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Abstract 

Background:  Rare diseases collectively affect up to 10% of the population, but often lack effective treatment, and 
typically little is known about their pathophysiology. Major challenges include suboptimal phenotype mapping and 
limited statistical power. Population biobanks, such as the UK Biobank, recruit many individuals who can be affected 
by rare diseases; however, investigation into their utility for rare disease research remains limited. We hypothesized the 
UK Biobank can be used as a unique population assay for rare diseases in the general population.

Methods:  We constructed a consensus mapping between ICD-10 codes and ORPHA codes for rare diseases, then 
identified individuals with each rare condition in the UK Biobank, and investigated their age at recruitment, sex bias, 
and comorbidity distributions. Using exome sequencing data from 167,246 individuals of European ancestry, we 
performed genetic association controlling for case/control imbalance (SAIGE) to identify potential rare pathogenic 
variants for each disease.

Results:  Using our mapping approach, we identified and characterized 420 rare diseases affecting 23,575 individu-
als in the UK Biobank. Significant genetic associations included JAK2 V617F for immune thrombocytopenic purpura 
(p = 1.24 × 10−13) and a novel CALR loss of function variant for essential thrombocythemia (p = 1.59 × 10−13). We con-
structed an interactive resource highlighting demographic information (http://​www-​perso​nal.​umich.​edu/​~mattp​at/​
rareD​iseas​es.​html) and demonstrate transferability by applying our mapping to a medical claims database.

Conclusions:  Enhanced disease mapping and increased power from population biobanks can elucidate the demo-
graphics and genetic associations for rare diseases.
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Background
Rare diseases account for a high proportion of hospi-
tal visits [1, 2] and can severely reduce quality of life [3, 
4]. A recent study [1] indicates ~10% of hospital dis-
charges were patients who had a rare disease. Many rare 

diseases have a substantial impact on mortality [2, 5] 
and are associated with severe physical and mental dis-
ability [6]. Legislation has been introduced (e.g., the Rare 
Diseases Act and the Orphan Drug Act in the USA [7]) 
to encourage research and drug development for rare 
diseases, yet < 5% have an FDA approved treatment [5], 
and available treatments are often highly expensive [8] 
or inaccessible [9]. Delays in diagnosis are commonplace 
[3] and patients reported challenges in accessing special-
ists with experience of their condition [4]. Inference from 
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Orphanet suggests 80% of rare diseases are genetic, yet 
disease-associated genes have been identified for < 40% of 
rare diseases [5]. A clearer understanding of rare disease 
pathogenesis is needed, to develop new treatments and 
reduce the burden on society.

Addressing challenges in healthcare for rare diseases 
is challenging due to the vast number and heterogeneity 
of rare conditions, as well as limited resources available 
to study each disease. There are believed to be > 10,000 
rare diseases [10], with estimates varying due to diver-
gent definitions of rarity [5] and lack of consensus over 
which diseases constitute distinct entities [11]. It can be 
difficult to collect sufficient samples for statistical sig-
nificance, due to low prevalence [12], and clinical trials 
for rare diseases typically include fewer participants [13]. 
There are ongoing attempts to establish biobanks for spe-
cific rare diseases, such as the EuroBioBank network [14], 
which provide access to samples for research, and infor-
mation to guide clinical trials. However, biobanks are not 
available for every disease, and they cannot be used to 
understand demographics of rare diseases in the general 
population.

Population-based biobanks, such as the UK Biobank 
(UKB) [15] and All of Us research program [16], provide 
extensive information (both phenotypes and genotypes) 
on individuals with a wide range of (rare and common) 
diseases, reflecting the general population. The overall 
prevalence of having at least one rare disease has been 
estimated at > 3.5% in Europeans [17], which is higher 
than many common diseases, such as psoriasis [18] and 
glaucoma [19]; some sources suggest as many as 1 in 10 
Americans are living with a rare disease [4, 10]. One diffi-
culty in harnessing population biobanks is their diagnosis 
coding systems (e.g., the 10th revision of the Interna-
tional Statistical Classification of Diseases and Related 
Health Problems, ICD-10) are not specifically designed 
for rare diseases. ICD-10 codes are typically broader 
than those from rare disease nomenclatures (such as 
Orphanet [20]), meaning that while it is possible to map 
from ORPHA codes (in Orphanet) to ICD-10 for billing 
purposes, individuals annotated with those ICD-10 codes 
do not necessarily have a rare disease.

We hypothesize that applying enhanced phenotype 
mapping to the large sample sizes of population biobanks 
can provide valuable information regarding the demo-
graphics of rare diseases and could help advance the 
study of previously underserved conditions. We perform 
a consensus mapping of ICD-10 to ORPHA codes, to 
identify which ICD-10 codes reliably indicate rare dis-
eases, then use it to catalog and explore the data available 
on rare diseases through the UKB. To facilitate the dis-
semination of this information, we have created an online 
resource (http://​www-​perso​nal.​umich.​edu/​~mattp​at/​

rareD​iseas​es.​html) which will enable researchers to 
investigate specific rare diseases in the UKB and other 
systems that rely on ICD-10 codes. Furthermore, our 
association studies highlight significant genetic-disease 
associations, shedding light on the importance of refined 
phenotype mapping.

Methods
Mapping ICD‑10 to ORPHA codes
From the ICD-10 mapping provided by Orphanet (which 
does not require the ICD-10 codes to be as specific as 
their corresponding ORPHA codes), we conducted 
refined mapping such that an individual annotated with 
an ICD-10 code can be expected to have the rare dis-
ease indicated by the corresponding ORPHA code (Sup-
plementary Figure  1). For example, Orphanet maps 
ORPHA:314 (Leiner’s disease) to L21.1 (seborrheic 
infantile dermatitis); however, seborrheic dermatitis is in 
general common among newborns [21], so this ICD-10 
code is excluded by our approach. We thus required the 
ORPHA code selected for each ICD-10 code to be as spe-
cific as possible (i.e., provide the most narrow and pre-
cise description), but no more specific than the ICD-10 
code, such that we are able to reliably map ICD-10 codes 
to ORPHA codes representing specific rare diseases. No 
parent ICD-10 codes of the mapped ICD-10 codes are 
used in our mapping.

Clinical and demographic data, from 502,493 indi-
viduals in the UKB, was downloaded on 24 August 2020, 
with diagnoses annotated by ICD-10 codes. We started 
with 2,044 ICD-10 codes from the UKB mapped to 6762 
ORPHA codes by Orphanet and applied a consensus 
approach to identify the subset of mappings that meet 
our criteria, selecting a single ORPHA code for each 
ICD-10 code (Additional file  1: Table  S1). It should be 
noted that multiple ICD-10 codes can map to the same 
ORPHA code if the ICD-10 codes represent subtypes 
of the rare disease; for example, multisystemic (C96.0), 
unisystemic (C96.5), and unifocal (C96.6) Langerhans 
cell histiocytoses are all mapped to ORPHA:389 (Langer-
hans cell histiocytosis). Putative ICD-10/ORPHA pairs 
were assessed independently (by RB and MTP), and then 
the assessments were compared together. As the third 
voter in our consensus, we employed the results of a pre-
vious study mapping a subset of the Australian modifi-
cation of ICD-10 (ICD-10-AM) to ORPHA codes [1]. 
Where assessments differed, further investigation was 
conducted until a joint decision could be reached. The 
end result is a set of ICD-10 codes for each ORPHA code 
that can be reliably mapped, allowing rare diseases to be 
identified in the UKB and other resources that use ICD-
10 codes.

http://www-personal.umich.edu/~mattpat/rareDiseases.html
http://www-personal.umich.edu/~mattpat/rareDiseases.html
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UKB data analysis
We extracted the subset of individuals with ICD-10 codes 
from primary or secondary diagnoses corresponding to 
each ORPHA code in our mapping for rare diseases. Dis-
ease prevalence was estimated by dividing the number of 
individuals with ICD-10 codes mapping to those ORPHA 
codes by the total number of individuals in the UKB (of 
all ancestries). We compared the estimated prevalence for 
each rare disease with criteria for considering a disease as 
rare: < 1 in 2,000 people in Europe (< 0.05%) or < 200,000 
people in the USA (< 0.06%) [5]. Statistics describing the 
proportion of males, age at recruitment, and comorbidi-
ties (collected from the entire study period) were com-
piled for each disease from the available data in the UKB. 
Diseases were grouped based on the different chapters in 
the ICD-10 coding system, splitting off “Other Immune” 
from Chapter III for D80-D89, then combining Chapters 
V and VI as neurological diseases, VII and VIII as Eye/
Ear, chapters XV and XVI as pregnancy/childbirth, and 
XVIII, XX, XXI, and XXII as Miscellaneous. Access to 
data from the UK Biobank (https://​www.​ukbio​bank.​ac.​
uk/​learn-​more-​about-​uk-​bioba​nk/​about-​us/​ethics) was 
obtained through a material transfer agreement which 
falls within the UK Biobank’s generic Research Tissue 
Bank (RTB) approval from the NHS North West REC.

Comorbidities
We investigated the prevalence of different groups of 
comorbidities among individuals with different groups 
of rare diseases using the groups we identified from the 
ICD-10 codes. We also compared the enrichment of 
these groups of comorbidities against two previous stud-
ies (one for common diseases [22] and one for Mendelian 
diseases [23]) using Fisher exact tests.

Exome sequencing analysis
We performed genetic association analysis on 167,246 
individuals of European ancestry from the UKB who self-
reported as White British and were genetically confirmed 
by principal components analysis (UKB field 22,006), 
using exome sequencing data prepared with the Original 
Quality Functionally Equivalent (OQFE) protocol. We 
restricted the genetic analysis to individuals of European 
ancestry because they constitute the vast majority of the 
UK Biobank and imbalanced cases/controls for rare dis-
eases could otherwise lead to false positives for variants 
associated with ancestry. Variant- and gene-level asso-
ciation tests were conducted using SAIGE/SAIGE-GENE 
[24, 25], a generalized mixed model that provides accu-
rate results in situations where there are far fewer cases 
than controls and applies a sparse relatedness matrix 
to account for population stratification. Variants were 

required to be rare (minor allele frequency, MAF ≤ 1%) 
in the full population but have a minor allele count of 
at least three among individuals with the rare disease 
and more than three overall, annotated as having a high 
or moderate impact by SnpEff [26] or a score ≥ 0.75 by 
REVEL [27], resulting in 33,981 variants across 162 rare 
diseases. Significant variant and gene associations from 
SAIGE were compared against the genes annotated for 
each disease by Orphanet and nine different variant effect 
predictors (CADD, FATHMM, LRTori, MetaSVM, Muta-
tionAssessor, MutationTaster Polyphen2 using HDIV or 
HVAR, PROVEAN and SIFT) annotated in dbNSFP v4.1 
[28]. We then evaluated the pathogenicity of variants 
identified using the 2015 ACMG/AMP classification [29]. 
We also investigated loss of function variants predicted 
using SnpEff [26] by filtering the SAIGE associations to 
those variants. Significant rare disease associations were 
further filtered to highlight diseases which, in addition 
to being indicated by Orphanet as rare in Europe (< 1 in 
2000 people) are indicated by NIH’s Genetic and Rare 
Diseases Information Center (GARD) as being rare in the 
USA (< 200,000 people).

Confirmation using other data sources
To illustrate how our ICD-10/ORPHA mappings can 
facilitate rare disease research in additional datasets, 
we applied them to a nationwide database of medi-
cal claims from 39 million patients (Optum’s deidenti-
fied Clinformatics® Data Mart [30]) and compared the 
estimated prevalence of each disease against the UKB. 
Since a large proportion of diagnoses in Clinformatics® 
are coded using ICD-9, it is necessary to find equivalent 
ICD-9 codes for the ICD-10/ORPHA mappings. How-
ever, the ICD-9 coding system is less detailed than ICD-
10, particularly for rare diseases. We therefore used the 
2018 General Equivalence Mappings (GEMS) published 
by the Centers for Medicare and Medicaid Services [31] 
and excluded any diseases labeled as having approximate 
mappings. Although this limits the number of diseases 
that can be mapped, it allows for more accurate dis-
ease identification. Access to data from the Clinformat-
ics® Data Mart (https://​www.​optum.​com/​conte​nt/​dam/​
optum/​resou​rces/​produ​ctShe​ets/​Clinf​ormat​ics_​for_​
Data_​Mart.​pdf ) was obtained through a data use agree-
ment according to a license agreement at the University 
of Michigan Institute for Healthcare Policy and Innova-
tion (IHPI).

Statistical analysis
We applied Bonferroni adjustment to identify signifi-
cant variants and gene level associations from SAIGE 
and SAIGE-gene, respectively. Pearson correlation and 
Mann-Whitney tests were used to assess the associations 

https://www.ukbiobank.ac.uk/learn-more-about-uk-biobank/about-us/ethics
https://www.ukbiobank.ac.uk/learn-more-about-uk-biobank/about-us/ethics
https://www.optum.com/content/dam/optum/resources/productSheets/Clinformatics_for_Data_Mart.pdf
https://www.optum.com/content/dam/optum/resources/productSheets/Clinformatics_for_Data_Mart.pdf
https://www.optum.com/content/dam/optum/resources/productSheets/Clinformatics_for_Data_Mart.pdf
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between age/gender and rare disease diagnoses. We also 
used Pearson correlation and test of proportions to com-
pare the prevalence of rare diseases in Clinformatics® 
and the UK Biobank. In each case, we present both the 
effect size and p-value, as appropriate.

Results
Rare diseases identified
Table 1 provides some examples of our disease mapping, 
along with the number of individuals in the UKB with the 
rare disease and group (identified from the ICD-10 chap-
ter) the disease belongs to (Additional file  1: Table  S2 
contains the full list). Using our consensus approach, 
we mapped 1,176 ICD-10 codes to 720 ORPHA codes. 
23,575 individuals in the UKB (~5% prevalence) were 
found to have at least one of 420 specific rare diseases, 
with 2,602 individuals having more than one rare disease 
(~10% prevalence). It is interesting that individuals with 
a rare disease have higher susceptibility to other rare dis-
eases, as this suggests some of the rare conditions may 
be related, either causally or by shared molecular mecha-
nisms. This finding confirms a previous study in the USA 
[4], which revealed that ~13% of individuals with a rare 
condition have more than one.

Figure  1a presents the distribution of the number of 
individuals who are recorded as having each disease, with 
the highest disease density occurring for 5.4 individu-
als (1 in 100,000 estimated prevalence). A similarly high 
density is observed for diseases with up to 30 individu-
als, and density decreases as the number of individuals 
increases. The vast majority of diseases (indicated as rare 
in Orphanet) also meet the criteria for being rare in the 
UKB, suggesting our mapping approach has successfully 
identified the rare diseases. However, 24 out of the 420 

diseases (6%) have an estimated prevalence greater than 1 
in 2000 (indicated by the dashed red line), meaning they 
are not rare by the European definition. Furthermore, 21 
of these diseases do not meet the US criterion (affect-
ing fewer than 200,000 people) when extrapolating to 
the population of the USA. This is important to consider 
with respect to the demographics of rare diseases in the 
UKB.

The total number of rare disease individuals in the 
UKB differs depending on whether diseases with 
>1/2,000 prevalence are included (23,575 individuals, 
5% of the total) or excluded (10,635 individuals, 2% of 
the total). Both estimates are within the range of rare 
disease prevalence previously reported [4, 10], and for 
the remainder of our analysis, we include all 420 dis-
eases, using Orphanet as the deciding factor over 
whether a disease should be considered rare. It is also 
worth noting our approach is conservative, since it only 
includes rare diseases that can be reliably mapped from 
ICD-10 to ORPHA. As many rare diseases are not pre-
cisely defined within ICD-10, so are excluded by our 
mapping approach, we should expect the overall prev-
alence of rare diseases to be higher than our reported 
number. However, it is also possible due to inaccura-
cies in diagnosis that some individuals annotated with 
a particular ICD-10 code might not have the disease it 
refers to.

Confirmation of applicability to Optum’s deidentified 
Clinformatics® Data Mart
By converting the ICD-10 codes from our consensus 
mapping to non-approximate ICD-9 codes, we cre-
ated ICD-9 to ORPHA mappings for 114 rare diseases 

Table 1  Sample sizes obtained for some of the rare disorders. For each of the rare diseases we identified in the UK Biobank, we 
provide the set of ICD-10 codes that map directly to the codes from Orphanet, such that the ORPHA code is no more specific that the 
ICD-10 codes. We then provide the number of individuals with that rare disease in the UK Biobank (UKB count) along with the group 
the disease belongs to, based on its ICD-10 chapter

Disease name ORPHA code ICD-10 code UKB count Group

Addison’s disease 85138 E27.1 242 Endocrine/metabolic

Waldenström macroglobulinemia 33226 C88.0 109 Neoplasms

Marfan syndrome 558 Q87.4 93 Congenital

Beta-thalassemia 848 D56.1 71 Blood

Autosomal dominant tubulointerstitial kidney 34149 Q61.5 41 Congenital

Congenital ptosis 91411 Q10.0 31 Congenital

Tetralogy of Fallot 3303 Q21.3 19 Congenital

Congenital renal artery stenosis 97598 Q27.1 7 Congenital

Autosomal dominant epidermolytic ichthyosis 312 Q80.3 <5 Congenital

Fragile X syndrome 908 Q99.2 <5 Congenital

Reye syndrome 3096 G93.7 <5 Neurological
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Fig. 1  Rare diseases in the UK Biobank. a Density plot of the 420 rare diseases we identified in the UK Biobank by mapping ICD-10 codes to ORPHA 
codes. The x-axis shows the log10 number of individuals recorded as having each disease, while the y-axis shows the density of diseases with 
that number of individuals. The red dashed line indicates the (fewer than 1 in 2000) prevalence criterion for rare diseases in Europe. b Scatter plot 
comparing the prevalence of rare diseases in the UK Biobank and the Optum dataset. Each point represents a rare disease, and the dotted red line 
represents the linear regression between the prevalence in Optum and the UK Biobank. c The groups of rare diseases identified in the UK Biobank 
are shown as a bar plot, with the y-axis indicating the number of diseases in each group. Overlaid is a second bar plot (in red), with the y-axis 
indicating the number of individuals who have at least one disease in each group. d Hexagon/scatter plot showing the mean age at recruitment 
and proportion of males for each disease. The x-axis shows the percentage of males recorded as having each disease and the y-axis shows the mean 
age at recruitment. The hexagons show the density of diseases at each mean age and sex proportion, while the asterisks indicate the actual values 
for a particular disease. The red dashed line shows the overall mean age and sex proportion in the UK Biobank. e Box/scatter plot of comorbidities 
for rare diseases. The y-axis shows, for each rare disease, the percentage of individuals who have at least one comorbidity in each group (excluding 
the rare disease itself )
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(Additional file 2: Table S3). We applied our ICD-9/10 
mappings to Clinformatics® and compared the preva-
lence of individuals with each rare disease to the UKB 
(Fig.  1b). The prevalence of rare diseases in Clinfor-
matics® and the UKB is highly correlated (r = 0.77, 
p = 2.2 × 10−23). Interestingly, celiac artery compression 
syndrome had substantially higher prevalence in Clin-
formatics® (0.044%) compared to the UKB (0.001%), as 
did burning mouth syndrome (Clinformatics®: 0.117%, 
UKB: 0.008%). However, generally rare diseases had 
higher prevalence in Clinformatics®, with only 11 hav-
ing higher prevalence in the UKB. We further com-
pared the prevalence estimated from the UKB against 
those reported in Orphanet and found that of the 186 
rare diseases from our mapping that have prevalence 
information in Orphanet, 165 (89%) are within one 
order of magnitude difference; 66 (35%) have higher 
prevalence in the UKB, and 48 (26%) have lower preva-
lence in the UKB, compared with the range reported by 
Orphanet.

The relatively high recruitment age in the UKB might 
be expected to result in more rare diseases arising or 
being identified. Polymyalgia rheumatica is more com-
mon among older adults and does have a slightly higher 
prevalence in the UKB (0.39%) than Clinformatics® 
(0.38%). However, trigeminal neuralgia is also more 
common in older adults and has more than twice the 
prevalence in Clinformatics® (0.27%) than the UKB 
(0.12%), fold change (FC = 2.29, p = 9.03 × 10−208, test 
of proportions). Both Clinformatics® and the UKB may 
be subject to selection biases. In addition to variation 
between the UK and USA, there are also data collec-
tion differences: Clinformatics® claims are enriched for 
individuals in contact with a health system, while the 
UKB is community focused but may be biased towards 
healthy volunteers [32].

Quantifying groups of rare diseases
Figure  1c presents the number of rare diseases identified 
in the UKB for each non-overlapping group defined from 
ICD-10 chapters (congenital, neoplasms and infectious/
parasitic rare diseases are the most numerous); although 
individuals can have diseases from multiple groups, each 
disease belongs to exactly one group. Overlaid (in red) 
are the number of individuals with at least one disease 
from each group (neoplasms, musculoskeletal and diges-
tive system diseases are the most common). Orphanet also 

provides an overlapping set of categories (Additional file 2: 
Figure S1); each disease is associated with multiple catego-
ries, with genetic, neurological, and hematological catego-
ries among the most frequent.

Demographics in the UKB
From the UKB, we extracted the age at recruitment, gen-
der, and comorbidities for individuals who have each dis-
ease. Individuals with a rare disease had slightly higher 
median age (60) than those without (58), Mann-Whitney 
p = 9.0 × 10−314 FC = 1.03; individuals with more than 
one rare disease also had a higher median age (61) than 
those with only one rare disease (60), Mann-Whitney 
p = 6.5 × 10−6 FC = 1.02 (some individuals with an ICD-
10 code might not have the disease due to inaccuracies in 
diagnosis). Figure 1d and Additional file 2: Figure S2 show 
a modest (positive) correlation (r = 0.32, p = 4.8 × 10−8) 
between male proportion and median age at recruit-
ment for different rare diseases, with male dominated dis-
eases having higher age at recruitment. Some male-biased 
diseases have a low median recruitment age, including 
cocaine intoxication and Kaposi’s sarcoma (associated with 
HIV [33]). There are also female-biased diseases with older 
age, such as malignant tumor of fallopian tubes and vulvar 
intraepithelial neoplasia.

Although rare diseases affected a similar proportion of 
males and females overall, approximating the general pop-
ulation, there are considerable differences in sex proportion 
between rare disease groups (Fig. 2 and Additional file 2: 
Figure S3). Neoplasms and digestive system rare diseases 
are more frequent among males, while musculoskeletal and 
skin/subcutaneous rare diseases are more frequent among 
females. Figure 1e and Additional file 2: Figure S4 present 
the comorbidities of rare diseases, determined by ICD-10 
codes. The percentage of individuals with comorbidities 
in each group differs substantially between rare diseases, 
illustrating diversity in how rare diseases relate to common 
comorbidities and suggesting the broad impact of rare dis-
eases. Additional file 2: Figure S5 shows the enrichment of 
comorbidities among individuals with different groups of 
rare diseases as a heatmap. Most groups were significantly 
enriched for comorbidities in the same group (i.e., on the 
diagonal), while individuals with rare blood or genitouri-
nary disorders were more likely to have pregnancy/child-
birth comorbidities, and individuals with rare respiratory 
system disorders were more likely to have infectious/para-
sitic comorbidities.

Fig. 2  Sex of individuals with different groups of rare disease. Each bar plot presents the number of male and female individuals in the UK Biobank 
who have at least one rare disease from a particular group. Non-overlapping groups of rare diseases were identified from their corresponding 
ICD-10 chapters. For each group, we conducted a Fisher enrichment test, comparing the number of males and females in the group with the 
number of males and females in the UK Biobank overall; p-values and odds ratios are provided under each bar plot and the subtitles of groups with 
significant sex bias are indicated in bold font

(See figure on next page.)
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Fig. 2  (See legend on previous page.)
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We compared our findings with those from a recent 
work [22] that studied comorbidities of common diseases 
in the UK Biobank (Additional file 2: Figure S6); having a 
comorbidity in the same category was generally less com-
mon for rare diseases than for common diseases, with 
the notable exception of rare respiratory system diseases, 
which have higher same-category and cross-category 
enrichment. As with our study (Additional file 2: Figure 
S5), the Dong et  al. study reported significant comor-
bidities between common infectious and respiratory 
disorders, as well as between common respiratory and 
metabolic conditions. However, uniquely, we observed 
individuals with a rare form of neoplasm are more likely 
to have a blood disorder, whereas individuals who have 
rare blood disorders are not necessarily more likely to 
have neoplasms. Overall, the differences in enrichments 
across the disease categories between our study and 
the common disease study are minor, further support-
ing the accuracy of our analysis. We further compared 
our results with a study that investigated the association 
between Mendelian and complex genetic diseases [23], 
focusing on the 15 rare diseases from our mapping in the 
UK Biobank that it included. Interestingly, we identified 
10 significant enrichments (Additional file  2: Figure S7) 
after Bonferroni correction, all of which were supported 
by the previous study. Although we did not observe any 
significantly enriched comorbidities between the Mende-
lian diseases, we expanded our analysis to all the rare dis-
eases from our mapping and identified 222 significantly 
co-occurring rare diseases (Additional file  1: Table  S4) 
and 389 significant complex disease comorbidities of 
rare diseases (Additional file 1: Table S5) after Bonferroni 
correction.

Interactive web browser for rare diseases in the UKB
To help facilitate the use of our findings for future rare 
disease research, we created a website (http://​www-​
perso​nal.​umich.​edu/​~mattp​at/​rareD​iseas​es.​html) which 
allows rare diseases within the UKB to be easily explored. 
Our website includes an interactive table with details 
of each rare disease (their name, ORPHA code, ICD-10 
codes, number of individuals in the UKB, and disease 
group). When the user accesses a disease in the table, 
more information is provided in the tabs above, includ-
ing the prevalence, age at onset, age at death, inherit-
ance type, genes, and categories from Orphanet (where 
available), in addition to a table of phenotypes and their 
expected frequency. On different tabs are figures showing 
the age at recruitment and sex of individuals, relative to 
the general population, and the proportion of individuals 
with different comorbidities, with a link to more infor-
mation regarding the disease from Orphanet. To ensure 
the anonymity of participants in the UKB, no age, sex, or 

comorbidity information is shown for diseases affecting 
fewer than five individuals.

Exome sequencing analysis
Applying SAIGE/SAIGE-GENE to 33,981 variants across 
162 diseases indicated as rare by Orphanet (< 1 in 2000 
people) and using Bonferroni adjustment, we identified 
19 significant variant-level associations and 20 significant 
gene-level associations. We further restricted to diseases 
indicated by NIH’s GARD as rare (< 200,000 people), 
resulting in 14 variant-level associations (Table  2) and 
14 gene-level associations (Additional file  2: Table  S6) 
significant for rare diseases. The full set of gene-level 
associations and variant level associations with false dis-
covery rate (FDR) ≤ 0.05 are provided in Additional file 1: 
Table S7 and Additional file 1: Table S8, respectively. Six 
of the 14 variant-level associations (43%) had previously 
been reported in ClinVar.

The most significant associations involved the JAK2 
V617F variant, previously indicated as pathogenic for 
various diseases in ClinVar. We confirmed associations 
for polycythemia vera (p = 1.32 × 10−114), chronic myelo-
proliferative disease (p = 2.89 × 10−67), primary myelofi-
brosis (p = 5.30 × 10−40), and essential thrombocythemia 
(p = 1.59 × 10−12). Furthermore, we identified a signifi-
cant V617F association for immune thrombocytopenic 
purpura (p = 1.24 × 10−13), which while not indicated in 
ClinVar or Orphanet, was previously reported in case 
studies from Poland [34] and Italy [35] and in mouse 
experiments [36]. Outside of JAK2, significant associa-
tions were identified involving three variants indicated 
as pathogenic or likely pathogenic by ClinVar: HBB with 
beta-thalassemia (p = 7.34 × 10−12), F11 with congenital 
factor XI deficiency (p = 3.41 × 10−11), and MYD88 with 
B-cell chronic lymphocytic leukemia (p = 1.08 × 10−9). 
The HBB gene encodes for β-globin, an important subu-
nit of hemoglobin [37], while F11 encodes for factor XI, 
which is needed for coagulation [38], and mutations in 
MYD88 can induce oncogenesis through their impact on 
NFκB and JAK signaling regulation [39].

We also identified a significant association between 
SRSF2 and chronic myelomonocytic leukemia 
(p = 1.19 × 10−13). Although SRSF2 is a known gene for 
this disease (potentially causing oncogenesis through its 
impact on CD4/CD8 T-cells [40]) and was indicated by 
Orphanet, our variant (rs751713049) is novel. It is indi-
cated as pathogenic (Additional file 1: Table S8) by four 
predictors (CADD, PROVEAN, MutationTester and 
SIFT), as well as possibly pathogenic by MutationAsses-
sor and PolyPhen2 (using both HVAR and HDIV). A 
novel association was identified between MYH1 and 
osteochondritis dissecans (p = 1.01 × 10−7), involving 
a variant predicted as pathogenic by seven predictors; 

http://www-personal.umich.edu/~mattpat/rareDiseases.html
http://www-personal.umich.edu/~mattpat/rareDiseases.html
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MYH1 is involved in skeletal muscle and has been linked 
to rhabdomyolysis [41].

We performed association analysis on the subset of 
variants predicted to cause loss of function in SnpEff 
(Additional file 2: Table S9). Nine significant associations 

were identified after Bonferroni adjustment, includ-
ing a frameshift variant in CALR for essential thrombo-
cythemia (p = 1.59 × 10−13) and the previously mentioned 
stop gained variant in HBB for beta-thalassemia. The 
HBB variant is recorded in ClinVar as pathogenic for 

Table 2  Significant variant-level associations. We applied SAIGE’s GLMM test with Bonferroni adjustment to identify significant 
variant associations for each rare disease and Bonferroni adjustment is applied. Genomic positions are provided in hg38 build and 
HGVS nomenclature. The ACMG/AMP classification for each association was determined through the use of Varsome and InterVar. 
Associations are specified as being reported if they have previously been indicated as pathogenic or likely pathogenic in ClinVar for 
that disease. Abbreviations are as follows: MAC, minor allele count; MAF, minor allele frequency. Although additional significant variant-
level associations were identified for systemic lupus erythematosus and von Willebrand disease, these diseases were indicated as 
not being rare in the USA by NIH’s GARD. Furthermore, significant variant-level associations with interatrial communication, benign 
epithelial tumor salivary glands, and endophthalmitis were excluded because these diseases were not listed on NIH’s GARD, so it is 
difficult to confirm their rareness in the USA

Disease ORPHA Marker ACMG/AMP 
classification

Reported? p-value Case MAC Percent 
affected

Control MAF

Polycythemia vera 729 9:5073770_G/T (JAK2: missense)
NC_000009.12:g.5073770G>T

Pathogenic (PS3/
PS4)

Yes 1.32 × 10−114 51/370 47% 1.71 × 10−04

Chronic myelopro-
liferative disease

86830 9:5073770_G/T (JAK2: missense)
NC_000009.12:g.5073770G>T

Pathogenic (PS3/
PS4)

Yes 2.40 × 10−67 30/154 28% 2.33 × 10−04

Essential throm-
bocythemia

3318 9:5073770_G/T (JAK2: missense)
NC_000009.12:g.5073770G>T

Pathogenic (PS3/
PS4)

Yes 2.91 × 10−42 21/218 19% 2.60 × 10−04

Primary myelofi-
brosis

824 9:5073770_G/T (JAK2: missense)
NC_000009.12:g.5073770G>T

Pathogenic (PS3/
PS4)

Yes 5.30 × 10−40 16/52 15% 2.75 × 10−04

Immune throm-
bocytopenic 
purpura

3002 9:5073770_G/T (JAK2: missense)
NC_000009.12:g.5073770G>T

Pathogenic (PS3/
PS4)

No 2.63 × 10−18 11/368 10% 2.90 × 10−04

Chronic 
myelomonocytic 
leukemia

98823 17:76736877_G/A (SRSF2: mis-
sense)
NC_000017.11:g.76736877G>A

Likely pathogenic 
(PS4/PM1)

No 1.19 × 10−13 4/32 27% 3.29 × 10−05

Essential throm-
bocythemia

3318 19:12943813_A/ATT​GTC​
(CALR: frameshift variant)
NC_000019.10:g.12943813_1294
3814insTTGTC​

Pathogenic (PVS1/
PS4)

No 2.82 × 10−13 5/218 50% 1.50 × 10−05

Beta-thalassemia 848 11:5226774_G/A (HBB: stop 
gained)
NC_000011.10:g.5226774G>A

Pathogenic (PVS1/
PS4)

Yes 3.46 × 10−12 3/12 33% 1.79 × 10−05

Congenital factor 
XI deficiency

329 4:186288589_T/G (F11: mis-
sense)
NC_000004.12:g.186288589T>G

Pathogenic (PS4/
PM1/PM2/PP2/
PP3)

No 3.41 × 10−11 3/18 12% 6.58 × 10−05

B-cell chronic 
lymphocytic 
leukemia

67038 3:38141150_T/C (MYD88: stop 
lost)
NC_000003.12:g.38141150T>C

Pathogenic (PS4/
PM2/PM4/PP3/
PP5)

Yes 2.42 × 10−10 4/490 57% 8.98 × 10−06

Acute panmyelo-
sis with myelofi-
brosis

86843 9:5073770_G/T (JAK2: missense)
NC_000009.12:g.5073770G>T

Pathogenic (PS3/
PS4)

No 7.81 × 10−10 3/8 3% 3.14 × 10−04

Immune throm-
bocytopenic 
purpura

3002 16:83907050_G/A (MLYCD: 
missense)
NC_000016.10:g.83907050G>A

Likely pathogenic 
(PS4/PM2)

No 7.60 × 10−08 4/368 8% 1.35 × 10−04

Osteochondritis 
dissecans

2764 17:10505866_C/T (MYH1: mis-
sense)
NC_000017.11:g.10505866C>T

Likely pathogenic 
(PS4/PM1)

No 1.01 × 10−07 3/56 3% 2.84 × 10−04

AA amyloidosis 85445 2:151727817_T/TGC​TGG​CTG​
TGC​CAGA​
(NEB: disruptive inframe inser-
tion)
NC_000002.12:g.151727823_151
727837dup

Likely pathogenic 
(PS4/PM4)

No 1.97 × 10−07 3/24 1% 7.56 × 10−04
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beta-thalassemia, and the gene is annotated in Orphanet 
for this disease. While CALR is annotated in Orphanet 
as involved in essential thrombocythemia, our variant is 
novel.

Discussion
Previous research has typically focused on specific rare 
conditions. Sun et  al. [42] used ICD-9 codes to identify 
membranous nephropathy patients in the Kaiser Perma-
nente health system, while Dickey et al. [43] used exome 
sequencing from the UKB to investigate whether eryth-
ropoietic protoporphyria may be under-diagnosed. The 
UKB [44] has also been analyzed more broadly, with rare 
variants in JAK2 and F11 associated to groups of myelo-
proliferative disease and congenital coagulation defects, 
respectively. Another study investigated extreme red 
blood cell indices in the UKB [45]. More recently, genetic 
association was performed for 33 rare diseases in data 
from 23andMe [46], and replication analysis confirmed 
significant associations for two diseases in the UKB.

Accurate disease identification is essential for expand-
ing population-level biobank research to rare diseases. 
Although Orphanet indicated ICD-10 codes for > 6000 
rare diseases, our consensus mapping approach revealed 
that only 566 of these were specific. ICD-10 codes are 
typically broader than their corresponding ORPHA 
codes and attempts to identify individuals using these 
codes would not be accurate for 92% of rare diseases. A 
previous study created a mapping from (the Australian 
modification of ) ICD-10 codes to ORPHA codes [1] to 
investigate demographics in a public health system; how-
ever, it includes fewer rare diseases than our own; of the 
14 significant variant-level associations (Table 2), only six 
involve a disease included in the Western Australia map-
ping. Other ontologies that have mappings for rare dis-
eases include the UMLS [47], MonDO [10], and OMIM 
[48], and it is also possible to identify rare diseases by 
phenotype similarity [49]. We evaluated MonDO in our 
project by selecting the MonDO codes highest up the 
hierarchy (most general) for each ICD-10 code, then 
mapping to the exact match ORPHA code, where avail-
able (aiming for the most specific ORPHA code that is no 
more specific than the ICD-10 code). Of the 4682 ICD-
10 codes mapped, 650 (14%) mapped to more than one 
ORPHA code, and some of the mappings did not meet 
our criteria. For example, A07.3 (isosporiasis) mapped to 
both ORPHA:472 (isosporiasis) and ORPHA:210 (cyclo-
sporosis), which are caused by different parasites. A07.8 
mapped to ORPHA:54368 (sarcocystosis), but its defini-
tion also includes other protozoal intestinal diseases. We 
therefore determined our consensus mapping approach 
was needed to identify specific rare diseases.

A single ICD-10 code can describe multiple diseases, 
so it is not always clear which disease an individual has, 
nor whether that disease is rare. Twenty-four of the dis-
eases indicated as rare in Orphanet had greater than 1 
in 2000 prevalence in the UKB; however, the UKB only 
recruited individuals aged 40–69, and this could lead to 
increased representation of rare diseases affecting that 
age range. To help ensure the diseases we identify are 
rare in Europe and the USA, we restricted our results to 
diseases reported by the NIH Genetic and Rare Diseases 
Information Center (GARD). Nevertheless, GARD leaves 
out some low prevalence diseases, such as cerebral sino-
venous thrombosis (CSVT), while polymyalgia rheumat-
ica is indicated as rare in both Orphanet and GARD but 
has a relatively high prevalence (~0.4%) in the UKB and 
Clinformatics®. Due to the challenges of diagnosing rare 
diseases, it is likely some individuals have a rare disease 
yet to be diagnosed.

Interestingly, many of the significant genetic asso-
ciations we identified were for hematological diseases. 
While the proportion of hematological diseases we iden-
tified is large (Additional file  2: Figure S1), it is not the 
most frequent category; more neurological diseases were 
identified, yet we only found a significant genetic associa-
tion for one of them (AA amyloidosis). Since the major-
ity of UKB samples used for DNA extraction were taken 
from blood, some of the genetic associations we identi-
fied may be from de novo rather than hereditary vari-
ants. Identification of de novo variants is limited by the 
number of related individuals with rare diseases in the 
UKB. Of 24,416 individuals with a rare disease, 852 are 
estimated to be related to another individual in the UKB 
through genetics. Restricting to individuals with WES 
data, there are 22 pairs of related individuals where one 
has a rare disease. Of these, one pair includes an indi-
vidual with Immune thrombocytopenic purpura and 
another includes an individual with B-cell chronic lym-
phocytic leukemia, however all individuals have the 
major allele for the associated variants.

Six of the significant (after Bonferroni correction) 
variant-level associations involve the JAK2 V617F vari-
ant, for rare diseases that can be broadly categorized as 
myeloproliferative disorders. Among the 484 individu-
als who have at least one of these rare diseases, 72 of 
them (15%) have more than one of the six diseases, and 
it is plausible the mechanisms driving these associa-
tions may overlap [50]. Individuals with this variant had 
a slightly higher median age at recruitment (63 vs 58, 
Mann-Whitney p  = 2.32 × 10−12), suggesting that the 
associated marker is a somatic mutation. Expanding our 
analysis to include variants with FDR< = 0.05 in genetic 
association (Additional file  1: Table  S8), we found 40 
significantly comorbid rare disease pairs that share 
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an associated variant (Additional file  2: Table  S10). 
In addition to the JAK2 V617F variant pairs, immune 
thrombocytopenia, essential thrombocythemia, and 
chronic myeloproliferative disease were connected by 
SELENON G315S, which is indicated as pathogenic by 
ClinVar and has been associated with congenital myo-
pathies among other diseases [51, 52].

Conclusions
We have shown how consensus mapping between ICD 
and ORPHA codes can reveal relevant demographics 
and genetic associations for a wide range of rare dis-
eases in different population-level datasets. By analyz-
ing exome sequencing data from 167,246 individuals of 
European ancestry in the UKB, we confirmed and iden-
tified pathogenic variants for rare diseases, and as sam-
ple sizes continue to increase, the power available can 
lead to important discoveries. We have provided our 
findings, along with the ICD-10/ORPHA mapping in an 
interactive website to facilitate investigation of specific 
rare diseases.

Disease coding systems are constantly evolving, and 
ICD-11 now includes over 5000 rare diseases [53, 54]. 
When ICD-11 is widely implemented across clinics, 
future research will extend and repeat our consensus 
mapping approach, so that it can continue to enable 
rare disease research in population-level datasets. Our 
approach can therefore increase the sample size for 
rare conditions, especially those currently under-rep-
resented. The diverse range of information provided 
by the UKB (including health records, genetics, drug 
prescriptions, lifestyle, family/medical history etc.) can 
improve understanding of the overall burden of rare 
diseases.
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