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Abstract 

Background  Diabetic nephropathy (DN) is the leading cause of end-stage renal disease, and histopathologic glo‑
merular lesions are among the earliest structural alterations of DN. However, the signaling pathways that initiate these 
glomerular alterations are incompletely understood.

Methods  To delineate the cellular and molecular basis for DN initiation, we performed single-cell and bulk RNA 
sequencing of renal cells from type 2 diabetes mice (BTBR ob/ob) at the early stage of DN.

Results  Analysis of differentially expressed genes revealed glucose-independent responses in glomerular cell types. 
The gene regulatory network upstream of glomerular cell programs suggested the activation of mechanosensitive 
transcriptional pathway MRTF-SRF predominantly taking place in mesangial cells. Importantly, activation of MRTF-SRF 
transcriptional pathway was also identified in DN glomeruli in independent patient cohort datasets. Furthermore, 
ex vivo kidney perfusion suggested that the regulation of MRTF-SRF is a common mechanism in response to glo‑
merular hyperfiltration.

Conclusions  Overall, our study presents a comprehensive single-cell transcriptomic landscape of early DN, highlight‑
ing mechanosensitive signaling pathways as novel targets of diabetic glomerulopathy.
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Background
Diabetic nephropathy (DN) is one of the major compli-
cations in diabetic patients and is the leading cause of 
end-stage renal disease worldwide [1]. DN is a complex 
disease and its progression, particularly in type 2 diabe-
tes, is confounded by multiple pathogenic factors, such as 
insulin resistance and obesity [1, 2]. Previous studies used 
single-cell or single-nucleus RNA sequencing (scRNA-
seq or snRNA-seq) to investigate cellular changes or 
drug responses in diabetic kidneys. Single-nucleus tran-
scriptomics on early human diabetic kidneys suggests 
increased potassium secretion in the distal nephron and 
pro-angiogenic signaling in diverse kidney cells [3]. A fol-
lowing study combining single-nucleus RNA and assay 
for transposase-accessible chromatin (ATAC) sequencing 
highlights the glucocorticoid signaling in the proximal 
tubule [4]. Stefansson et al. provide molecular programs 
associated with glomerular hyperfiltration in human DN 
[5], and Fu et al. show the single-cell transcriptomics of 
eNOS − / − mice with streptozotocin-induced diabetes, 
which is a type 1 diabetes model without obesity nor 
insulin-resistance [6]. Single-cell/nucleus transcriptomics 
on drug-treated murine diabetic kidneys suggest impor-
tant alterations in proximal tubule cells [7, 8].

DN is characterized by distinct histopathological 
lesions dominating the renal glomerulus, such as glo-
merular basement membrane (GBM) thickening, mesan-
gial expansion, and nodular glomerulosclerosis [2]. Early 
changes such as glomerular hyperfiltration have been 
proposed to be critical for the subsequent development 
of glomerulosclerosis [1]. Preservation of glomerular fil-
tration rate is of great importance for renoprotection 
[2]. However, the signaling pathways that initiate these 
glomerular alterations are incompletely understood. 
Therefore, it is particularly warranted to understand the 
cellular changes and molecular mechanisms that initiate 
DN in the glomerulus.

In this study, we conducted a comprehensive analy-
sis of cellular changes in type 2 diabetic glomeruli. The 
type 2 diabetes mouse model BTBR ob/ob exhibits insu-
lin resistance, hyperglycemia, and obesity, as well as the 
rapid progression of diabetic glomerulopathy [9–11]. 
We generated single-cell transcriptomics of kidneys and 
bulk transcriptomics of purified glomerular cell types. 
We compared mouse DN with human DN and validated 
our findings in different patient cohort datasets at both 
mRNA and protein levels. Our study reveals the upregu-
lation of the mechanosensitive signaling pathway MRTF-
SRF in response to glomerular hyperfiltration, which is 
associated with glomerulopathy in early DN.

Methods
Animals
All animal experiments were conducted according to the 
National Institutes of Health Guide for the Care and Use 
of Laboratory Animals as well as the German law for the 
welfare of animals. Mice were housed in a specific patho-
gen-free facility with free access to chow and water and a 
12-h/12-h day/night cycle. Breeding and genotyping were 
performed according to standard procedures.

BTBR ob/ob podocyte‑reporter mice
Animal experiments were approved by the veterinary admin-
istration of the City of Hamburg under the license Ü003-2018. 
BTBR ob/ + (BTBR.Cg-Lepob/wt WiscJ) heterozygous animals 
(Jax No. 004824) and corresponding wild-type mice BTBR 
(Jax No 002282) were purchased from JAX (Bar Harbor, 
ME, USA). Podocyte-reporter mice (Gt(ROSA)26Sortm4(ACTB−
tdTomato,−EGFP)Luo;Tg(NPHS2-cre)295Lbh) were also pur-
chased from JAX (Jax No. 007576) and crossed for at least 
7 generations with BTBR wild-type animals before BTBR.
Cg-Lepob/wt WiscJ;Gt(ROSA)26Sortm4(ACTB−tdTomato,−EGFP)Luo; 
Tg(NPHS2-cre)295Lbh animals were generated. The resultant 
offspring was intercrossed to yield BTBR.Cg-Lepob/ob WiscJ; 
Gt(ROSA)26Sortm4(ACTB−tdTomato,−EGFP)Luo;Tg(NPHS2-
cre)295Lbh and BTBR.Cg-Lepwt/wt WiscJ;Gt(ROSA)26Sortm4(ACTB−
tdTomato,−EGFP)Luo;Tg(NPHS2-cre)295Lbh animals.

Mouse kidney normothermic machine perfusion
All procedures involving mouse kidney perfusion 
described in this manuscript were conducted according 
to German and Hamburg law and approved by the vet-
erinary administration of the City of Hamburg under the 
license N002/2020. As previously described [12], male 
C57BL/6 kidneys were collected under anesthesia (i.p. 
injection of 100 μL/10 g body weight of a solution con-
taining 10  mg/ml Ketamine and 1.6  mg/ml Xylazine). 
Briefly, a laparotomy was performed, the aorta was 
cannulated, ligatures placed and closed around all 
main vessels, and perfusion initiated only in the right 
kidney. The left unperfused kidney was then removed 
and used as control. After this, the right kidney was 
removed from the mouse during ongoing perfusion. 
Perfusion took place ex  vivo at 100  mmHg at 37  °C 
with 100% GBSS solution without the addition of albu-
min or red blood cells (Sigma G9779) continuously 
gassed in a dialyzer with 100% carbogen (95% O2, 5% 
CO2). Perfusion was stopped after 60 min. Isolation of 
glomeruli was performed as described in Additional 
file 1: Supplementary methods (FACS-sorted glomeru-
lar cells).
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Pig kidney normothermic machine perfusion
Pig kidneys were collected from a German slaughter-
house. Kidneys were received directly after slaughter and 
immediately flushed with 400–500 ml 1 × PBS with 2 ml 
Heparin 10.000  IE/ml. Kidney were stored at + 4  °C for 
around 2 h, after which normothermic perfusion was ini-
tiated. Perfusion took place at 100 mmHg at 37  °C with 
increased glomerular pressure and hyperfiltration as 
described above. Renal cortex tissue was collected either 
before perfusion (control) or 120 min after start of perfu-
sion (perfused).

Single‑cell/nucleus suspension and library preparation
Single‑cell suspension
Glomeruli were enriched by depleting the PT segment 
from the kidneys using Percoll density gradient centrifu-
gation described previously [13]. Briefly, the mouse was 
euthanized by cervical dislocation under anesthesia (4% 
isoflurane for 2  min). Both kidneys were harvested and 
the renal papilla of each kidney was removed. The renal 
tissue was minced into small pieces and transferred to a 
C tube (130–093-237, Miltenyi Biotec) filled with 5 ml of 
collagenase solution (1 mg/ml collagenase from Clostrid-
ium histolyticum [C9263, Sigma-Aldrich] and 0.25% 
bovine serum albumin [BSA] in DMEM/F-12 medium 
[11320074, Gibco]). The renal tissue was incubated at 
37 °C for 5 min and homogenized using a gentleMACS™ 
Dissociator (Miltenyi Biotec) with the program “m. spleen 
01_01”; this process was repeated once. Subsequently, 
the renal tissue was passed through a 250-μm sieve and 
separated by Percoll density gradient centrifugation using 
a solution that contained 45% Percoll® (GE17-0891–02, 
GE Healthcare) and 55% 2 × PBS-glucose at 17,500 rpm 
for 15  min at 4  °C. Red blood cells were removed with 
a Percoll density gradient. PTs that accumulated in the 
interphase of the gradient were discarded. The rest of 
the kidney tissue that accumulated in the upper phase of 
the gradient was taken, washed twice in ice-cold HBSS, 
and centrifuged at 400 × g for 4  min at 4  °C. A single-
cell suspension was prepared using cold-active protease 
(CAP) as described in previous studies [14]. The pellet 
was suspended in 2 ml of CAP solution (10 mg/ml Bacil-
lus licheniformis protease [P5380, Sigma-Aldrich], 5 mM 
CaCl2, 20 U/ml DNase [4716728001, Roche] in PBS) for 
20  min on ice with repeated trituration steps for 20  s 
every 5 min. The digestion was neutralized by 15 ml PBS 
supplemented with 10% FBS and passed through a 40-μm 
Corning® cell strainer. Cells were centrifuged at 400 × g 
for 4 min at 4 °C and washed twice in 20 ml PBS supple-
mented with 0.5% BSA. Dead cells were removed with 
a dead cell removal kit (130–090-101, Miltenyi Biotec) 
according to the manufacturer’s protocol. The living cells 
were passed through a 30-μm cell strainer (04–004-2326, 

Sysmex), and the cell concentration was determined 
using a TC20™ automated cell counter (Bio-Rad). The 
cells were loaded onto a 10 × Genomics Chromium sin-
gle-cell instrument. All steps were performed according 
to the standard protocol of the Chromium single-cell 3’ 
v2/v3 kits to generate high-quality cDNA libraries.

Single‑nucleus suspension
A 1 × 3 mm piece of snap frozen renal cortex tissue was 
thawed and chopped with a razor blade in a petri dish 
on ice and homogenized using a Dounce homogenizer 
(D8938-1 SET, Sigma-Aldrich) in 200-μl ice-cold lysis 
solution and incubated on ice for 20 min with additional 
3.8  ml of ice-cold lysis solution. Lysis solution was pre-
pared with Nuclei PURE lysis buffer (NUC-201, Sigma-
Aldrich), 1  mM dithiotreitanol (D9779, Sigma-Aldrich), 
and 0.1% Triton X-100 (NUC-201, Sigma-Aldrich) 
according to manufacturer’s protocol and a RNAse inhib-
itor mix (0.04 U/μl SUPERaseIN RNAse Inhibitor [AM 
2696, Thermo Fisher]; 0.04 U/μl RNAsin Plus RNAse 
Inhibitor [N2615, Promega]) was added. The single nuclei 
suspension was filtered through a 30-μm filter (04–004-
2326, Sysmex) and centrifuged at 500 g for 5 min at 4 °C. 
The pellet was resuspended and incubated for 2  min in 
1  ml red blood cell lysing buffer hybri-max™ (R7757-
100  ml, Sigma-Aldrich), filtered through a 5-μm filter 
(04–004-2323, Sysmex), and washed with 4 ml of ice-cold 
0.01% BSA (AM2616, Thermo Fisher) in DPBS (59331C; 
Sigma) with 0.04 U/μl SUPERaseIN RNAse Inhibitor 
and 0.04 U/μl RNAsin Plus RNAse Inhibitor at 500 g for 
5 min at 4 °C. The pellet was resuspended in 1% BSA in 
DPBS with 0.04 U/μl SUPERaseIN RNAse Inhibitor and 
0.04 U/μl RNAsin Plus RNAse Inhibitor, and nuclei num-
ber was counted. The libraries were prepared with the 
Chromium NEXT GEM Single Cell 3’ Reagent kits v3.1 
according to manufacturer’s protocol. The libraries were 
sequenced on an Illumina Novaseq6000 platform as sym-
metrically paired end runs (150 bases) with 200 million 
raw sequencing reads per sample.

Single‑cell data analysis
Preprocessing and quality control (QC) of scRNA‑seq data
10 × Genomics raw sequencing data were processed 
using CellRanger software (version 3.0.2, 10 × Genom-
ics, Pleasanton, CA), and the 10 × Genomics mouse 
genome mm10 3.0.0 release was used as the reference 
genome (function cellranger count). The matrices of cells 
and the unique molecular identifier (UMI) count were 
obtained and further processed with the R package Seu-
rat (version 3.1.1) [15]. For QC, we first filtered out genes 
detected in fewer than 3 cells and data for cells in which 
fewer than 200 genes had nonzero counts. To remove 
potential doublets, cells with more than 7000 expressed 
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genes (nFeature) were excluded. We removed low-quality 
cells with more than 50% mitochondrial genes among 
all detected genes, as is recommended for kidney tubu-
lar cells [16]. After clustering and cell type identification, 
we performed curated doublet and high-mitochondrial 
gene cell removal (see below) based on known lineage-
restricted markers.

Dimensionality reduction and clustering
The Seurat R package (version 4.0.2) was used to perform 
unsupervised clustering analysis on scRNA-seq data. 
In brief, gene counts for cells that passed QC were nor-
malized by library size and log-transformed (function 
NormalizeData, normalization.method = “LogNormal-
ize”, scale.factor = 10,000). Then, highly variable genes 
were detected (function FindVariableFeatures, selec-
tion.method = “vst”, nfeatures = 2000). To reduce batch 
effects, we applied the integration method implemented 
in Seurat version 3 (functions FindIntegrationAnchors 
and IntegrateData, dims = 1:30). The integrated matrix 
was then scaled with the ScaleData function (default 
parameters). PCA was performed on the scaled data 
(function RunPCA, npcs = 30) to reduce dimensionality.

The number of principal components used for each 
clustering round was dataset dependent and was deter-
mined on the basis of the elbow of a PCA scree plot. 
The selected principal components were then used to 
compute the KNN graph based on the Euclidean dis-
tance (function FindNeighbors). Cell clusters were sub-
sequently generated using the function FindClusters. The 
resolution of the FindClusters function for each dataset 
was also determined by the exploration of the top marker 
genes of each cluster. Uniform Manifold Approximation 
and Projection (UMAP) was used to visualize the clus-
tering results. The top DEGs in each cluster were found 
using the FindAllMarkers function (min.pct = 0.25, logfc.
threshold = 0.25) with Wilcoxon rank-sum tests. The 
most highly expressed genes were then used to determine 
the cell type of each cluster.

Curated doublet and high‑mitochondrial gene cell removal
After the cell type was determined for clusters, we per-
formed additional curated doublet and high-mito-
chondrial-cell removal. Based on the literature and 
the exploration of our datasets, we created a lineage-
restricted marker gene list for tubular (Cubn, Epcam) and 
nontubular (Pecam1, Pdgfrb, Nphs2, Ptprc) cell types. We 
removed the cells that expressed markers of the oppo-
site lineage. For nontubular cells, we discarded cells with 
more than 20% mitochondrial genes among all detected 
genes. There were 86,508 cells before curated doublet 
removal, 71,831 cells after curated doublet removal, and 
770,944 cells after high-mitochondrial gene cell removal.

Differential gene expression analysis
The Seurat FindMarker function was used to perform 
differential gene expression analysis for each cell type 
between the control and DN groups. The test method used 
in the FindMarker function was MAST (v1.12.0) [17].

Single‑nucleus data analysis
Preprocessing and QC
10 × Genomics raw sequencing data were processed 
using CellRanger software (version 5.0.1, 10 × Genom-
ics, Pleasanton, CA). Pig genome was built by function 
“cellranger mkref” using the Sscrofa v103 FASTA file 
and GTF file (https://​www.​ensem​bl.​org) and then map-
ping was done and the count matrices were generated 
by function “cellranger count” with parameter “include-
introns.” For QC, firstly, we applied soupX [18] with 
default parameters to remove ambient RNA contamina-
tion. Then, the nuclei were filtered out if the number of 
genes detected was less than 500 or greater than 6000 or 
the percentage of mitochondrial genes detected exceeded 
7%. To further remove potential doublets, Scrublet [19] 
was applied to the data and cells were excluded if they 
were identified as doublets (default parameters).

Dimensionality reduction and clustering
An updated version of Seurat R package (version 4.0.2) 
was used to perform unsupervised clustering analysis 
on snRNA-seq data since the experiments were per-
formed later than the mouse scRNA-seq analysis. Count 
data normalization, scaling, highly variable gene selec-
tion, and sample integration were the same as the mouse 
single-cell data process described above. PCA was per-
formed on the scaled data (function RunPCA, npcs = 30) 
and the first 15 PCs were used for clustering. The KNN 
graph was calculated (function FindNeighbors) and then 
the clustering result is obtained (function FindClus-
ters, resolution = 0.5). To visualize the clustering result, 
UMAP coordinates were calculated (function RunUMAP, 
dims = 1:15). Wilcoxon method was used to perform the 
differential gene analysis. For each cluster, the marker 
gene list was determined by log2FoldChange > 0.25 and 
adj. p value < 0.05 (FindAllMarkers). The most highly 
expressed genes were then used to determine the cell 
type of each cluster.

Bulk RNA‑seq
Library preparation and RNA‑seq
A small amount of RNA (2 ng) was used as input mate-
rial, and libraries were prepared with a SMART-Seq 
Stranded Kit according to the user manual (Takara 
Bio USA, Mountain View, CA, USA). In brief, sam-
ples were fragmented at 85 °C for 6 min prior to first-
strand synthesis. Illumina adaptors and indexes were 

https://www.ensembl.org


Page 5 of 19Liu et al. Genome Medicine            (2023) 15:2 	

added to single-stranded cDNA via 5 cycles of PCR. 
After library purification with AMPure beads and 
depletion of ribosomal cDNA with scZapR, final RNA-
seq library amplification (13 cycles) was conducted, 
and the final RNA-seq library was purified with 
AMPure beads. The library samples were quantified 
using Quant-iT PicoGreen dsDNA Reagent (Invitro-
gen; Thermo Fisher Scientific, Waltham, MA, USA) on 
a ClarioStar microplate reader according to the manu-
facturer’s instructions (BMG LABTECH, Ortenberg, 
Germany). The quality, including fragment size, of the 
cDNA was assessed on an Agilent Technologies Bioan-
alyzer 2100 using an Agilent DNA 1000 kit according 
to the manufacturer’s instructions (Agilent Technolo-
gies, Palo Alto, CA, USA).

Pooled samples were quantified with a Qubit 1X 
dsDNA HS Assay Kit on a Qubit fluorometer (Thermo 
Fisher Scientific, Waltham, MA, USA). Single-read 
sequencing was performed on a NovaSeq 6000 device 
using an S2 Reagent kit (100 cycles) according to the 
manufacturer’s instructions (Illumina Inc., CA, USA).

Bulk RNA‑seq data analysis
The quality of the bulk RNA-seq reads was assessed 
using FastQC (v0.11.5), and the reads were aligned to 
the mouse reference genome (mm10) with Bowtie2 
(v2.3.3.1) [20] using RSEM (v1.3.0) [21] with the default 
parameters. The function rsem-calculate-expression was 
used to align the reads and quantify the gene and iso-
form abundance. The output of rsem-calculate-expres-
sion separately gives the read count and transcripts per 
million (TPM) value for each gene and isoform. Differ-
ential expression analysis was carried out using gene 
read counts with the DESeq2 package (v1.22.2) [22] to 
produce log2FC values and corresponding p values and 
adjusted p values. Principal component analysis (PCA) 
was performed using regularized log transformation 
of the count data, and the results were visualized using 
gplots (v3.0.1.1).

Integrated analysis
Correlation of bulk RNA‑seq and scRNA‑seq data
For podocytes, ECs, and mesangial cells, the single-cell 
data were correlated with bulk RNA-seq data. The cell 
type markers (top DEGs of each cell type identified by the 
Seurat FindAllMarkers function (min.pct = 0.25, logfc.
threshold = 0.25) were used for correlation analysis. The 
normalized gene expression count matrices of cell type 
markers were extracted from the single-cell data and bulk 
RNA-seq data separately, and then Pearson correlation 
coefficients were calculated between every pair of single 
cells and replicates of bulk RNA-seq data.

CellChat
We applied Cellchat (v 1.4.0) [23] to infer cell–cell com-
munications across all kidney cell types and the glomer-
ular cell types. We used the mouse database curated in 
CellChat including the “Secreted Signaling,” “Cell–cell 
Contact,” and “ECM-Receptor.” The comparison analysis 
between diseased samples and control samples was per-
formed according to the Cellchat tutorial (https://​htmlp​
review.​github.​io/?​https://​github.​com/​sqjin/​CellC​hat/​
blob/​master/​tutor​ial/​Compa​rison_​analy​sis_​of_​multi​ple_​
datas​ets.​html). The communication probabilities were 
compared to identify the unregulated and downregu-
lated signaling ligand-receptor pairs between the two 
conditions.

SCENIC
The gene regulatory network was inferred using pySCE-
NIC (v 0.11.2, a lightning-fast python implementation of 
the SCENIC pipeline) [24, 25]. Firstly, the GRNboost2 
algorithm was used to infer gene regulatory network and 
generate co-expression modules (pyscenic grn). Next, 
the regulon prediction step was performed (pyscenic 
ctx, using the default parameters and mm10__refseq-
r80__10kb_up_and_down_tss.mc9nr and mm10__ref-
seq-r80__500bp_up_and_100bp_down_tss.mc9nr motif 
collections). Finally, the AUCell matrix was generated 
with a threshold of 0.01 (pyscenic aucell). Cell type-spe-
cific regulators were identified based on Z-score of the 
AUCell values for the cells of a given type.

Upstream analysis
We performed Qiagen’s ingenuity Pathway Analysis (IPA) 
tool to identify transcriptional regulators (significance: 
p value < 0.05). Positive and negative z-score values indi-
cated the activation or inhibition of transcriptional regu-
lators, respectively.

Enrichment analysis
GO biological processes, KEGG, WikiPathways, and Reac-
tome Gene Sets were performed with Metascape [26].

Human data
ERCB‑Kröner‑Fresenius Biopsy Bank
Human renal indication biopsy specimens were collected 
in an international multicenter study and deposited 
in the ERCB-Kröner-Fresenius Biopsy Bank (ERCB-
KFB [27, 28]; for participating centers, see Shved et  al. 
[29]). Glomerular samples from patient with differ-
ent renal diseases were analyzed for mRNA expression 
levels (GSE32591, GSE35489, GSE37463, GSE47185, 
GSE99340). The analysis included gene expression 
profiles from patients with DN (n = 14), hypertensive 

https://htmlpreview.github.io/?https://github.com/sqjin/CellChat/blob/master/tutorial/Comparison_analysis_of_multiple_datasets.html
https://htmlpreview.github.io/?https://github.com/sqjin/CellChat/blob/master/tutorial/Comparison_analysis_of_multiple_datasets.html
https://htmlpreview.github.io/?https://github.com/sqjin/CellChat/blob/master/tutorial/Comparison_analysis_of_multiple_datasets.html
https://htmlpreview.github.io/?https://github.com/sqjin/CellChat/blob/master/tutorial/Comparison_analysis_of_multiple_datasets.html
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nephropathy (HT; n = 15), minimal change disease 
(MCD; n = 14), IgA nephropathy (IgA; n = 27), focal 
segmental glomerulosclerosis (FSGS; n = 23), membra-
nous nephropathy (MGN; n = 21), lupus nephritis (SLE; 
n = 32), ANCA-associated glomerulonephritis (RPGN; 
n = 23), and controls (LDs; n = 41).

Early diabetic nephropathy in Pima Indians
Protocol kidney biopsy specimens were collected from 
Pima Indians with type 2 diabetes. The study subjects 
participated in an intervention trial (Renoprotection in 
Early Diabetic Nephropathy in Pima Indians, clinicaltri-
als.gov, NCT00340678) [30, 31]. Biopsies were obtained 
from patients after informed consent was obtained and 
with the approval of the local ethics committees. The 
analysis included gene expression profiles from DN 
patients (n = 68) and LD controls (n = 18). To account for 
ethical considerations, to ensure privacy protection, and 
to avoid identifying individual study participants in this 
vulnerable population of Pima people, the Institutional 
Review Board of the National Institute of Diabetes and 
Digestive and Kidney Diseases has stipulated that indi-
vidual-level gene expression and genotype data from this 
study cannot be made publicly available.

Microarray analysis
Tissue processing and microdissection protocols were 
performed similarly on both ERCB and Pima biopsy 
material. Following renal biopsy, the tissue was trans-
ferred to an RNase inhibitor and microdissected into 
glomeruli and tubulointerstitial tissue. Total RNA was 
isolated, reverse-transcribed, and amplified. Fragmen-
tation, hybridization, staining, and imaging were per-
formed according to the Affymetrix Expression Analysis 
Technical Manual (Affymetrix, Santa Clara, CA, USA). 
CEL file normalization was performed with the robust 
multichip average method using RMAExpress (Version 
1.0.5) and the human Entrez-Gene custom CDF annota-
tion from Brain Array version 18 (PIMA) and 25 (ERCB) 
(http://​brain​array.​mbni.​med.​umich.​edu/​Brain​array/​defau​
lt.​asp). The log-transformed ERCB dataset was corrected 
for batch effect using ComBat from the GenePattern 
pipeline (http://​www.​broad​insti​tute.​org/​cancer/​softw​are/​
genep​attern/). To identify DEGs, the Significance Analy-
sis of Microarrays (SAM) method [32] was applied using 
the SAM function in Multiple Experiment Viewer (TiGR 
MeV, Version 4.9). A q-value below 5% was considered to 
indicate statistical significance.

Immunofluorescent staining
Paraffin sections from human biopsies or from experi-
mental mice (3 μm thick) were deparaffinized and rehy-
drated in water. Following antigen retrieval with DAKO 

pH6 for 30 min at 98 °C, unspecific binding was blocked 
for 30 min at RT in blocking buffer (0.05% TritonX-100, 
5% normal horse serum (Vector) in PBS). Primary anti-
bodies for human biopsies (MRTFA [Sigma HPA030782]; 
MRTFB [Invitrogen PA5-113519]; CD34 [Leica Biosys-
tems NCL-L-END]; NPHS1 [Progene GP-N2]) and for 
murine sections (MRTFA [Sigma HPA030782]; MRTFB 
[Invitrogen PA5-113519]; Endomucin-AF546 [Santa 
Cruz sc-65495]; NPHS1 [Progene GP-N2]) were diluted 
in blocking buffer and incubated overnight at 4 °C. Stain-
ings were visualized following incubation with appropri-
ate fluorochrome coupled secondary donkey antibodies 
(Jackson Immunoresearch Laboratories) and Hoechst 
(Molecular Probes) and mounted with fluoromount 
(Thermo Fisher). Analyses were performed on a LSM800 
airyscan 1 using the ZENBlue software (all ZEISS).

A piece of pig cortex (1  cm deep) was snap frozen in 
OCT. Seven-micrometer cryo-sections were fixed imme-
diately in 4% PFA for 10 min at RT and washed out with 
PBS. The sections were incubated for 30  min with 5% 
BSA in PBS + 0.1% Triton for blocking and permeabiliza-
tion and then incubated overnight at 4  °C with primary 
antibody MEIS1 (Invitrogen MA5-27,191). After wash-
ing out the primary antibody, sections were incubated for 
1  h at RT with secondary antibody (Life Technologies) 
and DAPI (4′,6-diamidino-2-phenylindole) (Invitrogen). 
Slides were mounted and analyzed using the Leica TCS 
SP5 microscope.

Results
scRNA‑seq of BTBR ob/ob mouse kidneys with early DN
We generated BTBR ob/ob podocyte-reporter mice 
(BTBR.Cg-Lepob/ob WiscJ;Gt (ROSA)26Sortm4(ACTB−tdTo-

mato,−EGFP)Luo;Tg(NPHS2-cre)295Lbh; hereafter referred to 
as BTBR ob/ob or DN mice) to investigate the cellular 
and molecular changes that occur in DN. By 6 weeks of 
age, both male and female BTBR ob/ob mice exhibited 
obesity, hyperglycemia, and albuminuria (Additional 
file  1: Figure S1a). From 12  weeks of age, obvious glo-
merular hypertrophy was observed in histological analy-
sis (Additional file  1: Figure S1b). Mesangial expansion 
with accumulation of collagen IV was detected in the DN 
glomeruli (Additional file 1: Figure S1c and d). Based on 
these observations, we defined 6 weeks of age as the onset 
stage of DN and 12 weeks of age as the early stage of DN.

Kidney tissue was sampled from a total of 16 mice, 
including male and female each of BTBR ob/ob (DN) 
and BTBR WT (control) mice at 6 and 12 weeks of age. 
The samples were partially depleted of the proximal 
tubule (PT) segment using a Percoll gradient [13] to 
enrich glomeruli. Single-cell suspensions were prepared 
using cold-active protease (CAP) to reduce dissociation-
induced artifacts in kidney cells [33]. A total of 70,944 

http://brainarray.mbni.med.umich.edu/Brainarray/default.asp
http://brainarray.mbni.med.umich.edu/Brainarray/default.asp
http://www.broadinstitute.org/cancer/software/genepattern/
http://www.broadinstitute.org/cancer/software/genepattern/
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single cells were profiled after data pre-processing and 
quality control (Fig. 1b). Unsupervised clustering identi-
fied 21 clusters (Additional file 1: Figure S2a, b and c; see 
the “Methods” section). The cells in the 21 clusters were 
classified into 18 cell types and annotated on the basis of 
cell-specific marker genes reported in previous kidney 
and glomerulus single-cell data [14–16]. Defining marker 
genes for each cell type and unbiased marker genes for 
each cluster are demonstrated in a dot plot (Fig. 1c) and 
in a heatmap (Additional file 1: Figure S2d), respectively.

We identified all major components in the kidneys. 
The endothelial cell (EC) subtypes expressed distinct 
marker genes, such as Ehd3 for EC_1 (glomerular ECs/
gECs), Plvap for EC_2 (fenestrated ECs with diaphragm 
in veins and peritubular capillaries), and Fbln2 for EC_3 
(arteriolar and arterial ECs) [34]. Mesangial cells defined 
by marker genes Gata3, Itga8, and Adamts5 are clearly 
distinguished from interstitial cells, which were com-
posed of vascular smooth muscle cells marked by Acta2 
and Tagln, and renin cells marked by Ren1 [35, 36]. The 
subtype PT_1 and PT_2 were composed of cells from 
S1/2 and S2/3 PT segments, respectively, as they showed 
a continuum of marker gene expression consistent with 
known S1 (Slc5a2, Slc5a12 and Gatm) to S3 (Slc13a3, 
Cyp4a10, and Slc5a8) PT segments.

Due to PT depletion, the percentage of PT cells was 
reduced to 22.4%, while glomerular cell types were 
enriched to 15.6% (Additional file  1: Figure S2e). The 
fractions of control and DN cells in each cell type were 
similar except for podocytes, which included more con-
trol (approximately 77%, 807 cells) than DN cells (approx-
imately 23%, 235 cells) (Additional file 1: Figure S2f ). All 
cell types were identified in individual kidney samples 
(Additional file  1: Figure S3a), and cells from individual 
kidney samples were also identified for each cell type 
(Additional file 1: Fig. S3b). The overall low expression of 
dissociation-induced stress genes in individual cell types 
(Additional file  1: Fig. S3c) indicates the advantages of 
our modified single-cell preparation protocol (Methods), 
which shortened the 37  °C digestion time and omitted 
the steps stressful to glomerular cell dissociation.

Cell type‑specific alterations in DN kidneys suggest glucose‑ 
dependent and glucose‑independent responses in diabetes
Next, we compared gene expression levels in DN versus 
control kidneys by cell type. In total, we identified 447 

and 740 differentially expressed genes (DEGs) across 
all cell types at 6 and 12  weeks, respectively (Fig.  1d). 
Among all cell types, mesangial cells and PT cells had 
the highest numbers of DEGs (Fig.  1d), indicating that 
these two cell types were predominantly affected in the 
early stage of DN. Enrichment analysis identified signifi-
cant pathways in glomerular cell types and PT cell types 
at 6 and 12 weeks (Fig. 1e and f ). Glomerular cell types 
showed regulations of extracellular matrix molecules, cell 
adhesion, cell proliferation, etc., and cellular responses to 
mechanic stress, cytokines, and blood pressure. PT cell 
types showed multiple metabolic processes such as bio-
logical oxidations, and responses involved in oxidative 
stress, such as NRF2 and PPAR signaling pathways. These 
differences suggest glucose-dependent and glucose-inde-
pendent responses in PT and glomerular cell types in 
early DN, respectively.

Shared features of human and experimental DN
Early changes such as glomerular hypertrophy, GBM 
thickening, and mesangial expansion occur in both 
human and animal DN [37]. Thus, we conducted inten-
sive analyses on glomerular cell types.

We isolated glomeruli from BTBR ob/ob and BTBR WT 
kidneys and subsequently purified podocytes, mesan-
gial cells, and gECs by fluorescence-activated cell sort-
ing (FACS) (Additional file 1: Figure S4, Additional file 1: 
Supplementary methods). Bulk RNA-seq was performed 
for each purified glomerular cell type. The similarity and 
purity of individual glomerular cell type samples were 
controlled by principal component analysis (PCA) and 
the expression levels of specific marker genes (Addi-
tional file  1: Figure S5). The cell gene expression data 
from scRNA-seq were compared to the bulk RNA-seq 
data. Podocytes, EC_1/gECs, and mesangial cells showed 
positive Pearson correlation coefficients, suggesting a lin-
ear correlation of the two datasets (Fig. 2a). Overlapping 
the glomerular DEGs from single-cell and bulk RNA-seq 
datasets resulted in 194 unique genes (Fig.  2b), which 
were mapped to the European Renal cDNA Bank (ERCB) 
patient dataset. The mRNA expression of 106 genes was 
significantly regulated in microdissected glomeruli from 
DN patients (Fig.  2b and c). Importantly, most DEGs 
detected in human DN glomeruli were significantly 
changed in mesangial cells in both single-cell and bulk 
RNA-seq data (Fig. 2c).

Fig. 1  scRNA-seq of BTBR ob/ob mouse kidneys with early DN. a Experimental scheme. b UMAP plot of annotated cell types. c Dot plot of defining 
marker genes for each cell type. d Total number of significant DEGs (nDEGs) in each cell type. Top enriched pathways in glomerular e and PT cell 
types f at 6 and 12 weeks. UMAP, uniform manifold approximation and projection; Ctrl, control; DN, diabetic nephropathy; Podo, podocyte; EC, 
endothelial cell; Mesan, mesangial cell; Int, interstitial cell; PT, proximal tubule; dLOH, descending limb of loop of Henle; aLOH, ascending limb of 
loop of Henle; DCT, distal convoluted tubule; CNT, connecting tubule; PC, collecting duct principal cell; IC-A, A-type collecting duct intercalated cell; 
IC-B, B-type collecting duct intercalated cell; Trans, transition cell; Imm, immune cell; Mitotic, mitotic cell

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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Fig. 2  Shared features of human and experimental DN. a Heatmap displaying the Pearson correlation coefficient between scRNA-seq and bulk 
RNA-seq data. b Overview of significant glomerular DEGs detected in both single-cell and bulk RNA-seq datasets, as well as in the ERCB patient 
dataset. cHeatmap showing the significant regulation of DEGs identified in microdissected glomeruli and in glomerular cells from DN patients and 
mice, respectively. Nonsignificant genes are shown in grey. ERCB, European Renal cDNA Bank
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Mechanosensitive transcriptional regulators are activated 
in DN glomeruli
To identify the transcriptional regulations responsible 
for the differential expression of genes in DN glomerular 
cell types, we performed upstream analysis using Inge-
nuity Pathway Analysis (IPA), which identifies not only 
transcription factors but also transcription coregulators 
such as coactivators. Transcriptional regulators com-
monly changed in single-cell and bulk RNA-seq data 
are shown in Fig. 3a. Changes in transcriptional regula-
tions were predominant in mesangial cells. Intriguingly, 
we observed the activation of mechanosensitive tran-
scriptional regulators, including coactivators myocardin-
related transcription factor A and B (MRTFA/B) and 
yes-associated protein 1 (YAP1 or YAP), as well as the 
transcription factor serum response factor (SRF). Addi-
tionally, the gene regulatory network was inferred using 
SCENIC [24, 25] to determine the cell-type specific activ-
ity of transcription factors (Additional file 1: Figure S6b). 
Consistently, the activity of SRF was high in mesangial 
cells and moderate or low in podocytes and gECs, respec-
tively (Fig. 3b).

The MRTF-SRF transcriptional target genes with 
significant regulations in DN glomerular cell types are 
shown in Fig. 3c. Notably, the MRTF-SRF-specific tar-
gets Acta2 and Tagln [38] were found in both single-cell 
and bulk RNA-seq data. Enrichment analysis of sig-
nificantly changed MRTF transcriptional target genes 
suggested regulations of smooth muscle proliferation, 
actin cytoskeleton, integrin cell surface interactions, 
and extracellular matrix organization (Additional file 1: 
Figure S6c).

MRTF-SRF is an important mechanosensitive tran-
scriptional pathway in cells [39]. MRTF family consists 
of myocardin, MRTFA (MKL1, MAL), and MRTFB 
(MKL2). Unlike myocardin, which is limited to myocar-
dial cells and smooth muscle cells, MRTFA and MRTFB 
are found in various cells and tissues including the kid-
ney [40]. Mechanical stresses lead to the translocation of 
cytoplasmic MRTF into the nucleus to initiate the SRF-
mediated transcriptional responses [40]. We investigated 
the expression and location of MRTFA and MRTFB in 
mouse DN by immunofluorescent staining. MRTFA and 
MRTFB were found in the cytoplasm and nuclei of podo-
cytes and gECs, exhibiting comparable expression levels 

in both control and DN mice (Fig.  3d). Mesangial cells 
exhibited a low expression level of MRTFA in control 
mice, while some of the mesangial cells exhibited nuclear 
accumulation of MRTFA in DN mice (Fig.  3d). MRTFB 
expression was absent in most mesangial cells in control 
mice, but its expression level was clearly increased in 
DN mice. Importantly, nuclear accumulation of MRTFB 
in mesangial cells was obvious to detect especially in 
the region where mesangial expansion was taking place 
(Fig. 3d).

MRTF transcriptional target genes are upregulated in DN 
patients with type 2 diabetes
We investigated the expression of MRTF transcriptional 
target genes in an early DN cohort of Pima Indians from 
the Gila River Indian Community in Arizona, individu-
als with type 2 diabetes [31]. mRNA expression analysis 
of microdissected glomeruli showed that various genes 
significantly changed in mouse DN were also signifi-
cantly regulated in early human DN (Fig.  4a). Many of 
these target genes were positively correlated with mesan-
gial volume (Fig.  4b). Independent single-nucleus tran-
scriptomics data from early human DN [3] showed that 
these MRTF transcription genes were mostly regulated 
in mesangial cells (Additional file  1: Figure   S7a). The 
MRTF transcriptional target genes were mapped in the 
ERCB dataset. These genes were significantly regulated in 
glomeruli in the context of DN and other diseases poten-
tially causing mechanical stresses, such as arterial hyper-
tension, as well as various other glomerular diseases with 
glomerulosclerosis, such as lupus nephritis (caused by 
systemic lupus erythematosus, SLE) and IgA nephropa-
thy, but not in minimal change disease (MCD) (Fig. 4c).

Next, we investigated the expression and location of 
MRTFA and MRTFB in early human DN by immuno-
fluorescent staining. A basal and comparable expression 
level of MRTFA was detected in all three glomerular cell 
types in both healthy and early DN kidney biopsy sam-
ples (Fig. 5). Consistent with the observations in mouse 
DN, MRTFB was absent in most mesangial cells from 
healthy individuals but was accumulated in the nuclei of 
mesangial cells where glomerular lesions were observed 
(Fig. 5). Taken together, our immunofluorescent staining 
analyses on human and mouse DN confirm the activation 
of MRTFB in mesangial cells during early DN.

Fig. 3  Mechanosensitive transcriptional regulators are activated in DN glomeruli. a Dot plot displaying the commonly changed transcriptional 
regulations in both single-cell and bulk RNA-seq data estimated by IPA. b Heatmap showing the activity z scores of transcription factors estimated 
by SCENIC. c Heatmap showing the log2FC (DN vs. Ctrl) values of MRTF transcriptional target genes in mice glomerular cells. Nonsignificant genes 
are shown in gray (a, c). d Immunofluorescence staining of the mouse kidney paraffin sections showing the expression and localization of MRTFA 
and MRTFB in control and DN glomeruli. Glomerular endothelial cells were labeled by EMCN (endomucin), podocytes were labeled by NPHS1 
(Nephrin), nuclei were counterstained with HOECHST. Arrows indicate mesangial cells, which were negative for EMCN and NPHS1

(See figure on next page.)



Page 11 of 19Liu et al. Genome Medicine            (2023) 15:2 	

Fig. 3  (See legend on previous page.)
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Mesangial cells exhibit dominant signaling networks in DN 
glomeruli
Our results suggested that MRTF-SRF transcriptional 
regulation was activated in both mouse and human DN, 
predominantly in mesangial cells. Additionally, we iden-
tified various mesangial cell marker genes that encode 
transmembrane proteins responsible for the perception 
and transduction of mechanical signals, including mech-
anosensitive ion channels (MSCs), GPCRs, integrins, 
and cadherins [39] (Fig. 6a). Furthermore, we performed 
CellChat [23] to study the changes of intercellular com-
munications (secreted signaling, cell–cell contact, and 
ECM-receptor) taking place in DN. We compared inter-
action strength between all kidney cell types in DN ver-
sus control mice, which showed dominating interactions 

of mesangial cells with all other cell types in DN kid-
neys (Fig. 6b). Additionally, mesangial cells dominated 
the intercellular communications (Fig.  6c) and inter-
acted as a sender extensively with gECs and podocytes 
(Fig.  6d) in DN glomeruli. These interactions involved 
various well-known growth factor signaling pathways 
associated with the pathogenesis of chronic kidney 
disease (CKD), such as bone morphogenetic protein 
(BMP), fibroblast growth factor (FGF), and vascular 
endothelial growth factor (VEGF), as well as interac-
tions between multiple extracellular matrix proteins 
and integrins. Notably, the BMP2/4 signaling pathways 
identified in DN mesangial cell interactions contribute 
to glomerulosclerosis and tubulointerstitial fibrosis, 
particularly in DN [41].

Fig. 4  MRTF transcriptional target genes are upregulated in DN patients with type 2 diabetes. a Heatmap showing the log2FC (DN vs. Ctrl) values 
of MRTF transcriptional target genes in microdissected glomeruli from Pima early DN patients. b Pearson correlations between MRTF target gene 
expression levels and mesangial volumes in Pima early DN patients. c Heatmap showing the log2FC (DN vs. Ctrl) values of MRTF transcriptional 
target genes in microdissected glomeruli from ERCB patient datasets. Nonsignificant genes are shown in gray. DN, diabetic nephropathy; HT, 
hypertensive nephropathy; IgA, IgA nephropathy; FSGS, focal segmental glomerulosclerosis; MGN, membranous nephropathy; SLE, lupus nephritis; 
RPGN, ANCA-associated glomerulonephritis; MCD, minimal change disease
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Kidney ex vivo perfusion activates mechanosensitive 
signaling pathways
Glomerular hyperfiltration as a consequence of increased 
single-nephron glomerular filtration rate may be a com-
mon upstream mechanism contributing to CKD [2]. 
In diabetes, glomerular hyperfiltration is driven by the 
sodium–glucose cotransporter 2 (SGLT2) [2]. Hyper-
reabsorption of glucose and sodium in the PT ultimately 
leads to restricted tubuloglomerular feedback, resulting 
in increased intraglomerular pressure and glomerular 
hyperfiltration [2]. Consequently, circumferential and 
axial capillary wall stress, as well as fluid shear stress at 
the glomerular filtration barrier, is increased [42]. Since 
the mechanosensitive signaling pathway MRTF-SRF is a 

central coordinator of fibrosis-relevant mechanoresponse 
[39], we hypothesize that glomerular hyperfiltration may 
directly activate MRTF-SRF, leading to cellular changes 
associated with diabetic glomerulopathy.

We used normothermic machine perfusion to prove 
this hypothesis. The ex vivo kidney perfusion takes place 
for 1 to 2  h at 100  mmHg with 100% Gey’s Balanced 
Salt Solution (GBSS) without the addition of albumin or 
red blood cells (see the “Methods” section). Under this 
condition, tubular glomerular feedback is absent and 
100 mmHg is a supraphysiologic pressure leading to glo-
merular hyperfiltration [43].

We generated bulk and single-nucleus transcrip-
tomics data of isolated mouse glomeruli and pig renal 

Fig. 5  Immunofluorescence staining confirms the activation of MRTFB in mesangial cells during early DN. Immunofluorescence staining of the 
human kidney samples (ctrl: n = 2, DN: n = 5). Representative images showing the expression and localization of MRTFA and MRTFB in control and 
DN glomeruli. Glomerular endothelial cells were labeled by CD34, podocytes were labeled by NPHS1 (Nephrin), and nuclei were counterstained 
with HOECHST. Arrows indicate mesangial cells, which were negative for CD34 and NPHS1

(See figure on next page.)
Fig. 6  Mesangial cells exhibit dominant signaling networks in DN glomeruli. a Dot plot showing mesangial marker genes encoding 
transmembrane proteins responsible for the perception and transduction of mechanical signals. MSCs, mechanosensitive ion channels; GPCRs, G 
protein-coupled receptors. b Change of cell–cell interactions in all pairs of kidney cell types in DN vs. Ctrl mice. c Change of cell–cell interactions 
in all pairs of glomerular cell types in DN vs. Ctrl mice. d Increased cell–cell interactions for mesangial cell signaling to podocytes and glomerular 
endothelial cell in DN mice
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Fig. 6  (See legend on previous page.)
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cortex tissue, respectively (Fig.  7a, d), and gene expres-
sion was compared in perfused versus unperfused con-
ditions. In ex  vivo perfused mouse glomeruli, upstream 
analysis in DEGs suggested activation of MRTFA/B, SRF, 
and YAP1 (Fig.  7b). Enrichment analysis of significantly 
changed MRTF transcriptional target genes revealed 
actin cytoskeleton organization, VEGFA-VEGFR2 signal-
ing pathway, smooth muscle contraction, PDGFRB path-
way, and cellular response to external stimulus (Fig. 7c). 
In ex  vivo perfused pig kidney, a total of 11,692 single 
nuclei were profiled from perfused and unperfused renal 
cortex tissue. Unsupervised clustering identified 18 clus-
ters (Additional file 1: Figure S7b), which were classified 
into 12 cell types (Fig. 7e; Additional file 1: Figure S7c) on 
the basis of cell/nucleus-specific marker genes reported 
for previous human kidney single-nucleus data (Fig.  7f ) 
[3, 36]. We identified the major glomerular cell types 
including a stromal cell type (indicated by “STROMA” in 
figures) defined by the nucleus marker gene MEIS1 and 
FHL2 (Fig.  7f ) [44]. Immunofluorescent staining on the 
pig renal cortex showed that MEIS1-positive cells were 
mainly composed of mesangial cells, but also some inter-
stitial cells (Fig. 7g). Upstream analysis on DEGs revealed 
the activation of MRTFA/B, SRF, and YAP1 in stromal 
cells, as well as the activation of YAP1 and MRTFB in 
podocytes and endothelial cells, respectively (Fig.  7h). 
Significantly regulated MRTF transcriptional target 
genes were found predominantly in stromal cells (Fig. 7i). 
These findings support our hypothesis that the activation 
of mechanosensitive signaling pathways is a common 
mechanism in response to glomerular hyperfiltration.

Discussion
BTBR ob/ob is a useful mouse model to investigate cel-
lular changes and molecular mechanisms in early DN. 
Integrative analysis of single-cell and bulk RNA-seq data 
led to the identification of the mechanosensitive path-
way MRTF-SRF in DN glomeruli. The association of 
MRTF-SRF activation with human DN was validated in 
independent patient cohorts at both mRNA and protein 
levels, and MRTF-SRF is suggested as a common mecha-
nism in response to glomerular hyperfiltration.

Single-cell analysis on BTBR ob/ob kidneys suggested 
that PT cells and mesangial cells are the most sensitive 
cells to hyperglycemia and initiate glucose-dependent 

and glucose-independent downstream pathways in 
response to stress in the kidneys, respectively. PT cells 
showed adaptations to glucose metabolic fluxes and 
upregulation of antioxidant pathways. Increased glucose 
influx in cells fuels oxidative phosphorylation, leading to 
the overproduction of superoxide by mitochondria and 
the generation of reactive oxygen species, which play a 
central role in initiating diverse pathways responsible 
for diabetic abnormalities such as cellular dysfunction, 
inflammation, and fibrosis [1]. Mesangial cells showed 
the activation of other signaling pathways obviously 
independent of glucose metabolic flux. This finding is 
consistent with those of previous studies showing that 
overexpression of GLUT1 in mesangial cells exposed to 
high glucose fails to induce TGF-β1 synthesis and oxi-
dative stress [45] and that transgenic mice with GLUT1 
overexpression in mesangial cells do not develop patho-
logical phenotypes until 26 weeks of age [46].

Mouse DN glomeruli exhibited shared features with 
human DN glomeruli. Approximately 70% glomerular 
DEGs identified in DN mice were also significantly regu-
lated in DN patients. Importantly, MRTF-SRF transcrip-
tional target genes were significantly regulated in both 
mouse and human DN glomeruli. Notably, mesangial 
cells responded at the earliest time point and showed a 
persistent activation of MRTFB compared to podocytes 
and gECs. Immunofluorescent staining further confirmed 
the activation of MRTFB in the region where mesangial 
expansion was taking place. Mechanic stimulation trig-
gers cytoskeleton remodeling, resulting in the activation 
of mechanosensitive transcriptional pathway MRTF-SRF 
[39], which plays a key role in organ fibrosis [39, 47]. 
Upon stimulation, cytoplasmic MRTF translocate to the 
nucleus and interact with SRF to target the expression of 
muscle-specific and contractile genes, as well as extracel-
lular matrix genes [48, 49]. Interestingly, single-cell data 
showed mesangial cell expression of numerous genes 
that encode transmembrane proteins responsible for the 
perception and transduction of mechanical signals. DN 
mesangial cells exhibited a dominant signaling network 
in the whole kidney, interacted with gECs and podocytes 
by ECM, and secreted signaling. These results suggest 
that MRTF-SRF transcriptional regulation in mesangial 
cells could be an important pathological pathway con-
tributing to diabetic glomerulopathy.

Fig. 7  Kidney ex vivo perfusion activates mechanosensitive signaling pathways. a Experimental scheme of mouse kidney ex vivo perfusion. b Heatmap 
showing the log2FC values of MRTF transcriptional target genes in perfused versus control glomeruli. c Top enriched pathways of MRTF transcriptional 
target genes. d Experimental scheme of pig kidney ex vivo perfusion. e UMAP plot of annotated cell types from snRNA-seq of perfused and control 
pig kidney tissue. g Immunofluorescence staining against MEIS1 in the pig kidney cortex. Nuclei were counterstained with DAPI. G, glomerulus. 
Dashed lines indicate the area of glomerulus. Scale bar: 100 μm. f Dot plot displaying defining marker genes for each cell type. STROMA, stromal 
cells. h Heatmap showing z scores of mechanosensitive transcriptional regulators estimated by IPA. i Dot plot displaying MRTF transcriptional target 
genes significantly changed in perfused kidney tissue. Nonsignificant regulation or genes are shown in gray g, h 

(See figure on next page.)
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Fig. 7  (See legend on previous page.)



Page 17 of 19Liu et al. Genome Medicine            (2023) 15:2 	

Since the mechanical stress caused by glomerular 
hyperfiltration is thought to play a critical role in the 
development of glomerulopathy [42], we speculate that 
glomerular hyperfiltration, a key event in early DN [1, 2], 
directly activates mechanosensitive signaling pathways in 
renal glomeruli, and consequently contribute to diabetic 
glomerulopathy. This speculation is supported by evi-
dence in our study. First, single-cell and bulk RNA-seq of 
DN mice showed activation of MRTFA/B in three major 
glomerular cell types, which was also observed in an early 
DN cohort. Second, ex  vivo kidney perfusion-induced 
glomerular hyperfiltration showed a prominent activa-
tion of MRTFA/B, SRF, and YAP1 in mouse glomeruli. 
Third, snRNA-seq of perfused pig renal cortex tissue 
showed activation of these mechanosensitive transcrip-
tional regulators, which were most prominently activated 
in stromal cells composing mesangial cells.

Many MRTF target genes were significantly regulated 
not only in DN but also in the context of other glomeru-
lar diseases associated with glomerulosclerosis. These 
findings suggest a common role of MRTF in diabetic glo-
merulopathy, as well as in glomerulosclerosis generally. 
Previous studies demonstrated that MRTF-SRF and YAP 
are essential for podocyte structure and function [50, 51]. 
Tubulointerstitial fibrosis was diminished in MRTFA-
deficient mice and MRTFA was activated in high-fat diet- 
and streptozotocin-induced DN [52]. In addition, genetic 
deletion or pharmacological inhibition of MRTF attenu-
ates fibrosis in various pathological conditions, including 
kidney diseases like diabetic nephropathy, obstructive 
nephropathy, acute kidney injury, and polycystic kidney 
disease [47]. Therefore, MRTF is important for glomeru-
lar cells and is a potential therapeutic target for DN, as 
well as glomerulosclerosis.

Finally, while the principle of SGLT2 inhibition has been 
proven to be the major advance in slowing down CKD, 
the mechanisms remain unclear [2]. It was proposed that 
a lowering of the intraglomerular pressure by SGLT2 inhi-
bition might drive the renal protective effects. Our results 
unravel now mechanosensitive signaling pathways as pos-
sible mediators of SGLT2-dependent effects, opening the 
search for novel druggable downstream targets of SGLT2.

Conclusions
Our study presents a comprehensive single-cell tran-
scriptomic landscape of early DN and reveals cell-specific 
alterations in gene expression that occur with DN onset 
and progression. Our intensive analysis of glomerular cell 
types reveals that mechanosensitive signaling is associated 
with diabetic glomerulopathy and could play a driving role 
in response to glomerular hyperfiltration. The MRTF tran-
scription pathway may be part of a common mechanism in 
the glomerulus in the context of glomerulosclerosis.
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