sample. The oncoplot shows the SNV and indel mutations, breakpoints and copy number alterations in each gene. The order of each gene is the 
same as in panel A, and the sample labels are along the bottom. The mutation type is shown using colour codes
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to form neoantigens were expressed. The short-term cell 
line samples contained significantly more expressed neoan-
tigens (p < 0.05, Fig. 4F) possibly due to their high tumour 
content. Very few neoantigens were predicted from 
somatic indels (Additional file 2: Fig. S7A and Fig. S7B). In 
contrast with other cancers [59], there was no association 
between indel neoantigen load and overall survival in the 
Creaney et  al. or TCGA data (Additional file  2: Fig. S7C 
and Fig. S7D).

Gene fusion events represent another potential source 
of neoantigens. We identified a total of 159 candidate gene 
fusion events in the 58 samples (Additional file 5: Table S4); 
53 were caused by inter-chromosomal events (Additional 
file  2: Fig. S8A) and 106 by intra-chromosomal events 
(Additional file 2: Fig. S8B); of these, 13 were detected in 
the RNA-seq (Additional file 2: Fig. S8C). Only 6 of these 
fusion events were predicted to result in the formation of 
neoantigens (Additional file 2: Fig. S8D).

Immune cells within the MPM microenvironment
Deconvolution of the RNA-seq data to estimate immune 
cells using CIBERSORT revealed M2 macrophages, mono-
cytes, CD4 and CD8 T cells in the tumour microenviron-
ment (TME) of TCGA pleura samples (Fig.  5A) and the 
pleura and effusion samples of Creaney et  al. (Fig.  5B). 
There was a lower proportion of immune cells in the pleu-
ral effusion samples of the Creaney et al. data, likely due to 
the samples undergoing CD45 depletion prior to genomic 
analysis. Generally, the most prevalent immune cell type 
was M2 Macrophages. However for seven samples the pro-
portion of CD8 T cells in the TME was high (> 0.2) (Fig. 5A 
and B). The proportion of CD8 T cells correlated with cyto-
lytic activity in pleura and effusion samples (Additional 
file 2: Fig. S9A). The cytolytic activity has been reported as 
a prognostic factor in a variety of cancer types [52]; how-
ever, in MPM, we did not see an association with survival 
(Additional file 2: Fig. S9B).

TGFB is associated with M2 macrophages and worse 
survival
The secretion of chemokines and growth factors, in par-
ticular TGFB1, into the TME has a role in MPM devel-
opment and may affect the immune cells within the 
TME [60]. The expression of chemokines in our data and 
TCGA revealed that CCL2 was the highest expressed 
chemokine in all sample types (cell lines, pleural effusion 

and pleura) (Fig.  5C and D and Additional file  2: Fig. 
S10A and Fig. S10B). Similarly, matrix metalloproteases 
(MMPs) may promote invasion of MPM cell lines [61] 
and have been associated with immune desert regions in 
the TME [62]. We found that MMP14 and MMP2 were 
the highest expressed MMPs (Fig. 5C and D and Addi-
tional file 2: Fig. S10A and Fig. S10B).

The expression of CCL2, TGFB1, MMP14 and MMP2 
were associated with the presence of M2 macrophages 
(Pearson correlation of 0.3, 0.7, 0.6 and 0.6 respec-
tively with a p < 0.001) (Fig.  5E), suggesting that they 
may be contributing to a cold TME enriched with M2 
macrophages. A low expression of TGFB1 was associ-
ated with a better survival within the TCGA (Fig.  5F) 
and Creaney et al. datasets (Fig. 5G) (p < 0.05, log rank 
test), whereas low MMP2 and MMP14 expression was 
associated with better survival (p = 0.041 and 0.011 
respectively, log rank test), but only in the TCGA data 
(Additional file 2: Fig. S10C).

Expression of immune checkpoint receptors in MPM
Immune checkpoint blockade (ICB) agent anti-PD1 
(Nivolumab) and anti-CTLA4 (ipilimumab) have been 
approved by the FDA for MPM and showed efficacy in 
the CheckMate 743 trial [7]. Therefore, we performed a 
retrospective analysis of immune checkpoint receptors 
to identify potential ICB targets in MPM tumours that 
may improve the responses to ICB therapy (Additional 
file 2: Fig. S11). The expression of VSIR which encodes 
the V-type immunoglobulin domain-containing sup-
pressor of T cell activation (VISTA) was high in most 
samples as previously reported [4]. Similarly, high 
expression of CD276 was observed in most samples. 
The pleura and pleural effusion samples in the Creaney 
et  al. and TCGA datasets clustered into two groups. 
A small subset of samples (less than 10%) clustered 
into group 2 and were associated with higher cytol-
ytic scores and high expression of immune checkpoint 
receptors (Additional file  2: Fig. S11) indicative of a 
potential T cell inflamed immune ‘hot’ phenotype, sug-
gesting these may potentially respond to immunother-
apy. Previously, loss of BAP1 has been associated with 
immunogenicity in MPM [63], but here, we found no 
association of BAP1 status with neoantigen load (Addi-
tional file 2: Fig. S11) or the immune hot subgroup.

Fig. 4  Neoantigen load derived from SNV and indel mutations in MPM. Predicted total neoantigen load derived from SNVs and indels with IC50 
≤ 500 nM in the A Creaney et al. cell line, pleura and pleural effusion samples and B TCGA pleura samples. Pearson correlation plots between 
short nucleotide variants (SNVs) on x-axis and neoantigen load on y-axis for C Creaney et al. and D TCGA dataset. E Boxplots for predicted total 
neoantigen load (IC50 ≤ 500 nM) (y-axis) in Creaney et al. cell line, pleura and pleural effusion samples and TCGA pleura samples (x-axis). F Boxplots 
for expressed neoantigen load (IC50 ≤ 500 nM) in Creaney et al. samples and TCGA pleural samples. p-values shown are from Wilcox test

(See figure on next page.)
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Fig. 4  (See legend on previous page.)
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Discussion
Previous genomic studies of MPM were performed primar-
ily using exome and transcriptome sequencing [3–5, 64], 
with limited whole genome studies. Here, we report a large 
WGS study of MPM. We confirm that MPM is driven by 
loss of function of tumour suppressor genes [4], and using 
WGS, we identify SV breakpoints disrupting key driver 
genes to extend the mutational spectrum of these genes. 
Finally, we use RNA-seq to explore the TME to create the 
most complete picture of MPM.

Obtaining MPM surgical tissue samples for genomic 
studies is challenging, as surgery does not always provide 
clinical benefits to all MPM patients as demonstrated 
by the randomized clinical Mesothelioma and Radical 
Surgery (MARS) trial [65]. Therefore, genomic analysis 
of surgical samples is generally limited to a subgroup of 
patients that are operable. Pleural effusions are a common 
early feature in most patients with epithelioid MPM and 
provide a ‘window’ to the underlying tumour; because 
the fluid is readily accessible, the fluid may capture more 
of the tumour heterogeneity as it contains cells shed 
from multiple areas of the tumour and sequential sam-
ples can be obtained. Effusion samples may contain a low 
proportion of tumour cells, which may inhibit their util-
ity for WGS. We found that cell line and pleural effusion 
samples contain an overall mutation spectrum similar to 
MPM tissue samples, in keeping with previous findings 
[66], supporting the use of effusion samples to profile 
MPM. However, in our cohort, we performed tumour 
cell enrichment of effusion samples using low passage 
cell culture or CD45 depletion to improve tumour purity 
and detection of mutations. It should be noted that both 
these approaches will impact the proportion of immune 
cells within the TME, and future studies using single 
cell approaches to profile effusion samples would reveal 
greater insight into tumour immune composition.

Mesothelioma is a carcinogen-associated cancer linked 
to exposure of asbestos [1]. Several other carcinogen-
associated cancers have been associated with a high 
tumour burden and specific mutational signatures [67] 
(UV-driven melanoma and smoking in lung cancer). In 

contrast, we found that MPM contains a modest SNV 
and indel mutation burden, which agrees with previ-
ous studies of MPM [3–5]. The most frequent signature 
observed was SBS40, which has not previously been asso-
ciated with a specific aetiology and has been detected in 
a variety of cancer types. One could speculate that Signa-
ture SBS40 is present in MPM due to the inflammatory 
effects of asbestos exposure and reactive oxygen species 
induced DNA damage. However, this needs to be con-
firmed in more MPM samples or with functional studies. 
Several cases harboured specific signatures, which may 
reflect individual tumour characteristics. For example, 
we found one case with an APOBEC signature. Interest-
ingly, this patient was the only case in the cohort to have 
a BAP1 germline variant. However, an association with 
BAP1 germline variants and the APOBEC signature has 
not been reported, and the lack of the APOBEC signature 
within samples that contained somatic BAP1 mutations 
means they are likely not associated.

BAP1 is known to be frequently disrupted in MPM 
[3, 4, 68], the WGS and SV breakpoints, enabled a more 
complete mutation picture, and we found that BAP1 
alteration occurs in over two thirds of WGS cases and 
was significantly associated with lower gene expres-
sion in pleura samples. In our analysis, gene expression 
in TCGA data was not significantly different between 
BAP1 mutated and wildtype samples, possibly because 
exome sequence data is unable to identify all mutation 
events in BAP1 such as CNA and SV. We did not assess 
other mechanisms of BAP1 inactivation such as meth-
ylation that may contribute to low BAP1 gene expression 
in samples without BAP1 mutation. The prevalence of 
BAP1 loss adds impetus to the search for treatments that 
could benefit this subgroup of patients. An in vitro study 
demonstrated that a BAP1 mutant cell line responded 
to a combination of PARP inhibition and cisplatin [69] 
supporting BAP1 as target for therapy, with patient tri-
als underway in MPM [70, 71] and other BAP1 altered 
tumours. These approaches either directly target BAP1 
function using HDAC inhibitors and EZH2 inhibitors or 
target DNA damage repair mechanisms with the use of 

(See figure on next page.)
Fig. 5  The tumour micro-environment of MPM. Deconvolution of immune cells in the tumour micro-environment (TME) for A pleura samples 
of TCGA and B pleura and effusion sample of Creaney et al. Samples are on x-axis and the estimated proportion of immune cells is on the 
y-axis. Sample information and CIBERSORT estimated p-value for enrichment of immune cells per sample are shown in the tiles above the plot. 
RNA-seq data for C TCGA and D Creaney et al. showing the log transformed TPM +1 gene expression values for CCL2, MMP2, MMP14 and TGFB1. E 
Correlation of log transformed TPM+1 gene expression values of CCL2, MMP2, MMP14 and TGFB1 and the proportion of immune cells measured 
with CIBERSORT. The correlation was estimated using Pearson Correlation as indicated in the scale bar. Values are shown for 66 samples (53 TCGA 
and 13 Creaney et al.) which have significant immune cell proportions estimated by CIBERSORT (p-value < 0.05). Comparisons that are significantly 
correlated (p-value < 0.001) with a positive correlation are displayed in green pie charts and negative correlation are displayed in red pie charts. 
Blank panels indicate a non-significant correlation (p-value > = 0.001). F Kaplan-Meier plot of TCGA samples with TGFB1 expression divided by 
lower, middle and upper tertiles (p value from log rank test). G Kaplan-Meier plot of Creaney et al. samples with TGFB1 expression divided by lower, 
middle and upper tertiles (p value from log rank test)
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platinum chemotherapy or PARP inhibitors [6]. Results 
from an early stage MPM clinical trial of PARP inhibi-
tors reported a manageable toxicity profile and partial 

response in 3 of 26 patients, all with BAP1 loss [70]. In 
breast and ovarian cancer, HR deficiency-associated 
mutational signatures are predictive of mutations in 

Fig. 5  (See legend on previous page.)
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BRCA1/2 and postulated to be associated with PARP 
inhibitor response [37]. However, in our WGS-driven 
analysis, we found these signatures were present at a low 
frequency in a small subset of mesothelioma patients, 
with only two samples considered as HR deficient. This 
suggests that PARP inhibition may only be effective in a 
small subset of MPM, and we await the outcomes of sev-
eral PARP inhibitor clinical trials currently underway 
(NCT03531840 and NCT03207347).

In addition to BAP1, we also identified other previ-
ously reported MPM driver genes, and novel candi-
date low frequency MPM driver genes. RBFOX1 was 
the gene most frequently disrupted by SV events, 
which supports previous reports [72]. Whether chro-
mothripsis or other mechanisms causing complex 
rearrangements was responsible for this recurrent rear-
rangements is not clear, and future work to profile the 
chromatin landscape through methylation profiling or 
ATAC-seq would be useful. We also confirm previous 
reports of recurrent TERT promoter mutations, which 
rarely co-occur [57] or are mutually exclusive to BAP1 
mutation [30]. However, in our cohort, TERT promoter 

mutations were detected in 5.2% of samples, which is 
lower than previous studies reporting 15% [58], 11.6% 
[29] and 10.4% [30]. The difference in prevalence may 
be due to the MPM samples that underwent WGS in 
our cohort being predominantly an epithelioid histo-
logic subtype, since TERT promoter mutations have 
been reported as enriched in sarcomatoid [58] and 
non-epithelioid MPM [57]. Unlike previous reports in 
melanoma [32], the TERT promoter mutations were 
not associated with a high tumour mutation burden, 
a low SV number or telomere length [32]; however, 
our analysis was limited as only 3 samples contained a 
TERT promoter mutation. Two novel candidate genes 
were detected (LATS1 and SETD5) and are family 
members acting within the same pathway as previously 
reported MPM driver genes (LATS2 and SETDB1) and 
occur in a mutually exclusive manner. MPM has simi-
larities to clear cell renal cell carcinoma (ccRCC), as 
both harbour frequent loss of function mutations in 
SETD2, SETD5 and BAP1, and we confirm in this study 
PBRM1 [73, 74]. PBRM1 mutations have previously 
been detected in two MPM cases in Bueno et al. [3] and 

Fig. 6  An overview of key mutation processes and the tumour microenvironment in MPM. Inhaled asbestos fibres located at parietal pleura of lung. 
Asbestos fibres may trigger cell damage and contribute to initiation of mesothelioma cells. Whole genome sequencing of mesothelioma samples 
revealed 13 candidate driver genes and mutations were enriched with SBS40/5 mutation signature. Whole transcriptome sequencing identified ‘hot’ 
a TME marked with the presence of T cells and cytolytic activity in a subset of samples. The majority of MPM favour the growth of the tumour cells 
by promoting a "cold" TME comprised of M2 Macrophages and TGFB1 expression. Figure created with BioRe​nder.​com

http://biorender.com
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TCGA [4]; using WGS, we also identified somatic dis-
ruptive SV and CNA events as a common mechanism 
to disrupt PBRM1. PBRM1 and BAP1 loss co-occurred, 
which may be due to both genes being located within 
200 kb of each other on chromosome 3. Interestingly, 
PBRM1 loss-of-function events in ccRCC have been 
associated with an increased response to immunother-
apy checkpoint blockade [75], warranting investigation 
for MPM.

Checkpoint blockade has emerged as a treatment for 
MPM patients [7, 9]. Whether a tumour will respond 
to immunotherapy is impacted by both the tumour 
cells and the tumour immune environment. Mark-
ers to identify patients that will respond to immuno-
therapy will be useful in the management of MPM. We 
identified a small subset of patients that contained a 
high proportion of CD8 T cells and a strong cytolytic 
activity score, suggesting an immune ‘hot’ phenotype 
that may be more amenable to immunotherapy. Loss 
of BAP1 has been described as a candidate predictive 
marker of immunotherapy response in MPM [76] and 
in peritoneal mesothelioma BAP1 loss has been linked 
to an inflammatory tumour microenvironment with 
increased T cell infiltrate [63]. Our findings did not sup-
port a link with BAP1 loss and the immune ‘hot’ pheno-
type in MPM. Compared to peritoneal mesothelioma, 
MPM harbour more frequent loss of CDKN2A, and loss 
of CDKN2A has been linked to resistance to immuno-
therapy in non-small cell lung cancer [77]. Therefore, 
the CDKN2A loss may contribute to the lack of asso-
ciation with the immune ‘hot’ phenotype in MPM. The 
most abundant immune cell type in MPM samples was 
M2 macrophages, suggesting an immunosuppressive 
phenotype [78]. CCL2 is involved in the polarization of 
monocytes into M2 macrophages in the TME of a vari-
ety of cancers [79] including MPM [80], in agreement 
with this we detected high expression of CCL2. Simi-
larly, we confirmed high TGFB1 expression, which is 
also involved in M2-like macrophage polarization [81], 
and an association with a poorer outcome [82]. The 
clinical role of these observations is the subject of ongo-
ing studies.

Chemokine-related treatment avenues have been sug-
gested as a potential opportunity of therapy and given 
their high expression may be relevant to MPM. Poten-
tial treatment approaches include targeting the CCL2-
CCR2 axis [83] or blocking TGF-β [84]. Blocking TGFβ 
has previously shown a potential survival benefit in 
MPM [85]. Tumour vaccines targeting neoantigens is 
another emerging therapy [86]. However, as the muta-
tion profile of MPMs has a high interpatient heteroge-
neity, neoantigen vaccine approaches may need to be 
personalized.

Conclusions
In summary, we extend the mutational analysis of MPM 
using WGS. By combining our data with existing datasets 
[3, 4] we confirmed previously described driver genes 
and identified candidate new driver genes. Integration of 
the transcriptome revealed the complexity of predicting 
patient treatment response and highlighted the impor-
tance of the tumour environment. We show that MPM 
is driven by mutations in tumour suppressor genes and 
frequently contains the SBS40 mutational signature. The 
tumours contain a high M2 macrophage infiltrate within 
the pleura and effusion TME, which is linked to high 
TGFB1 and CCL2 expression. A small subset of sam-
ples displayed an immune ‘hot’ phenotype with CD8 T 
cells and high cytolytic activity (Fig. 6). We propose that, 
depending on the immune microenvironment, patients 
may respond to immune checkpoint and/or TGFB block-
ade. Further genomic analysis of MPM immunotherapy 
clinical trial samples will be key to better understand-
ing the potential molecular biomarkers and ultimately 
improving outcomes for patients.
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