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Abstract 

Background and aims:  Treatment with tumor necrosis factor α (TNFα) antagonists in IBD patients suffers from 
primary non-response rates of up to 40%. Biomarkers for early prediction of therapy success are missing. We investi-
gated the dynamics of gene expression and DNA methylation in blood samples of IBD patients treated with the TNF 
antagonist infliximab and analyzed the predictive potential regarding therapy outcome.

Methods:  We performed a longitudinal, blood-based multi-omics study in two prospective IBD patient cohorts 
receiving first-time infliximab therapy (discovery: 14 patients, replication: 23 patients). Samples were collected at up to 
7 time points (from baseline to 14 weeks after therapy induction). RNA-sequencing and genome-wide DNA methyla-
tion data were analyzed and correlated with clinical remission at week 14 as a primary endpoint.

Results:  We found no consistent ex ante predictive signature across the two cohorts. Longitudinally upregulated 
transcripts in the non-remitter group comprised TH2- and eosinophil-related genes including ALOX15, FCER1A, and 
OLIG2. Network construction identified transcript modules that were coherently expressed at baseline and in non-
remitting patients but were disrupted at early time points in remitting patients. These modules reflected processes 
such as interferon signaling, erythropoiesis, and platelet aggregation. DNA methylation analysis identified remission-
specific temporal changes, which partially overlapped with transcriptomic signals. Machine learning approaches 
identified features from differentially expressed genes cis-linked to DNA methylation changes at week 2 as a robust 
predictor of therapy outcome at week 14, which was validated in a publicly available dataset of 20 infliximab-treated 
CD patients.
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Background
Blockade of the cytokine tumor necrosis factor (TNF) 
has evolved as a therapeutic concept that is a mainstay 
for IBD therapy more than 20 years after its first use 
in patients [1–4]. Primary non-response rates of TNF 
antagonists vary between 10 and 40% in real cohorts and 
up to 46% of the patients experience a secondary loss of 
response in the first 12 months [1, 5, 6]. Moreover, anti-
TNF therapy can have several adverse effects in patients, 
e.g., lupus-like symptoms or increased susceptibility to 
infections and cancer. Hence, there is an imperative need 
to find biomarkers that could predict therapy response 
before or at initial stages of the therapy to reduce unnec-
essary costs and complications. Several previous studies 
have defined molecular predictors of therapy response 
to TNF antagonists [7–18]. However, most of them have 
focused on investigating pre-selected sets of cellular or 
transcriptomic signatures at a single time point before 
the onset of therapy and thereby neglect the dynamic 
molecular changes that arise upon drug exposure.

We here hypothesized that dynamic changes of genomic 
network states associated with an adequate response to 
anti-TNF therapy cannot be reliably understood from a 
single sampling point. Analyzing early changes after the 
first drug administration rather than the ex ante molecular 
signatures could provide mechanistic insights into rewir-
ing of regulatory networks involved in response vs. non-
response and could potentially reveal robust predictors of 
the effectiveness. Longitudinal omics-driven analyses from 
peripheral blood have proven to be a powerful tool to study 
trajectories of immune-mediated diseases and can be used 
to infer markers, which predict clinical outcome [19–21].

We analyzed whole blood samples from IBD patients 
before and at up to 6 time points after therapy induction 
by RNA-sequencing and DNA methylation profiling. 
Using an integrative bioinformatic approach, we identify 
dynamic biomarker signatures that predict response to 
TNF antagonist early after therapy initiation. Signatures 
were replicated in a second independent cohort and 
selected markers were validated in an additional cohort.

Methods
Patient recruitment and study design
Two independent cohorts of IBD patients receiving anti-
TNF therapy (discovery and replication cohorts, n = 

14/23) as well as a cohort of IBD patients receiving ved-
olizumab as a therapy control  (n = 17) were recruited 
for longitudinal biomaterial collection and subsequent 
RNA and DNA methylome profiling. All patients had 
clinically active disease (as assessed by clinical indices, 
endoscopy, and lab parameters) before treatment and 
received infliximab, adalimumab, or vedolizumab induc-
tion therapy following standard medical criteria at the 
University Hospital. The study design had no influence 
on therapy decisions. Remission was assessed clinically 
at 14 weeks based on Harvey-Bradshaw Index (HBI; ≤ 
4) for CD and partial Mayo score (≤ 2) for UC patients, 
respectively. The study was approved by the ethics com-
mittee of the Christian-Albrechts-Universität zu Kiel (A 
124/14 and AZ 156/03-2/13) and subjects provided writ-
ten informed consent. Additionally, a publicly available 
dataset was used as an additional validation cohort [14].

Discovery cohort
The discovery cohort consists of 14 IBD patients (10 UC/4 
CD) undergoing first-time treatment with TNF antagonists 
that were investigated (Fig. 1A, B), 7 of which achieved clini-
cal remission at week 14 (50%). The patient characteristics 
are described in Table 1. Peripheral blood samples were col-
lected immediately before  treatment (baseline); 4, 24, and 72 
h; and 2, 6, and 14 weeks after the induction of therapy for 
RNA sequencing (PAXgene™), while EDTA-stabilized blood 
from baseline and 2 and 6 weeks after induction was used for 
genome-wide methylome profiling (Additional file 1: Table S1).

Replication cohort
A second independent replication cohort comprising 23 
subsequent IBD patients (9 UC/14 CD; Fig. 1C, Table 2) 
treated with a TNF antagonist (22 infliximab, 1 adali-
mumab) for their first time was used to replicate results 
from the discovery cohort. In this replication cohort, 
remission at week 14 was achieved in 11 patients (48%). 
Patient characteristics of this cohort are detailed in 
Table 2. Blood in PAXgene™ and in EDTA-stabilized con-
tainers was collected before (baseline) and 2 and 6 weeks 
after therapy induction and was used for RNA and meth-
ylome profiling (Additional file 1: Table S1).

Validation cohort
For validation of predictive biomarkers identified 
from the discovery and replication cohorts, published 

Conclusions:  Integrative multi-omics analysis reveals early shifts of gene expression and DNA methylation as predic-
tors for efficient response to anti-TNF treatment. Lack of such signatures might be used to identify patients with IBD 
unlikely to benefit from TNF antagonists at an early time point.
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microarray data from 20 CD patients with peripheral 
blood expression data from baseline and 2 weeks after 
infliximab therapy (validation cohort) [14] was employed.

Vedolizumab cohort
Peripheral blood samples from another cohort of 17 IBD 
patients (10 UC/7 CD) undergoing treatment with an 
anti-α4β7 integrin antibody (vedolizumab) were used for 
contrasting molecular signatures specific to treatment 

with TNF antagonists. This cohort was recruited in 
parallel with the discovery cohort with the same study 
design and characteristics have already been described in 
another study by Zeissig et al. [22]. In the previous study, 
however, only biopsy samples were analyzed, while we uti-
lized blood collected in PAXgene™ tubes at baseline; 4, 24, 
and 72 h; 2, 6, and 14 weeks for RNA profiling (Additional 
file 1: Table S1). Nine out of 17 IBD patients (53%) treated 
with vedolizumab achieved clinical remission at week 14.

Fig. 1  Study design and cohorts. A Schematic representation of the study design. B, C Total number of IBD patients recruited in the discovery (B) 
and replication (C) cohorts
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RNA sequencing and analysis
Blood (2.5 mL) was taken from each patient into a PAX-
gene™ Blood RNA Tube, containing a patented RNA 
stabilizer reagent composition. RNA was isolated in QIA-
GEN’s QIAcube using the PAXgene Blood miRNA Kit 

from QIAGEN PreAnalytiX. RNA-sequencing libraries 
were prepared according to the Illumina TruSeq® mes-
senger RNA (mRNA) sequencing protocol (TruSeq® 
RNA Seq Library Prep Kit v2) and sequenced on an Illu-
mina HiSeq 4000 (2 × 75 bp) [23].

Table 1  Clinical characteristics of the discovery cohort. Values represent median ± standard deviation

Discovery cohort All patients (n=14) Crohn’s disease (n=4) Ulcerative colitis (n=10) Range

Age (y) 38.6 ± 13.6 32.3 ± 14.6 38 ± 11.8 16–62

BMI 26.5 ± 6.8 27 ± 8.6 27 ± 7.1 19.7–38.9

Female sex, n (%) 7 (50%) 3 (75%) 4 (40%)

Time since diagnosis, y 14 ± 11 12 ± 6 16.1 ± 12 6–46

Smokers, n (%) 3 (21.4%) 1 (25%) 2 (20%)

Prednisolone >20mg/day, n (%) 2 (14.3%) 1 (25%) 1 (10%)

Budesonide, n (%) 1 (7.1%) 0 1 (10%)

Thiopurines, n (%) 3 (21.4%) 1 (25%) 2 (20%)

Mesalamine therapy, n (%) 12 (85.7%) 2 (50%) 9 (90%)

Clinical remission at week 14, n (%) 7 (50%) 3 (75%) 4 (40%)

Remitters (R)/non-remitters (NR) R NR R NR
C-reactive protein, baseline 15.1±16.3 12.0 9.3±9.2 17.1±7.7

C-reactive protein, week 2 4.1±3.5 3.6 2.6±3.1 13.8±12.2

C-reactive protein, week 6 5.4±3.5 5.4 7.2±13.0 6.4±7.8

C-reactive protein, week 14 8.6±3.7 4.8 3.0±8.0 8.3±12.6

HBI/pMAYO score, baseline 7±1 12 5.5±2.4 6±1.1

HBI/pMAYO score, week 2 6±0.6 12 3±2.4 5±1.8

HBI/pMAYO score, week 6 3±2.1 12 2.5±1.1 6±2.2

HBI/pMAYO score, week 14 1±2.1 12 0.75±0.9 6±1.2

Table 2  Clinical characteristics of the replication cohort. Values represent median ± standard deviation

Replication cohort All patients (n=23) Crohn’s disease (n=14) Ulcerative colitis (n=9) Range

Age (y) 37.1 ± 11.9 35.0 ± 12.1 40.8 ± 11.5 18–54

BMI 23.9 ± 4.2 23.9 ± 4.3 24.0 ± 4.4 18.7–32.1

Female sex, n (%) 11 (47.8%) 6 (42.8%) 5 (55.6%)

Time since diagnosis, y 5.0 ± 7 5.8 ± 9 3.8 ± 5 0–28

Smokers, n (%) 7 (30.4%) 7 (50%) 0

Prednisolone >20mg/day, n (%) 6 (26.1%) 4 (28.6%) 2 (22.2%)

Budesonide, n (%) 5 (21.7%) 4 (28.6%) 1 (11.1%)

Thiopurines, n (%) 6 (26.1%) 3 (21.4%) 3 (33.3%)

Mesalamine therapy, n (%) 9 (39.1%) 4 (28.6%) 5 (55.6%)

Clinical remission at week 14, n (%) 8 (57.1%) 3 (33.3%)

Remitters (R)/non-remitters (NR) R NR R NR
C-reactive protein, baseline 5.1±8.25 7.7±19.7 2.4±1.3 8.7±4.5

C-reactive protein, week 2 1.1±2.1 3.3±4.7 1±0.1 3.3±4.7

C-reactive protein, week 6 2.7±3.7 4.2±3.8 2.2±1.9 3.6±4.4

C-reactive protein, week 14 3±4.2 5±3.7 15.5±20.6 4.8±11.9

HBI/pMAYO score, baseline 9±4.1 7.5±2.6 5±0 6±1.6

HBI/pMAYO score, week 2 5±3.0 5.5±0.8 4.5±0.7 5±2.3

HBI/pMAYO score, week 6 2±2.4 6±1.4 2±1.4 5±1.1

HBI/pMAYO score, week 14 0.5±1.5 5±0.9 2±0 6±0.5



Page 5 of 20Mishra et al. Genome Medicine          (2022) 14:110 	

An in-house RNA-seq pipeline was used to map and 
align the sequenced data [24]. Adapters and low-qual-
ity bases from the RNA-seq reads were removed using 
Trim Galore (version 0.4.4) [25] and reads shorter than 
35 bp after trimming were discarded. The filtered reads 
were mapped to the human genome (GRCh38, gencode 
version 25) using a STAR aligner (version 2.5.2b) [26]. 
Expression counts were estimated using featureCounts 
(version 1.5.2) [27] and normalized across samples using 
the DESeq normalization method [28].

Differentially expressed genes  (DEGs) were identified 
using two different approaches: pairwise and longitudi-
nal. Both approaches were applied to the transcriptomic 
data for remission and non-remission patients separately. 
In the pairwise analysis, gene expression at each time 
point after therapy was compared against that at baseline 
using the bioconductor package DESeq2 (version 1.20.0) 
[28]. Longitudinal analysis was performed by apply-
ing the case-only analysis from the bioconductor pack-
age ImpulseDE2 (version 1.4.0) [29]. Genes with FDR 
adjusted p-value of 0.05 in both analyses were regarded 
as differentially expressed.

Gene co‑expression analysis
Modules of co-expressed genes were identified for the 
samples at baseline using the WGCNA package for R 
[30]. Genes that were differentially expressed only in 
remission patients were used to generate the gene co-
expression modules. First, pairwise gene correlations 
were calculated based on the log-transformed normal-
ized expression counts across all samples. A signed 
adjacency matrix was constructed by applying a soft 
threshold function with a power of 16, which was the 
minimum power for which the scale-free fit was greater 
than 0.9. The adjacency matrix was used to construct a 
gene tree by hierarchal clustering. Genes were then split 
into modules based on the gene tree by using the func-
tion cuttreeDynamic with the minimum module size 
set to 15. Modules that were closely related were then 
merged using the function mergeCloseModules with 
parameter cutHeight set to 0.2. The preservation of the 
modules identified at baseline was tested at weeks 2 and 
6 using WGCNA in remission and non-remission sam-
ples and quantified using the Zsummary score [31, 32]. To 
associate gene co-expression modules with the clini-
cal parameters and to visualize the expression profile of 
the genes in a module, module eigengene values for the 
samples were calculated. Spearman’s rank correlation 
coefficients were calculated between module eigengenes 
and clinical parameters, such as HBI score, partial Mayo 
score, C-reactive protein (CRP), fecal calprotectin, leuko-
cytes, interleukin-6 (IL-6), and disease status at week 14.

DNA methylation profiling and analysis
Infinium MethylationEPIC BeadChip (Illumina) was 
used to measure DNAm levels from EDTA blood sam-
ples according to the manufacturer’s protocol [33]. DNA 
methylation data was analyzed using the Bioconductor 
package RnBeads (version 1.12.1) [34]. Sites that over-
lapped with SNPs and had unreliable measurements 
were filtered resulting in the removal of 17,371 sites and 
20,876 probes. A total of 2976 context-specific probes, 
18,837 probes on the sex chromosomes, and 10 probes 
with missing values were also removed. In total, 42,699 
out of 866,895 probes were filtered. The signal intensity 
values were normalized using the dasen method. Dif-
ferentially methylated positions (DMPs) and regions 
(DMRs) between baseline and week 2 and baseline and 
week 6 samples from the remitting and non-remitting 
patients were identified using the automatically selected 
rank cutoff of RnBeads. The chi-square test was used to 
calculate the statistical significance of the over- or under-
representation of DMPs in known gene, promoter, and 
enhancer regions.

DNA methylation‑transcriptome integrated analysis
For the integrated analysis of gene expression with 
DNA methylation, DMPs located 5000 bp upstream 
and downstream of the transcription start sites of 
DEGs were identified and Spearman’s rank correlation 
coefficient between normalized expression of each 
DEG and methylation intensity of its corresponding 
DMPs were calculated as described [21]. To test the 
statistical significance of the correlations, a false dis-
covery rate (FDR) using a permutation approach was 
calculated.

Functional enrichment analysis
All gene ontology enrichment analyses were conducted 
using the Bioconductor package topGO (version 2.32.0) 
[35]. In the topGO analysis, the Fisher.elim p-value, cal-
culated using the weight algorithm of 0.05 was used as 
significance threshold. Transcription factor binding sites 
(TFBS) enriched in DMPs and DMRs were identified by 
conducting enrichment analysis using the Bioconductor 
package LOLA (version 1.14.0) [36].

Feature selection and machine learning
Feature selection was performed using a random forest 
approach implemented in the ranger package (version 
0.12.1) of R [37]. Prediction models were built using the 
caret package of R based on the random forest approach 
[38]. The data from discovery and replication cohorts 
were used as input and AUC and ROC curves under 
10-fold cross-validation were used to access the accuracy 
of the models.
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Results
Cohorts
To delineate the molecular signatures of therapy response 
to TNF antagonists, we performed a longitudinal analy-
sis of the blood transcriptome and epigenome of two 
individual clinical cohorts of IBD patients in a case-only 
design (Fig. 1A). For the discovery cohort (Fig. 1B), whole 
blood samples were collected from 14 IBD patients (10 
UC/4 CD) (Table  1). Seventeen IBD patients (10 UC/7 
CD), who received first-time therapy with vedolizumab 
[22, 23], a monoclonal antibody directed against α4β7 
integrin, were used as treatment controls. For the discov-
ery cohort, we employed RNA-sequencing on samples 
collected at all time points (baseline; 4, 24, and 72 h; 2, 6, 
and 14 weeks after the first infusion) [23]. Genome-wide 
DNA methylation profiling was done on baseline, week 
2, and week 6 samples [33]. Therapy outcome (primary 
endpoint) was defined based on the achievement of clini-
cal remission at week 14, as assessed by clinical disease 
activity markers (Harvey-Bradshaw Index ≤ 4 for CD; 
partial Mayo score ≤ 2 for UC). Of the 14 IBD patients 
treated with infliximab, 7 achieved clinical remission at 
week 14 (50%) and 9 out of 17 IBD patients (53%) treated 
with vedolizumab achieved clinical remission at week 
14. Results from the discovery cohort were replicated in 
a second independent replication cohort comprising 23 
subsequent IBD patients (9 UC/14 CD; Fig. 1C, Table 2) 
treated with a TNF antagonist (22 infliximab, 1 adali-
mumab) [23]. Here, samples were taken at baseline, week 
2, and week 6. In this cohort, remission at week 14 was 
achieved in 11 patients (48%).

Dynamics of transcriptomic changes upon TNF antagonist 
exposure
To investigate the dynamics of transcriptional responses 
of IBD patients after therapeutic exposure to a TNF 
antagonist, we analyzed longitudinal whole blood tran-
scriptomic data before (baseline) and at up to 6 time 
points after the introduction of infliximab therapy 
in the discovery cohort (Fig.  1A). We first compared 
the transcriptional signatures between remitters and 

non-remitters at baseline to identify any prior signature 
of therapy response. Through principal component anal-
ysis (PCA), we observed a suggestive ex ante separation 
between patients achieving remission and non-remission 
at week 14 along the PC2 axis (Spearman’s rho = 0.58, 
p-value = 0.04; Additional file 2: Fig. S1A). However, after 
taking the diagnosis into account, we observed that sep-
aration on PC2 mainly reflected the difference between 
CD and UC patients (partial correlation coefficient with 
diagnosis = 0.65, p-value = 0.02, partial correlation coef-
ficient with disease status at week 14 = 0.46, p-value = 
0.1; Additional file  2: Fig. S1A). The first two principal 
components did not associate with age, gender, or con-
comitant medication usage (Additional file  2: Fig. S1B, 
C). Differential expression analysis, after taking diagno-
sis as a covariate, further identified 387 genes that were 
nominally differentially expressed between remitters and 
non-remitters at baseline (Additional file 2: Fig. S1D). We 
next performed pairwise differential expression analy-
ses between baseline and each of the time points after 
therapy initiation in the discovery cohort in remitters and 
non-remitters separately (Fig.  2A). Overall, treatment 
with infliximab led to profound alterations in the blood 
transcriptome within the first 24 h after drug exposure 
with transcript levels of most differentially expressed 
genes (DEGs) being downregulated (Fig.  2B, D, Addi-
tional file 1: Table S2, S3). Furthermore, we observed that 
patients who attained remission showed overall higher 
numbers of DEGs, pointing towards molecular response 
trajectories starting as early as 4 h after therapy exposure 
(Fig.  2B). The inter-individual heterogeneity, quantified 
by the variance in gene expression, was also significantly 
higher in non-remitters compared to remitters at all time 
points except week 14 (data not shown). ImpulseDE2 was 
employed to construct a continuous temporal model of 
gene expression [29] over time. We identified 3043 DEGs 
with significant impulse-like progression patterns across 
time points in remitting patients, whereas only 389 
DEGs were identified in non-remitting patients (Fig. 2B). 
Pairwise and longitudinal analyses were combined in 
remission and non-remission patients (Additional file 1: 

(See figure on next page.)
Fig. 2  Dynamic changes in transcription in response to therapy induction and remission. A Schematic workflow. B Number of upregulated 
(dark) and downregulated (light) genes in remission (green) and non-remission (blue) patients at each time point after therapy induction 
obtained from the pairwise analysis and number of transiently differentially expressed genes obtained from the longitudinal analysis of the 
discovery cohort. Negative numbers are used to show the number of downregulated genes. C Venn diagram showing the number of DEGs in 
remission and non-remission patients from pairwise and longitudinal analysis combined. D Heatmap of top DEGs in remission patients from 
pairwise and longitudinal analysis, showing scaled mean expression counts at each time point in remission and non-remission samples. Selected 
immune-relevant transcripts are labeled by gene name. E Bar plot showing the number of genes in each co-expression module along with a 
correlation heatmap showing Spearman’s rank correlation coefficients between gene co-expression modules (columns) and clinical parameters 
(rows). *p-value < 0.05, **p-value < 0.01, and ***p-value < 0.001 in Spearman’s correlation. Color intensity corresponds to the correlation coefficient. 
F Heatmap showing Zsummary scores of baseline co-expression modules in remission and non-remission samples at weeks 2 and 6. G GO terms 
enriched in differentially preserved co-expression modules between remission and non-remission. Dot size is proportional to the gene ratio and 
color corresponds to the p-value of enrichment
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Fig. 2  (See legend on previous page.)
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Table S2, S3). A total of 1600 genes were shared between 
the groups (Fig. 2C).

Gene ontology enrichment analysis on DEGs at each 
time point identified complex inflammatory processes 
from downregulated gene sets from week 2 onwards in 
both remitters and non-remitters. “Positive regulation of 
NF-kB transcription factor activity” and “toll-like recep-
tor signaling pathway” were among the uniquely enriched 
terms in downregulated genes at week 2, 6, or 14 in 
patients achieving remission at week 14 (Additional file 2: 
Fig. S2A). Terms such as “positive regulation of leukocyte 
degranulation” and “integrin-mediated signaling path-
way” were uniquely enriched in downregulated genes in 
non-remission patients from 2 to 14 weeks after therapy 
induction (Additional file  2: Fig. S2B). Interestingly, the 
small set of upregulated transcripts in the non-remitter 
group comprised TH2- and eosinophil-related genes 
including ALOX15, FCER1A, and OLIG2 (Additional 
file 1: Table S3). These observations indicated that modu-
lation of immune network states by antagonizing TNF in 
blood is complex and that even in patients who did not 
achieve remission at week 14, several pro-inflammatory 
processes are dampened in this compartment. Since clas-
sical rank-based gene expression analysis did not clearly 
distinguish between the therapy outcomes, we applied 
higher-order gene expression regulation analysis to find 
distinct features associated with therapy response.

Dysregulation of co‑expression networks 
during the induction of remission
To further annotate and condense functional groups of 
genes, which are linked to effective anti-TNF therapy, 
we next analyzed gene co-expression networks using 
weighted gene co-expression network analysis (WGCNA) 
[30]. Co-expression analysis follows the assumption that 
clusters of genes with similar expression patterns (so-
called modules) are likely to share regulatory inputs and 
biological function or are derived from a specific cell 
type in complex tissue samples [21]. We hypothesized 
that co-expression patterns of differentially expressed 
genes could change over the course of a targeted ther-
apy, which — although not completely unbiased — may 
allow a focused view on pathways that are disrupted dur-
ing the induction of remission. We therefore constructed 
focused co-expression networks (as described in [39, 40]) 
using all DEGs separating remitters from non-remitters 
(pairwise and longitudinal combined; 3889 genes), which 
were identified in the previous analysis step. We started 
from baseline samples and compared the preservation of 
modules at week 2 and week 6 between patient groups, 
stratified according to the respective therapeutic out-
come (Fig. 2A). These time points were chosen because 
they reflect the intermediate state between active disease 

at baseline and primary endpoint at which the therapy 
outcome was defined. This approach resulted in a total 
of 24 co-expression modules (Fig. 2E, M1–M24). We cal-
culated the respective eigengene values, which represent 
a single expression profile for all genes within a module 
and correlated these values to respective clinical param-
eters (Fig. 2E) as well as to computationally inferred cell 
type proportions (Additional file 2: Fig. S2C) [41].

We next analyzed the preservation of modules at week 
2 and week 6, stratified according to the respective ther-
apeutic outcome at week 14 (Fig. 2A). We applied Zsum-

mary statistics as a measure of module preservation [32]. 
M6, M7, M8, M14, and M16 modules were moderately 
preserved in non-remission (2 < Zsummary < 10) while 
not preserved in remission (Zsummary < 2) at one or both 
time points (Fig. 2F, G, Additional file 2: Fig. S2D). Mod-
ules M12 and M19, on the other hand, were highly pre-
served in non-remission (Zsummary > 10) and significantly 
less preserved in remission (2 < Zsummary < 10) (Fig.  2F, 
Additional File 2: Fig. S2D). Genes in the differentially 
preserved modules were involved in diverse biologi-
cal processes, e.g., type I interferon signaling pathway, 
MDA-5 signaling pathway and interleukin-1 beta secre-
tion in module M7 and platelet aggregation, erythrocyte 
development, and ROS signaling in M12 (Fig. 2G). Alto-
gether, using co-expression analysis, we identified salient 
transcriptional modules that change during the therapy, 
specifically in patients that achieve remission at week 14.

Unique molecular signatures induced by TNF inhibition
To identify the unique molecular signatures induced by 
treatment with infliximab, we compared the differen-
tially expressed genes at each time point in IBD patients 
treated with infliximab to that in IBD patients treated 
with vedolizumab who attained remission after 14 weeks 
of respective therapy initiation. We found that the tran-
scriptional dysregulation observed within the first 24 
h in infliximab-treated patients was not shared in ved-
olizumab-treated patients (Fig.  3A). We observed three 
large groups of overlapping genes between the two treat-
ments: (1) downregulated genes at early time points (4h, 
24h) in infliximab-treated patients that were upregulated 
at later time points (weeks 2 and 6) in vedolizumab-
treated patients, (2) upregulated genes at early time 
points (4h, 24h) in infliximab-treated patients that were 
downregulated at later time points (weeks 2, 6, and 14) 
in vedolizumab-treated patients, and (3) shared down-
regulated genes in both treatments at later time points 
(Fig.  3A). The first two groups that showed contrasting 
expression patterns between the two treatments could 
describe the unique mechanism of action of infliximab 
while the third group could represent the overall sig-
nature of healing and decline in inflammation. Group 1 



Page 9 of 20Mishra et al. Genome Medicine          (2022) 14:110 	

genes were enriched in processes related to transcription 
and splicing as well as V(D) J recombination and mainly 
consisted of genes that were highly expressed at base-
line in infliximab-treated patients (Fig.  3B, C). Group 2 
genes were related to complement activation, leukocyte 
migration, and endocytosis and showed a strong upreg-
ulation at 24h specifically in patients remitting after 14 
weeks of infliximab treatment (Fig. 3B, C). The last group 
(group 3) had a similar expression pattern at later time 
points between the two treatments and consisted of 
genes related to neutrophil degranulation and humoral 
response (Fig.  3B, C). Taken together, we identified a 
transcript signature that was regulated in a contrasting 
manner between treatments that target TNF and α4β7 
integrin as well as genes that indicate a systemic reduc-
tion in inflammation that were shared between the two 
treatments.

Dynamic changes in genome‑wide methylation
DNA methylation (DNAm) is an important epigenetic 
mechanism for long-term regulation of gene expression, 
which has been shown to be involved in the etiopatho-
genesis of IBD [42–44]. We thus analyzed DNAm signa-
tures by bead arrays covering > 850,000 CpG sites across 
the entire genome before and 2 and 6 weeks after the 
administration of infliximab therapy (Fig.  4A). We used 
a pairwise approach to interrogate differentially meth-
ylated sites and regions between baseline and week 2 
samples and baseline and week 6 samples [34]. We iden-
tified a total of 85,728 and 58,347 differentially methyl-
ated positions (DMPs) in remitters and non-remitters, 
respectively (Fig. 4B, C, Additional file 2: Fig. S3B, S3C). 
In the samples of patients achieving remission at week 
14, a preponderance of hypermethylated DMPs was 
observed, constituting around 70% (30,132) at 2 weeks 
and 60% (43,478) of the DMPs at 6 weeks (Fig. 4B). Cel-
lular deconvolution analysis [34] identified that major 
parts of the observed DNAm signatures originated from 
granulocytes, B cells, CD4+ T cells, and monocytes, simi-
lar to the transcriptional signatures (Additional file 2: Fig. 
S3A). The inferred granulocyte proportions in blood sig-
nificantly decreased across time points only in remitting 
patients (linear mixed model ANOVA p-value = 0.043).

In total, 357 differentially methylated regions (DMRs) 
such as promoters, genes, CpG island, and enhancers 

were observed in remitters and 1163 DMRs in non-
remitters (Additional file 2: Fig. S3D, S3E). The majority 
of the DMRs belonged to enhancer regions (348 in remis-
sion and 1147 in non-remission), consistent with the dis-
tribution of the DMPs (Additional file  2: Fig. S3B, S3D, 
S3E). These DMRs overlapped with binding sites for sev-
eral transcription factors including IRF4, BATF, MEF2C, 
and MEF2A for hypermethylated regions and CEBPD 
and STAT3 for hypomethylated regions (Additional file 2: 
Fig. S3F, S3G). Interestingly, most DMPs and DMRs in 
non-remitting patients were transiently observed only at 
week 2, while many DMPs were stably regulated at week 
2 and at week 6 in remitting patients (Additional file  2: 
Fig. S3C).

Analysis of DNAm‑linked transcriptomic changes
To link DNA methylation changes to gene expression in 
cis, we performed an integrative analysis using a hier-
archical approach [21], which identified DMPs located 
within 5kb upstream or downstream of the transcription 
start site of each DEG. We then calculated the correlation 
between gene expression of each DEG and methylation 
intensity of the corresponding DMPs (Fig.  4A). Out of 
a total of 85,728 remission-associated DMPs (DMPs at 
week 2 and week 6 combined), 5459 were in a 5-kb vicin-
ity of at least one DEG. In total, 1253 DMP-DEG pairs 
(representing 763 genes) were significantly correlated. 
65.9% of cases followed a canonical negative correlation 
(i.e., high methylation-low expression) (Additional file 2: 
Fig. S4A, Additional file  1: Table  S4). DMPs that corre-
lated with the DEGs showed a persistent hypo- or hyper-
methylation after therapy initiation in patients achieving 
remission at week 14 and overlapped with binding sites 
for transcription factors BATF, NF-κB, JunD, STAT3, and 
CEBPB among others (Fig.  4D, E, Additional file  2: Fig. 
S4C). This pattern was, however, completely absent in 
non-remitting patients, supporting our hypothesis of lack 
of long-term epigenetic changes in patients failing anti-
TNF therapy (Fig. 4D, Additional file 2: Fig. S4D). We also 
investigated the representation of DEG-DMP pairs in the 
previously defined co-expression modules. DNAm-linked 
expression changes were significantly overrepresented 
in modules M3, M4, M15, and M24 (Fig. 4F, Additional 
file 2: Fig. S4B). These modules were correlated with the 
inferred proportions of neutrophils, T cells, and NK cells 

Fig. 3  Comparison of transcriptomic changes between infliximab and vedolizumab patients. A Cross-tabulation of genes differentially expressed 
in patients treated with infliximab (rows) and vedolizumab (columns) that achieved remission after 14 weeks of the respective therapy induction. 
The three groups of overlapping genes are highlighted in orange (group 1), green (group 2), and blue (group 3). B GO terms enriched in genes 
belonging to the three overlap groups. Dot size is proportional to the gene ratio and color corresponds to the p-value of enrichment. The top five 
GO terms in each group are visualized. C Heatmap showing average scaled mean expression counts at each time point of selected genes in the 
three overlap groups

(See figure on next page.)
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Fig. 3  (See legend on previous page.)
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in whole blood (Additional file  2: Fig. S2C). As none of 
these modules was found to be disrupted by anti-TNF in 
the prior preservation analysis, this pointed to a rather 
stable association of identified DMPs and DEGs, possibly 
reflecting cell types or general inflammatory principles, 
such as neutrophil proportions (Fig. 4G, Additional file 2: 
Fig. S2C). Taken together, we were able to identify poten-
tially epigenetically controlled transcriptional changes 
related to therapy response and induction of remission by 
integrating DNA methylation data with transcriptomic 
data. Although we cannot exclude that differences in cel-
lular composition contribute to the above-mentioned 
observations, several immune-related features indicate a 
potential long-term alteration of cellular states through 
this epigenetic process.

Replication of molecular signatures in an independent 
clinical cohort
We conducted a formal replication using the same pro-
filing methods (RNA-sequencing and DNAm bead array) 
in an independent prospective cohort of 23 IBD patients 
starting anti-TNF treatment (Table  2). To rule out any 
systematic difference between discovery and replica-
tion cohorts, we contrasted the baseline transcriptome 
signatures from both cohorts with transcriptome signa-
ture from (i) 20 healthy individuals and (ii) 15 inactive 
IBD patients (4 UC/11 CD). While principal component 
analysis (PCA) showed a separation between healthy 
controls and IBD patients (Additional file  2: Fig. S5A), 
we did not observe a significant separation between 
the discovery and replication cohorts confirming the 
absence of potential larger batch effects between the two 
cohorts (Additional file 2: Fig. S5A). A large proportion 
of disease-related DEGs (IBD vs. healthy) was shared 
between the two IBD cohorts (Additional file  2: Fig. 
S5B). The transcriptomic variation in the baseline sam-
ples of the replication cohort, represented by the first 
two principal components, was not associated with dis-
ease subtype, disease status at week 14, age, gender, or 
medication usage (Additional file 2: Fig. S5C, S5D, S5E). 
Despite the similar characteristics and inclusion criteria 
of the two cohorts (Tables  1 and 2), we observed little 
overlap between DEGs or DMPs at baseline  (remitters 

vs. non-remitters) pointing to high heterogeneity of 
responders before treatment initiation (Additional file 2: 
Fig. S5C, S6A).

Next, we aimed to confirm the longitudinal transcrip-
tional and methylation changes observed in the discov-
ery cohort using the replication cohort. We observed 
that DEGs obtained at week 2 and week 6 in the discov-
ery cohort were similarly regulated in the replication 
cohort, indicated by a strong correlation between log 
fold changes with respect to baseline in the two cohorts 
(Spearman’s rho = 0.78 for remission DEGs, 0.85 for 
remission-only DEGs, 0.54 for non-remission DEGs and 
0.42 for non-remission only DEGs) (Fig.  5A, B, Addi-
tional file  2: Fig. S6B, S6C, Additional file  1: Table  S5, 
S6). We repeated the module preservation analysis in 
the replication cohort and could replicate that modules 
M7 and M12 were significantly less preserved in remis-
sion compared to non-remission at week 6 in this data-
set (Fig.  5D, E, Additional file  2: Fig. S6D). To exactly 
identify the genes that are responsible for loss of mod-
ule connectivity upon therapy induction, we compared 
the eigengene-based connectivity measure kME or the 
module membership score, which measures the correla-
tion between the expression of a gene to the consensus 
expression of the module [30]. In both discovery and 
replication cohorts, M7 genes such as RSAD2, RIPK2, 
HERC5, IFI44, CMPK2 SAMD4A, MSLN, XAF1, DDX60, 
RTP4, and PARP12 showed the strongest reduction in 
kME in remitting patients (Additional file  2: Fig. S6E). 
In the M12 module, genes with a loss in connectivity 
in remitters compared to baseline and non-remitters 
included SLC4A1, ANK1, BLVRB, TAL1, IFIT1B, ACKR1, 
FAM210B, TSPAN5, E2F5, and GATA1 among oth-
ers in the discovery as well as replication cohort (Addi-
tional file 2: Fig. S6F). We also confirmed the correlation 
between the expression of the DEGs and their nearby 
methylated sites in the replication cohort. A total of 518 
out of the 763 genes were also DNAm-linked in the repli-
cation cohort with the direction of correlation preserved 
in 322 genes (Fig. 5C, Additional file 1: Table S4).

Overall, most of the observed early longitudinal molec-
ular signatures upon anti-TNF induction therapy were 
reproducibly associated with clinical outcome (endpoint: 

(See figure on next page.)
Fig. 4  DNA methylation analysis and integration of omics layers. A Schematic workflow. B Number of hypermethylated (dark) and hypomethylated 
(light) positions in remission (green) and non-remission (blue) patients at each time point after therapy induction obtained from the pairwise 
analysis of the discovery cohort. Negative numbers are used to show the number of hypomethylated positions. C Venn diagram showing the 
number of DMPs in remission and non-remission patients. D Heatmap of DMPs, which are correlated with DEGs, showing scaled mean methylation 
intensities at each time point in remission and non-remission samples. E Heatmap showing significant enrichment, quantified by odds ratio, 
of transcription factor binding sites (TFBS) in DMPs that are correlated with DEGs. Selected top TFs are visualized. F Over-representation and 
under-representation of DNAm-linked DEGs in co-expression modules. The over-/under-representation is quantified as the ratio of the observed 
and expected number of correlated genes present in each module under the chi-square distribution. G GO terms enriched in DNAm-linked 
co-expression modules. Dot size is proportional to the gene ratio and color corresponds to the p-value of enrichment
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Fig. 4  (See legend on previous page.)
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remission at week 14) in a second cohort of IBD patients, 
whereas the lack of replication of baseline difference 
points to a high heterogeneity of prior immune network 
states, at least in peripheral blood.

Comparison of IBD subtypes
Due to the small sample size of the discovery 
cohort, we did not perform data analysis for the IBD 

subphenotypes separately in each cohort. However, by 
combining discovery and replication cohorts, we could 
attain enough statistical power to analyze CD and UC 
samples separately. Since, the replication cohort was 
sampled only at baseline, week 2, and week 6, we per-
formed the pooled analysis at only these time points. 
At baseline, the differential expression analysis between 
remitters and non-remitters identified no significant 

Fig. 5  Replication of molecular signatures. A, B Comparison of log fold change of DEGs in remission (A) and non-remission (B) patients at weeks 2 
(light blue) and 6 (dark blue) between discovery and replication cohorts. C Comparison of DEG-DMP correlation between discovery and replication 
cohorts. Gray dots represent a significant correlation in the discovery cohort while black dots significant correlation in both cohorts. D Heatmap 
showing Zsummary scores of baseline co-expression modules from the discovery cohort in remission (green) and non-remission (blue) samples at 
weeks 2 and 6 of the replication cohort. E Comparison of Zsummary scores of differentially preserved modules in discovery cohort between remission 
and non-remission samples at weeks 2 (circle) and 6 (triangle) in the discovery (orange) and replication (green) cohorts
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differentially expressed genes in CD patients, while 1 
DEG (IGHV1) was observed in the UC patients.

In the longitudinal pairwise analysis, we observed a 
higher number of DEGs in CD patients compared to the 
UC patients (Additional file 2: Fig. S7A). Comparing these 
results with the DEGs obtained from the analysis of IBD 
samples of the discovery cohort, we observed that almost 
all DEGs identified in UC patients who attained remis-
sion after 14 weeks were already contained in the IBD 
analysis whereas the pooled analysis resulted in the iden-
tification of many DEGs that were unique to CD (Addi-
tional file 2: Fig. S7B). To identify the molecular pathways 
involved in therapy response that differ between CD and 
UC patients, we performed gene ontology enrichment 
analysis on the DEGs unique to CD and the DEGs that 
were shared between CD and UC. While downregulated 
genes were enriched in biological processes related to 
general inflammatory signaling in both diseases, analysis 
of upregulated genes showed that T cell-specific terms 
(e.g., regulation of T cell differentiation: GATA3, LAG3, 
and TCF7) were increased only in CD patients (Addi-
tional file  2: Fig. S7C, S7D). TH2/eosinophil signature 
genes (ALOX15, FECR1A, and OLIG2), identified in the 
non-remitter group in the IBD analysis, were upregulated 
in both CD and UC individually as well. Overall, disease-
specific analysis recapitulated the patterns observed in 
IBD analysis, but also revealed certain processes unique 
to CD.

Prediction of remission using early molecular changes
Next, we tested the ability of each layer of molecular 
information at early time points (baseline vs. week 2) to 
formally predict therapy response at week 14. For this 
analysis, we combined the data from discovery and rep-
lication cohorts to increase the power of the initial analy-
sis and then validated the results in a publicly available 
data set [14]. To compare the predictive potential of dif-
ferent individual and combined omics data layers, we 
performed feature selection and built prediction models 
on molecular sets derived from transcriptomic analysis 
(DEGs and differentially preserved modules), methyla-
tion analysis (DMPs), and integration analysis (DNAm-
DEGs and DNAm-linked modules) (Fig.  6A) using a 
random forest model with 10-fold cross-validation. 
This approach showed that models performed better 
when features from baseline and week 2 were combined 
(Fig. 6B, D). Prediction models built on CD and UC sam-
ples separately performed better than the ones using the 
combined set of IBD samples (Fig. 6C, E, F). As a control, 
we also constructed prediction models based on the clin-
ical data of the patients which included CRP, IL-6, serum 
levels of tryptophan [45], and disease activity scores at 
baseline and week 2 and compared them to the models 

from the molecular datasets. Age and gender were not 
included here since these are stable parameters and there 
was no significant association observed between these 
factors and the therapy outcome (CD: age Wilcoxon test 
p-value = 0.26, gender chi-square test p-value = 0.26, 
UC: age Wilcoxon test p-value = 0.07, gender chi-square 
test p-value = 0.26). Prediction from models using the 
clinical data performed worse than the ones built on 
the molecular datasets (Fig. 6E, F). The model using the 
selected features from the integration of DNA methyla-
tion and gene expression (DNAm-DEGs) was the best 
performing model for CD with 31 features (AUC=1) 
(Fig.  6E). In contrast, the models based on molecu-
lar signatures from individual omics layers (DEGs: 
AUC=0.97, #features=259, and DMPs: AUC=0.98, #fea-
tures=65) outperformed the one based on DNAm-DEGs 
(AUC=0.9, #features=14) for UC samples (Fig. 6F).

As overfitting is an inherent challenge of machine 
learning using a single cohort approach even when using 
cross-validation, we next tested the prediction model 
built on the most discriminating set of features (DNAm-
DEGs) from CD in an independent set of patients from 
a publicly available therapy response cohort of 20 CD 
patients with peripheral blood gene expression data 
(external validation cohort, see the “Methods” section) 
[14]. Our model was able to predict therapy outcome in 
the external validation cohort with an accuracy of 85% 
(Table  3) and a formal prediction model built using the 
DNAm-DEGs in this cohort obtained an area under the 
ROC curve of 0.88 (Fig.  6G). In addition, we observed 
significant correlations in the regulation of DNAm-DEGs 
across time points and therapy responses between the 
two cohorts (Spearman’s rho = 0.52) (Fig. 6H).

Discussion
Here, we performed a longitudinal multi-omics study 
on blood samples collected from 14 IBD patients 
receiving infliximab therapy (discovery cohort) at 7 
time points (from baseline to 14 weeks after therapy 
induction) to identify dynamic molecular signatures 
associated with clinical remission or non-remission to 
anti-TNF therapy at week 14. It is clear from IBD and 
other inflammatory diseases that high-resolution omics 
technologies in blood can unravel important insights 
into disease trajectories and identify meaningful bio-
markers [14, 18, 46–49]. Although it may not fully 
reflect the local mechanism of action of anti-TNF treat-
ment, we have chosen peripheral blood as a primary 
analyte as it represents the most routinely available bio-
specimen in clinical practice. The drastic alterations in 
transcription at the early stages of the treatment were 
specific to infliximab treatment while later changes 
were more likely to be shared between TNF antagonist 
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Fig. 6  Feature selection and validation of molecular signatures. A Schematic workflow. B, D Comparison of AUC values of the ROC curves of 
prediction models constructed using selected baseline (white), week 2 (blue), and combined (pink) features from DEGs, DMPs, and DNAm-DEGs 
using a random forest approach in IBD (B), CD, and UC (D) samples from the training cohort. C, E, F ROC curves of prediction models constructed 
using selected features (baseline and week 2 combined) from DEGs, DMPs, DNAm-DEGs, differentially preserved, DNAm-linked, combined modules, 
and clinical parameters using a random forest approach in IBD (C), CD (E), and UC (F) samples from the training cohort. G ROC curve of prediction 
model constructed using selected features from DNAm-DEGs in the validation cohort. H Comparison of log fold change between remitters and 
non-remitters at baseline (white) and week 2 (blue) (left) between training cohort and validation cohorts
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and anti-integrin treatment, possibly reflecting gen-
eral mucosal healing processes. Transcriptomic (RNA 
sequencing) and DNA methylation (genome-wide bead 
array) signatures obtained from the discovery cohort 
were confirmed in a replication cohort consisting of 
23 independent IBD patients undergoing treatment 
with TNF antagonists. Selected features of the molec-
ular signatures were able to predict therapy outcome 
in another independent cohort using an independent 
method (expression array).

Several previous studies have suggested individual 
markers, e.g., oncostatin M serum levels [15, 50] and 
sTREM-1/TREM1 mRNA levels [9, 51] as ex ante pre-
dictors of anti-TNF response. The classical approach 
of analyzing signatures of IBD patients before therapy 
did not identify a valid set of ex ante markers in the 
prospective two-cohort approach. It is important to 
state that the two cohorts were recruited at the same 
center using the same clinical criteria and endpoints 
and identical profiling technologies. Inflammatory 
characteristics (e.g., clinical activity or CRP) and global 
molecular signatures between discovery and valida-
tion cohorts were not significantly different. Also, after 
combining the two cohorts and stratifying for disease 
entities (CD vs. UC), we could not identify robust dis-
ease-specific baseline signatures for therapy response. 
Given the limited cohort size, our finding of course 
does not rule out the potential presence of such bio-
markers. In particular, we cannot exclude the influ-
ence of potential covariates, e.g., age or gender, which 
might become overt in a larger patient population. 
Conversely, many of the early molecular changes asso-
ciated with primary response or non-response were 
shared among the two cohorts. Antagonizing TNF led 
to dampening of numerous inferred processes (e.g., T 
cell polarity, neutrophil chemotaxis/extravasation) in 
circulating immune cells even in patients who did not 
achieve remission at week 14. Separate gene expression 
analysis of CD and UC patients showed a T cell-specific 

signature, which was unique to CD remission patients. 
A TH2/eosinophil signature, which is inhibited by anti-
IL5R (benralizumab) treatment in the peripheral blood 
of asthma patients [52] is upregulated in both CD and 
UC patients who do not attain remission at week 14. 
This signature is consistent with the hypothesis of an 
underlying type II immunity in non-responders which 
could be aggravated by blocking TNF. The result cor-
roborates earlier findings on an aggressive disease 
behavior and lower anti-TNF persistence in patients 
with high peripheral blood eosinophil levels [53, 54]. 
Higher-order gene regulation analysis using transcrip-
tional network construction [30] was able to identify 
modules of co-expressed transcripts which were dis-
rupted through effective therapy in remitting patients 
from both cohorts. For network construction, we only 
used differentially expressed genes as we specifically 
aimed to identify transcriptional networks, which are 
regulated upon treatment induction. We therefore note 
that this approach is not completely unbiased. One 
of the modules (M7) identified in this analysis com-
prised a cluster of type I interferon-induced genes, 
which is consistent with earlier hypothesis-based find-
ings in rheumatoid arthritis and IBD, where high type 
I IFN signatures correlated with poor response to TNF 
antagonists. A second module (M12) was enriched 
for transcripts involved in hematopoiesis and platelet 
aggregation, which is in line with clinical observations 
that anemia and a pro-coagulative state are impor-
tant components of the inflammatory response in IBD 
[55–57]. Indeed, effective anti-TNF therapy has been 
linked to these processes in other chronic inflamma-
tory diseases outside of the gastrointestinal tract, e.g., 
rheumatoid arthritis, psoriatic arthritis, and ankylosing 
spondylitis [58–61], yet this association is less clear in 
IBD [62]. Thus, in addition to following up on sophisti-
cated molecular marker sets, it might thus be interest-
ing to formally analyze early changes in erythropoiesis 
and platelet activation markers and their association 
with clinical response to anti-TNF treatment.

Differential DNA methylation was used as a layer of 
information to understand potential longer-term regula-
tory events and cell type distribution linked to anti-TNF 
non-response. Again, we could not find consistent base-
line differences between the discovery and the replication 
cohort, whereas early longitudinal signatures separat-
ing patients with clinical remission at week 14 and non-
responders were significantly conserved. Using physical 
neighborhood [21] for intersecting DNAm changes with 
DEGs, we show a clear association of an inflammatory 
neutrophil signature with favorable clinical outcome, cor-
roborating earlier findings that subacute inflammation as 
a negative predictor of therapy outcome in IBD [63].

Table 3  Statistics of prediction model testing using the 
validation cohort

Statistic Value Standard error 
(bootstrap with 100 
replicates)

Accuracy 0.85 0.07

Accuracy 95% CI 0.62–0.97

Sensitivity 1.00 0

Specificity 0.50 0.2

Positive prediction value (PPV) 0.82 0.08

Negative prediction value (NPV) 1.00 0
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We used different sets of omics markers (DEGs, 
modules, DMPs, DMP-modules, and DMP-linked 
DEGs) for machine-learning-based feature selection to 
assess the predictive potential of early changes (base-
line vs. week 2) in each data layer. In this step, perfor-
mance could be increased by using individual disease 
entities (CD vs. UC) and DMPs and combined DMP-
DEGs were the best performing initial data sets for 
UC and CD, respectively. Features selected from other 
data moieties, e.g., from co-expression modules, had a 
lower predictive power compared to DNAm-DEGs at 
this early time point of therapy. Using the DMP-DEG-
based transcriptome features to classify an independ-
ent cohort of infliximab-treated CD patients with 
publicly available expression data, we were clearly able 
to discriminate between responders and non-respond-
ers, although slightly different response criteria (e.g., 
CDAI instead of HBI) were applied between the stud-
ies, indicating the robustness of our marker set. Sev-
eral previous studies have tested clinical parameters 
such as CRP and disease activity scores at baseline as 
predictors of response to anti-TNF agents in CD and 
UC patients [64]. In our study, prediction models built 
on clinical parameters at baseline and week 2 were 
clearly inferior to the ones built on molecular datasets, 
suggesting that molecular profiling may substantially 
improve therapy response prediction.

Limitations of our study include the small size of the 
cohorts due to the dense longitudinal sampling scheme 
of IBD patients, which we aimed to compensate by rig-
orous replication of findings in the two-cohort setting. 
Potential confounding effects of different sequence 
batches were minimized by randomization of patients 
across sequencing runs while keeping all longitudinal 
samples from a given individual in a single batch. As 
TNF inhibition is similarly effective in CD and UC and 
is likely a distant intervention into the pathophysiol-
ogy, we hypothesized that potential mechanisms of 
action and non-response are at least partially con-
served among the disease sub-entities. We therefore 
deliberately combined CD and UC patients in many 
analyses to increase power. Although we found con-
gruent molecular signatures of anti-TNF treatment in 
our combined analysis of IBD patients, entity-specific 
analyses and feature selection results raise the notion 
that for further translation into clinical studies, dis-
tinct sets of markers might be needed for each IBD 
subentity. Our prediction models were built using the 
combined data set using a cross-validation approach 
and only the CD model could be further validated in 
an external, publicly available data set. Thus, we can-
not rule out overfitting of the model and our initial 
findings mandate further prospective validation. In 

this study, we have used validated activity scores (par-
tial Mayo score, HBI) as clinical remission endpoints. 
Future studies are warranted combining molecular 
assessments with more objective parameters such as 
endoscopy and histology, which could further improve 
outcome prediction aiming at optimal disease control.

Conclusions
In summary, our study focused on the dynamics of 
molecular changes occurring shortly after the induction 
of a targeted anti-cytokine therapy and their association 
to clinical outcome at week 14. The (ex-post) molecular 
signature identified includes features and biological pro-
cesses such as type I interferon signaling, erythropoiesis, 
and platelet aggregation that are elicited by the impact 
of the targeted intervention and could be involved in 
inducing disease control as the ultimate success of such 
treatment in IBD. We propose that early shifts of immu-
nological network states of circulating blood cells after 
a first probatory administration of the drug, i.e., ex-post 
signatures, could carry important information that might 
guide clinical decision-making such as intensifying or 
early switch of treatment. Our results in IBD could serve 
as a blueprint for immune-mediated inflammatory disor-
ders in general to create personalized therapeutic strate-
gies with the aim of making tailored therapeutic choices 
to achieve disease control.
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