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Abstract 

Background  Systemic and local profiles have each been associated with asthma, but parsing causal relationships 
between system-wide and airway-specific processes can be challenging. We sought to investigate systemic and air-
way processes in asthma and their causal relationships.

Methods  Three hundred forty-one participants with persistent asthma and non-asthmatic controls were recruited 
and underwent peripheral blood mononuclear cell (PBMC) collection and nasal brushing. Transcriptome-wide RNA 
sequencing of the PBMC and nasal samples and a series of analyses were then performed using a discovery and inde-
pendent test set approach at each step to ensure rigor. Analytic steps included differential expression analyses, coex-
pression and probabilistic causal (Bayesian) network constructions, key driver analyses, and causal mediation models.

Results  Among the 341 participants, the median age was 13 years (IQR = 10–16), 164 (48%) were female, and 200 
(58.7%) had persistent asthma with mean Asthma Control Test (ACT) score 16.6 (SD = 4.2). PBMC genes associated 
with asthma were enriched in co-expression modules for NK cell-mediated cytotoxicity (fold enrichment = 4.5, 
FDR = 6.47 × 10−32) and interleukin production (fold enrichment = 2.0, FDR = 1.01 × 10−15). Probabilistic causal network 
and key driver analyses identified NK cell granule protein (NKG7, fold change = 22.7, FDR = 1.02 × 10−31) and perforin 
(PRF1, fold change = 14.9, FDR = 1.31 × 10−22) as key drivers predicted to causally regulate PBMC asthma modules. 
Nasal genes associated with asthma were enriched in the tricarboxylic acid (TCA) cycle module (fold enrichment = 7.5 
FDR = 5.09 × 10−107), with network analyses identifying G3BP stress granule assembly factor 1 (G3BP1, fold change = 9.1 
FDR = 2.77 × 10−5) and InaD-like protein (INADL, fold change = 5.3 FDR = 2.98 × 10−9) as nasal key drivers. Causal media-
tion analyses revealed that associations between PBMC key drivers and asthma are causally mediated by nasal key 
drivers (FDR = 0.0076 to 0.015).

Conclusions  Integrated study of the systemic and airway transcriptomes in a well-phenotyped asthma cohort 
identified causal key drivers of asthma among PBMC and nasal transcripts. Associations between PBMC key drivers 
and asthma are causally mediated by nasal key drivers.
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Background
Asthma is a chronic respiratory disease that affects 
millions of people of all ages worldwide [1, 2]. Indi-
viduals with asthma experience wheezing, cough, chest 
tightness, and/or shortness of breath that can lead to 
impaired quality of life, emergency department visits, 
hospitalizations, and mortality [3]. Although important 
progress has been made in asthma research, many gaps 
remain in our mechanistic understanding of this com-
mon disease [4].

Asthma is a heterogeneous disorder of airway hyper-
responsiveness [3] where the presence of inflammatory 
cells including type 2 cells, eosinophils, and basophils 
in the local airway is common [5]. Transcriptome stud-
ies of upper airway samples from individuals with asthma 
have helped to characterize local biology associated with 
asthma and asthma-related phenotypes [6–12]. However, 
measures of systemic inflammation, such as eosinophilia 
and neutrophilia, have also been associated with asthma 
and asthma phenotypes [13–15]. Local inflammation 
can be sensed by hematopoietic progenitor cells in the 
bone marrow, which leads to increased programming of 
myeloid cells that enter the circulation [16]. The recruit-
ment of circulating immune cells to the airway during 
inflammation [13] is a cross-talk that bridges systemic 
and local inflammation. These prior studies suggest a role 
for systemic inflammatory processes in asthma, which 
have been further examined via blood transcriptome-
based investigations [17–19]. Interestingly, although air-
way and blood gene expression associations with asthma 
have been respectively reported, prior investigations of 
asthma phenotypes that concurrently examined blood 
and airway samples found differential gene expression in 
the airway only with no detectable differences in blood 
[20, 21]. The details and causal relationships between sys-
temic and local transcriptomics in asthma merit further 
examination.

In this study, we hypothesized that (1) both systemic 
and local gene expression are associated with asthma, 
and (2) systemic inflammation associated with asthma 
is causally mediated by airway gene expression. Lev-
eraging parallel peripheral blood mononuclear cell 
(PBMC) and nasal transcriptome data generated from 
341 individuals and using causal network approaches 
with discovery and tests sets to ensure rigor, we iden-
tified, validated, and characterized systemic and local 
gene signatures of asthma as well as causal relation-
ships between their key drivers.

Methods
Figure  1 provides an overview of the study flow. The 
study encompassed recruitment and sample collection 
from 341 participants followed by transcriptome data 
generation, discovery and test set assignment, differ-
ential gene expression and weighted gene coexpression 
network analyses, cellular deconvolution, and proba-
bilistic causal (Bayesian) network and key driver analy-
ses. These steps were carried out for PBMC and nasal 
samples in parallel, and key drivers identified from the 
PBMC and nasal data were then jointly analyzed in 
causal mediation models (Fig. 1). The methods for each 
of these steps are detailed below.

Study population and sample collection
Three hundred forty-one participants with and with-
out asthma were recruited from the Mount Sinai 
Health System, New York, NY. All participants or par-
ents of minors provided written informed consent for 
study participation. The study conformed to the prin-
ciples of the Helsinki Declaration and was approved 
by the Mount Sinai Institutional Review Board (Study 
15–00202). Inclusion criteria included those with per-
sistent asthma (based on physician diagnosis, asthma 
symptoms ≥ 2x/week, and demonstration of a bron-
chodilator response or positive methacholine chal-
lenge) and controls without asthma. Non-asthmatic 
controls had normal spirometry with no bronchodilator 
response and no personal nor family history of asthma. 
Questionnaires addressing asthma-related symptoms 
and history were completed by all participants. Aller-
gen sensitization by serum specific IgE measurement 
to 10 environmental allergens, the asthma control test 
(ACT) [22], pre- and post-bronchodilator spirometry 
lung function testing following American Thoracic Soci-
ety guidlines [23], and peripheral blood collection were 
also performed on all subjects. All participants were 
off asthma medications for at least 4  weeks and nasal 
medications for at least 2 weeks at the time of sampling. 
PBMCs were immediately isolated from whole blood 
samples by Ficoll-Paque density gradient centrifugation 
and then cryopreserved. Additionally, all subjects were 
invited to undergo nasal brushing with a sterile cytol-
ogy brush, with 292 subjects (Additional file 1: Table S1) 
agreeing to this additional procedure. Nasal brushings 
were immediately placed in RNALater (Qiagen, Valencia, 
CA) and stored at – 80 °C.
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Transcriptome data generation
RNA from PBMC and nasal samples was extracted using 
Qiagen RNeasy Mini Kit (Valencia, CA). RNA quality 
and quantity were measured using 2100 Bioanalyzer and 
Qubit fluorometer. Sequencing libraries for PBMC RNA 
were prepared using the Ribo-Zero Gold kit (Illumina) 
and sequenced on Illumina NovaSeq (Illumina) with 
paired-end 150  bp reads generated with 40–50 million 
reads per sample. Sequencing libraries for nasal RNA were 
prepared using TruSeq RNA Sample Prep Kit v2 protocol 
(Illumina) and sequenced on Illumina HiSeq 2500. Paired-
end 100 bp reads were generated with 40–50 million reads 
per sample. The reads were mapped to GRCH38 using 
STAR v2.4.0g1 aligner, and the number of reads mapped 
per gene was estimated using HTseq [24]. The gene 

expression profiles were normalized to counts per million 
(cpm) using edgeR r package [25]. Genes with ≤ 5 counts 
per million in > 10% of samples were removed to reduce 
noise on low counts and low abundance genes. After qual-
ity control and filtering, 12484 PBMC genes and 13996 
nasal genes remained for analysis.

Discovery and test set assignment
The 341 participants were randomly split 2:1 into a dis-
covery set (n = 228) and test set (n = 113). At each major 
step, the discovery set was used for initial models, and 
significant findings (FDR ≤ 0.05) that could also be found 
in the test set of independent participants were consid-
ered validated and carried forward.

Fig. 1  Study flow. Peripheral blood mononuclear cell (PBMC) and nasal transcriptome profiles from 341 participants with and without asthma were 
generated and studied to characterize systemic and airway responses in asthma. Using PBMC transcriptome data from the discovery set, we first 
identified differentially expressed genes (DEGs) associated with asthma (yellow box). Genes that were also associated with asthma with the same 
direct of effect in the independent test set were deemed validated “PBMC asthma genes.” Weighted gene coexpression network analysis 
and enrichment testing were then performed to identify co-expression modules enriched for PBMC asthma genes (PBMC asthma modules). Next, 
probabilistic causal (Bayesian) networks were built separately for the discovery set and test set. Key driver analysis was performed on each network 
using PBMC asthma module members as targets. Key drivers identified in both the discovery and test sets were deemed “PBMC key drivers.” 
The same series of analyses was performed with the nasal transcriptome data generated in parallel from participants to identify nasal asthma 
genes, nasal asthma modules, and nasal key drivers (green box). To characterize relationships between the PBMC key drivers and nasal key drivers 
identified, causal mediation analyses were then performed (purple box)
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Differential gene expression analysis and WGCNA
DESeq2 [26] was used to identify PBMC and nasal genes 
associated with asthma. Age, sex, and race were included 
as covariates in the models. Genes with Benjamini–
Hochberg corrected p values ≤ 0.05 in the discovery set 
and associated with asthma with the same direction of 
effect in the test set were deemed validated PBMC or 
nasal asthma genes, respectively.

Weighted gene coexpression network analysis 
(WGCNA) [27] was used to build PBMC and nasal gene 
co-expression networks separately. PBMC and nasal 
gene co-expression modules enriched for PBMC or nasal 
asthma genes were then identified by Fisher’s exact test 
(enrichment score > 1 and FDR ≤ 0.05). Gene ontology 
(GO) analysis was performed on each module’s gene set 
using DAVID [28], and biological processes ranked by 
fold enrichment and FDR ≤ 0.05 were selected as module 
names.

Cellular deconvolution
Cellular composition of the nasal samples was inferred 
by deconvolution where CIBERSORTx [29] analysis was 
performed on the nasal RNAseq data with nasal single 
cell RNAseq data [30] as the reference.

Probabilistic causal network and key driver analysis
Probabilistic causal (Bayesian) networks [31, 32] for the 
PBMC and nasal transcriptome data were built sepa-
rately for each’s respective discovery and test sets using 
RIMBAnet [31, 32], a software to construct probabil-
istic causal networks using Markov chain Monte Carlo 
simulations. Inputs included the corresponding PBMC 
or nasal transcriptome data and eQTL data [33]. To 
map eQTLs for the PBMC and nasal transcriptomes 
respectively, two-path mode from STAR aligner [34] was 
used to align RNAseq reads to the reference genome 
(GRCh38), and variants were called using the “Haplo-
typeCaller” GATK [35] tool after filtering against known 
RNA editing sites, intronic variants within four nucleo-
tides from splice donor, and acceptor site variants called 
in repeated sequences. We performed genotype phas-
ing and imputation using BEAGLE 5.1 [36] against the 
1000 Genome reference haplotypes for hg38 [37]. After 
filtering out variants with low imputation accuracy (dos-
age R-squared < 0.8) and low minor allele frequency 
(MAF < 0.01), we hard called the variants using PLINK2 
[38]. Genetic ancestry of the study population was cal-
culated based on the variant calls [39], and this genetic 
ancestry together with age and gender were used as 
covariates when mapping cis eQTLs [33, 40]. We iden-
tified the eQTLs where cis SNPs (within 1  Mb of the 

transcription start or end site of the gene) were associ-
ated with gene expression at FDR ≤ 0.05 using matrixeqtl 
[40] (Additional file 1: Tables S2-S4).

To construct the probabilistic causal networks, genes 
from the corresponding transcriptomic datasets were 
discretized into 3 states, high expression, low expres-
sion, and no expression by K-means clustering (K = 3) 
[31, 32, 41]. Markov chain Monte Carlo simulations 
were used to reconstruct 1000 networks, and the fit of 
each network was assessed by the Bayesian Informa-
tion Criterion [31, 32, 41]. The final causal network 
was built by retaining edges present in ≥ 30% of the 
1000 networks.

Key driver analysis using the KDA package [42] was 
then performed to identify each asthma module’s key 
drivers using the causal network and module members as 
targets. Subnetworks used as background for the enrich-
ment analysis were identified by selecting nodes K-steps 
away from the nodes in the module member list. The 
enrichment of module member genes was assessed in 
k-step (k varies from 1 to K) downstream neighborhood 
stemming from each node. We used K = 7 in the analyses.

Causal mediation analysis
PBMC and nasal key drivers associated with asthma 
were tested in causal mediation analysis using the robust 
structural modeling equation implemented in the lavaan 
R package [43]. We tested (a) the degree to which PBMC 
key drivers (mediator) mediated the effects of nasal key 
drivers (independent variable) on asthma (outcome) 
and (b) the degree to which nasal key drivers (mediator) 
mediated the effects of PBMC key drivers (independent 
variable) on asthma (outcome). For each causal mediation 
analysis, three regression models were implemented to 
estimate the effects of (1) independent variables on out-
comes, (2) independent variables on mediators, and (3) 
mediators on the outcomes. Model 1 estimates the direct 
effect of independent variables on the outcome, while 
models (2) and (3) estimate indirect effects (mediation). 
FDR ≤ 0.05 was used as the threshold for significance.

Results
Participant characteristics
The cohort included 341 participants recruited from the 
Mount Sinai Health System, New York, USA, of whom 
200 (58.7%) individuals had persistent asthma based on 
physician diagnosis, symptoms ≥ 2x/week, and demon-
stration of bronchodilator response on lung function 
testing and/or positive methacholine challenge. One 
hundred forty-one (41.3%) individuals had no asthma 
based on no personal or family history of asthma and 
demonstration of normal spirometry without a broncho-
dilator response (Table  1). Participants were primarily 
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children with median age of 13 years (IQR 10–16). Those 
with asthma were younger, more likely to be Black or 
Latino, and had lower ACT scores, FEV1%, and FEV1/
FVC values. Many participants with asthma had high 
rates of emergency department visits and hospitaliza-
tions for asthma (Table  1). Peripheral blood for PBMC 
isolation was collected from all 341 participants. Nasal 
brushings were collected from a subset (n = 292, 85.6%) 
who agreed to nasal brushing; the characteristics of this 
subset did not significantly differ from the whole cohort 
(Additional file 1: Table S1).

Systemic processes in asthma: PBMC asthma genes are 
enriched in co‑expression modules for NK cell‑mediated 
cytotoxicity and interleukin production
To investigate systemic processes in asthma, we iso-
lated PBMCs from participants’ peripheral blood and 
generated PBMC transcriptome profiles using RNA 

sequencing [44]. The 341 participants were randomly 
split into a discovery set (n = 228) and test set (n = 113). 
To identify PBMC transcripts significantly associated 
(FDR ≤ 0.05) with asthma, differential gene expression 
analysis on the discovery set was performed with age, 
sex, and race/ethnicity as covariates. PBMC transcripts 
associated with asthma in the discovery set (Fig. 2) were 
then tested in the independent test set, and those that 
were also associated with the same direction of effect in 
the test set were deemed validated “PBMC asthma genes” 
(Additional file 1: Table S5).

We then sought to uncover functional biological con-
text for the identified PBMC asthma genes. Weighted 
gene co-expression network analysis (WGCNA) [27] 
using the discovery set identified 24 PBMC co-expression 
modules representing broader constructs of biological 
function. Nine of these 24 modules were significantly 
enriched (Fisher’s exact test FDR ≤ 0.05) for PBMC 

Table 1  Characteristics of the cohort

P values were calculated using Fisher’s exact test for categorical variables and generalized linear regression for continuous variables

ACT​ asthma control test, FEV1% force expiratory volume in 1 s, percent predicted, FEV1/FVC forced expiratory volume in 1 s/forced vital capacity
a Asthma medications were held for at least 4 weeks before sampling

All (N = 340) Asthma
N = 200

No asthma
N = 141

p value

Age, mean (SD) 13.4 (4.8) 12.5 (4.6) 14.7 (5.0) 4.90E − 05

Sex female, no. (%) 164 (48%) 83 (42%) 81 (57%) 0.0042

Race/ethnicity, no. (%) 3.93E − 06

  Asian 23 (6.7%) 4 (2.0%) 19 (13.5%)

  Black 61 (17.9%) 43 (21.5%) 18 (12.8%)

  Latino 86 (25.2%) 63 (31.5%) 23 (16.3%)

  Multiple races or unknown 30 (8.8%) 15 (7.5%) 15 (10.6%)

  White 141 (41.3%) 75 (37.5%) 66 (46.8%)
aAsthma medications prescribed, no. (%)

  β-Agonist 190 (56.0%) 190 (95.0%) 0 (0%)

  ICS 44 (13.0%) 44 (22.0%) 0 (0%)

  ICS/long-acting β-antagonist 55 (16.1%) 55 (27.5%) 0 (0%)

  Leukotriene receptor antagonist 47 (13.8%) 47 (23.5%) 0 (0%)

  Omalizumab 5 (1.5%) 5 (2.5%) 0 (0%)

ACT score, mean (SD) 20.1 (5.3) 16.6 (4.2) 25 (0.0)  < 2e − 16

FEV1% predicted, mean (SD) 88 (15.4) 86 (17.0) 90 (13.1) 0.022

FEV1/FVC ratio, mean (SD) 83.5 (10.9) 79.7 (10.3) 87.6 (10.0) 1.36E − 10

Allergen sensitization, no. (%) 261 (76.5%) 146 (73%) 115 (82%) 0.067

Hospitalizations for asthma in the past year, no. (%)

  0 174 (51%) 174 (87%) NA

  1 11 (3.2%) 11 (5.5%) NA

   ≥ 2 15 (4.4%) 15 (7.5%) NA

Emergency dept visits for asthma in the past year, no. (%)

  0 132 (38.7%) 132 (66%) NA

  1 20 (5.9%) 20 (10%) NA

   ≥ 2 48 (14.1%) 48 (24%) NA

Rhinosinusitis symptoms, no. (%) 111 (32.6%) 82 (41.0%) 29 (20.6%) 9.89e − 5
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asthma genes. Gene Ontology (GO) enrichment analy-
ses revealed that the modules most strongly enriched 
for PBMC asthma genes (ranked by effect size and then 
lowest FDR) were the modules for “NK cell-mediated 
cytotoxicity” (fold enrichment = 4.5, FDR = 6.47 × 10−32) 
and “interleukin production” (fold enrichment = 2.0, 
FDR = 1.01 × 10−15). We will henceforth refer to these two 
modules as the NK cell and interleukin PBMC asthma 
modules, and their respective member genes are shown 
in Additional file 1: Tables S6, S7). The remaining seven 
modules largely represented cellular maintenance pro-
cesses. Notably, genes in causal paths for Th2 cell differ-
entiation regulation gene ontology process were enriched 
in the interleukin PBMC asthma module (enrichment 
score 19.0, Fisher’s exact p value = 7.24e − 23).

Causal relationships and key drivers of the PBMC asthma 
modules
To characterize causal relationships among genes within 
the identified PBMC asthma modules, we next per-
formed probabilistic causal (Bayesian) network analysis 
[31, 32, 45]. In this network construction, causal rela-
tionships were statistically inferred between PBMC tran-
scripts using expression quantitative trait loci mapped 
in this cohort as priors [31–33] (Additional file 1: Tables 
S3-S4). We then used key driver analysis (KDA) [42], 
a method for applying dynamic and statistical neigh-
borhood searches on constructed probabilistic causal 
networks, to identify key drivers predicted to exert the 
greatest causal impact on downstream genes in each 

PBMC asthma module. Here, we also used a discov-
ery and test set approach, where a probabilistic causal 
network was first built with the discovery set and key 
drivers were identified for each PBMC asthma module 
(Additional file 1: Table S8, Table S9). Independent prob-
abilistic causal network construction with the test set 
and key driver analysis were then separately performed 
for each module. Key drivers identified in the discovery 
set and also found in the test set were deemed validated 
“PBMC key drivers” of each module.

The PBMC key drivers for the NK cell module are 
shown in Fig.  3A and for the interleukin module in 
Fig.  4A. As key drivers predicted to exert the greatest 
causal impact on downstream genes in each module, 
these key drivers appear at the top of each Eiffel tower 
plot, with causality flowing from top to bottom. In addi-
tion to the key drivers, we label a few downstream genes 
of interest for each module. Biological relationships 
between the key drivers for each module, based on the 
probabilistic causal network and prior experimental 
work, are shown in Figs. 3B and 4B [46–61].

Local airway processes in asthma: nasal asthma genes, 
nasal asthma modules, and nasal key drivers
To characterize local airway processes in asthma, we 
next performed the same analytic flow with the nasal 
transcriptome data [44] that had been generated in par-
allel with the PBMC data (Fig.  1). The same discovery 
and test set assignments were used for the available nasal 
transcriptome data. Nasally expressed genes found to be 

Fig. 2  PBMC genes associated with asthma. Differential gene expression analysis was performed. Genes associated with asthma in the discovery 
set (FDR ≤ 0.05) are shown in orange, and those that were also associated with asthma with the same direction of effect in the independent test 
set were deemed validated PBMC asthma genes. Key drivers identified and validated in downstream analyses are labeled, including key drivers 
of the NK cell-mediated cytotoxicity module (purple) and key drivers of the interleukin production module (blue)
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Fig. 3  Probabilistic causal network and functional biological context for the NK cell-mediated cytotoxicity PBMC module. A Probabilistic causal 
network and key driver analysis results for the NK cell-mediated cytotoxicity module. This PBMC transcriptome module was significantly enriched 
with PBMC asthma genes. The arrow indicates the overall causality flow with key drivers at the top level. Level indicates path length of the gene 
from a key driver. Genes on higher levels have greater causal impact on downstream genes. Color, shade, and shape indicate key driver, module 
membership, and PBMC asthma genes as summarized in the legend. Selected non-key drivers are additionally labeled, as they are recognized 
to function with the upstream key drivers. B Functional biological context for the NK cell-mediated cytotoxicity module. Genes within purple boxes 
are key drivers and genes in purple font are module genes highlighted in A. Dashed arrows indicate causal relationships inferred from the causal 
network. NKG7 encodes natural killer cell granule protein 7, which regulates granule exocytosis in lymphocytes [48]. PRF1 encodes perforins 
that function with granzymes and granulysins to kill target cells [47]. Killer cell lectin-like receipt D1 encoded by KLRD1 forms heterodimers 
with NKG2 and can stimulate or inhibit cytotoxicity depending on NKG2 isoform [58, 59]. MBYL1, MYB proto-oncogene like 1, is a transcription 
activator [53]. The module genes GZMB, GZMA and GNLY encode granzymes and granulysin that kill target cells upon release [47, 49]

Fig. 4  Probabilistic causal network and functional biological context for the interleukin production PBMC module. A Probabilistic causal network 
and key driver analysis results for the interleukin production module. This PBMC transcriptome module was significantly enriched with PBMC 
asthma genes. The arrow indicates the overall causality flow with the key drivers on the top level. Level indicates path length of the gene from a key 
driver. Genes on higher levels have greater causal impact on downstream genes. Color, shade, and shape indicate key driver, module membership, 
and PBMC asthma genes as summarized in the legend. Some genes downstream of key drivers are additionally highlighted given their recognized 
roles in immune-related functions. B Functional biological context for the interleukin production module. Genes highlighted within blue boxes are 
key drivers of the module. (1) CTSS, Cathepsin S, is a lysosomal cysteine proteinase that cleaves off the invariant chain on MHC class II molecules 
in the endolysosomal compartments for later antigen-MHC II formation [60]. ATP6AP2 encodes a protein involved in lysosomal proton-transporting 
V-type ATPase [55]. (2) TNFSF13 encodes a member of the tumor necrosis factor ligand superfamily important for B cell development [61]. (3) RAB3D 
encodes a member of the RAS oncogene family that regulates secretory granule maturation [56]. (4) PSAP encodes prosaposin, which yields Saposin 
B when cleaved [50]. Saposin B works with other enzymes to break down sphingolipids [52]. (5) CAPZA2, capping actin protein of muscle Z-line 
subunit alpha 2, is an F-actin capping protein that caps the barbed end of actin filaments [57]. (6) LCP1 encodes L-plastins (LPL) that bind F-actin. 
LPL also mediates sensitization of eosinophils [51]
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associated with asthma by differential expression analysis 
in the discovery set that were also significantly associated 
with asthma in the independent test set were deemed 
“nasal asthma genes” (Additional file 1: Table S10).

To explore how immune cells in the nasal samples 
might influence the nasal asthma genes identified, we 
performed cellular deconvolution [29] and found small 
cell fractions of myeloid, mast cells, and plasma cells in 
the nasal samples that did not differ between subjects 
with and without asthma (Additional file  1: Table  S11). 
Adding these cell fractions as additional model covari-
ates did not significantly change the nasal genes identi-
fied; nasal asthma genes from this sensitivity analysis 
strongly overlapped with those found from the origi-
nal model (enrichment score 12.7, Fisher’s exact p 
value = 6.3e − 306).

WGCNA using the nasal transcriptome discovery set 
identified 21 nasal modules, of which 8 were significantly 
enriched with nasal asthma genes (FDR ≤ 0.05). Of these 
8 modules, 2 had module eigenvalues significantly asso-
ciated with asthma at FDR ≤ 0.05: the module for tricar-
boxylic acid (TCA) cycle and the module for metabolic 
pathways (Additional file  2: Fig. S1). The TCA module 
eigenvalue was associated with asthma with greatest 
effect size and lowest FDR (Additional file 2: Fig. S1) and 
was therefore considered the top ranked “nasal asthma 
module.” The metabolic pathways module, whose eigen-
value was also nominally associated with asthma but with 
lower effect size and higher FDR, was considered a broad 
module representing cellular maintenance.

Construction of a probabilistic causal network with the 
nasal transcriptome discovery set and key driver analysis 
for the TCA nasal asthma module identified nasal key driv-
ers. An independent probabilistic causal network was then 
built with the nasal transcriptome test set with key driver 
analysis also performed. Key drivers identified for the TCA 
nasal asthma module in the discovery set (Additional file 1: 
Table S12) that were also validated in the test set were con-
sidered “nasal key drivers.” These nasal key drivers included 
G3BP1 and INADL, two members of the TCA module that 
were also nasal asthma genes themselves (Additional file 1: 
Table S10).

Relationship between systemic and local processes 
in asthma: nasal key drivers causally mediate associations 
between PBMC key drivers and asthma
Our next goal was to investigate the relationship between 
systemic and local processes in asthma. Specifically, we 
sought to examine causal mediation between PBMC key 
drivers associated with asthma (PRF1 and NKG7 in the 
NK cell module; CAPZA2, ATP6AP2, CTSS, and RAB3D 
from the interleukin module) and nasal key drivers asso-
ciated with asthma (G3BP1 and INADL from the nasal 

TCA module). These causal mediation models revealed 
that the nasal key drivers of asthma significantly mediate 
the association between PBMC key drivers in the NK cell 
module (PRF1 and NKG7) and asthma (FDR = 0.0076 to 
0.01) (Fig.  5). No causal mediation was observed in the 
interleukin module, and there was no statistically signifi-
cant finding for the converse of PBMC key drivers medi-
ating associations between nasal key drivers and asthma. 
Permutation testing [62] with 1,000,000 iterations con-
firmed our finding of nasal key drivers significantly medi-
ating associations between PBMC key drivers and asthma 
in the NK cell module and lack of significance for media-
tion by PBMC key drivers.

Discussion
In this integrated study of systemic and local processes 
in asthma, we generated and leveraged parallel PBMC 
and nasal transcriptome profiles [44] from 341 indi-
viduals in a well-characterized asthma cohort to iden-
tify systemic and local key drivers of asthma, as well as 
causal mediation relationships underlying systemic-local 
cross-talk in this complex disease. By capturing both 
systemic and local transcriptomics and employing inno-
vative network analyses, this study moves beyond prior 
transcriptomic studies of asthma by (1) finding evidence 
for both systemic and local transcriptional signatures of 
asthma in the same cohort (Additional file  1: Table  S5, 
Additional file  1: Table  S10); (2) identifying key driv-
ers of these asthma signatures in the PBMC and airway 
compartments (Figs. 3 and 4, Additional file 1: Table S8, 
Table  S9, Table  S12); and (3) characterizing causal rela-
tionships between the detected systemic and local key 
drivers (Fig. 5). The discovery and test set approach that 
we employed, where each discovery step required valida-
tion in a test set of independent participants, brings rigor 
to the findings reported.

Through differential gene expression, WGCNA, and 
module enrichment analyses, we found that NK cell-
mediated cytotoxicity and interleukin production were 
the biological processes for the top PBMC modules 
enriched for asthma-associated PBMC genes, while TCA 
cycle was the top nasal module enriched for asthma-
associated nasal genes. These findings from unbiased 
whole transcriptome analyses of the PBMC and nasal 
compartments highlight mechanistic pathways that 
have to date been overshadowed by focus on commonly 
targeted pathways (e.g. type 2 inflammation) [63]. The 
importance of these biological processes is supported 
by prior findings. For example, increased NK cell cyto-
toxicity activity is present in the peripheral blood of 
asthmatics vs. controls, and children with acute exac-
erbated asthma have higher numbers of circulating NK 
cells compared to those with stable asthma [64]. NK 
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cells activate in response to well-known allergy triggers 
including allergens, RSV, and other respiratory viruses 
[64]. Furthermore, compared to controls, patients with 
asthma have increased IL-4-producing NK cells in their 
blood [64]. Our finding of interleukin production as a top 
PBMC asthma module is not surprising, given the broad 
representation of this module and the pervasive roles 
that interleukins play in orchestrating inflammatory pro-
cesses in asthma, including IL-4, IL-5, and IL-13 in type 
2 inflammation [65, 66]. Indeed, the pivotal role of circu-
lating interleukins has been the basis for the explosion of 
biologic medications as effective systemic treatments for 
asthma [67]. Moreover, we found significant enrichment 
of Th2 cell differentiation genes in the interleukin PBMC 
asthma module. In contrast, finding that the TCA mod-
ule was the top nasal asthma module was less expected, 
although evidence from the cellular and molecular biol-
ogy field supports that members of the TCA cycle act 
mechanistically to shape smooth muscle airway broncho-
constriction, hyperresponsiveness, and airway remod-
eling in asthma [68, 69].

While illuminating to identify genes and modules asso-
ciated with asthma in both the PBMC and nasal com-
partments, we thought it would be important to move 
beyond association toward new insight on key drivers of 
systemic and local processes in asthma. The identifica-
tion of key drivers prioritizes gene signature lists by high-
lighting the transcripts at root levels of causality for more 

efficient therapeutic targeting and mechanistic parsing. 
Here, we mapped and leveraged expression quantitative 
trait loci as priors to build probabilistic causal networks 
with directional connectivity, which then enabled us to 
identify key drivers of the PBMC and nasal asthma mod-
ules (Figs. 3 and 4, Additional file 1: Table S8, Table S9, 
Table  S12). These key drivers are statistically predicted 
to drive the regulatory state of each asthma module. For 
the NK cell PBMC asthma module, we identified perforin 
(PRF1) and NK cell granule protein (NKG7) as key driv-
ers that were each also associated with asthma (Fig. 3A). 
Increased expression of PRF1 in peripheral blood lym-
phocytes of both allergic and intrinsic asthmatics has 
been previously reported, [70] and NKG7 was found in 
a study of publicly available gene expression data to be 
a marker of severe asthma [71]. Both PRF1 and NKG7 
demonstrated prominent upstream roles in NK cell-
mediated cytotoxicity when causal relationships derived 
from the constructed network and evidence from the 
literature were combined to provide functional biologic 
context (Fig. 3B). Given the broader scope of the interleu-
kin production PBMC asthma module, more key drivers 
were identified for this module (Fig. 4A), which were pre-
dicted by the causal network and prior literature to reg-
ulate a wide variety of cellular activities including those 
involved in prevalent type 2 asthma, such as allergen 
presentation and eosinophil chemotaxis (Fig.  4B). For 
the nasal asthma module, G3BP stress granule assembly 

Fig. 5  Associations between PBMC key drivers and asthma are causally mediated by nasal key drivers. PBMC key drivers and nasal key drivers 
associated with asthma were examined. Triangle edges summarize pairwise associations. Red arrows indicate significant causal mediation by nasal 
key drivers (FDR ≤ 0.05)
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factor 1 (G3BP1), which promotes innate immune tran-
scriptional responses via NF-kB and c-Jun N-terminal 
kinase pathways, [72] and the protein-coding gene InaD-
like protein (INADL) involved in epithelial migration [73] 
were both identified as nasal key drivers that were also 
associated with asthma.

In contrast to prior investigations of transcriptomic 
associations with asthma and asthma-related phenotypes 
in blood only [17–19], upper airway samples only [6–11], 
and both where only airway but no systemic associations 
were found [20, 21], we found evidence for both systemic 
and airway transcriptomic associations with asthma in 
the same cohort. Our sample size of 341 participants was 
relatively large for a dual transcriptome study [12, 20, 21], 
augmenting our power for detection and also enabling 
the network and discovery/test set approaches we used 
to ensure rigor and advance insight beyond associations. 
Our paired findings from the systems and local domains 
provided us with a unique opportunity to begin to address 
the fundamental question of the degree to which asthma 
is a local process with systemic findings or a systemic pro-
cess with local findings. While this is a somewhat exis-
tential question without an absolute answer, our causal 
mediation analyses of the relationships between the iden-
tified PBMC asthma key drivers, nasal asthma key drivers, 
and asthma status in this population begin to offer some 
insight. Here, we found that associations between PBMC 
key drivers and asthma were causally mediated by nasal 
key drivers, but not the converse (Fig. 5). Specifically, for 
the PBMC module key drivers PRF1 and NKG7, their 
association with asthma was causally mediated by the 
nasal asthma key drivers G3BP1 and INADL. There was 
no evidence for the converse of PBMC key drivers caus-
ally mediating associations between nasal key drivers and 
asthma. This suggests that asthma is a systemic process 
causally mediated by airway key drivers. Given circulat-
ing immune cells can be recruited to the airway during 
inflammation [13, 16], our findings speak to the cross-talk 
that bridges systemic and local inflammation and immu-
nity. While we found significant causal mediation rela-
tionships for PBMC key drivers of the NK cell module 
(PRF1 and NKG7), there were no detectable causal media-
tion effects for PBMC key drivers of the interleukin mod-
ule, which may have been due to the broader, less specific 
scope of that module.

We recognize the limitations to our study. While our 
investigation of parallel PBMC and nasal transcriptome 
profiles in asthma stands apart in successfully find-
ing both systemic and airway gene signatures, modules, 
and key drivers of asthma as well as causal relationships 
between them, our study did not endotype asthma. It 
is possible that different findings would be detected 
if analyses were limited to particular endotypes of 

asthma, which was outside the scope of this study but 
a future direction we will consider. Additionally, while 
we employed a discovery and test set approach where 
each was analyzed independently at every step to ensure 
rigor in our reported findings, the discovery and test sets 
were sampled from the same population. It is possible 
that findings would be distinct for asthma populations 
in other parts of the world. Finally, the key drivers were 
identified via mathematical and statistical models, and 
we acknowledge that further work is needed to replicate 
and experimentally validate these findings to deepen our 
understanding of their role in asthma.

Conclusions
In this network study of systemic and local processes 
in asthma, we generated and examined dual PBMC 
and nasal transcriptome profiles from 341 individuals 
to identify systemic and local key drivers of asthma, as 
well as causal mediation relationships between them. 
In addition to identifying both systemic and local tran-
scriptional signatures of asthma, we found that asso-
ciations between systemic key drivers of asthma and 
asthma are causally mediated by nasal key drivers of 
asthma. Our study moves beyond anatomically isolated 
transcriptome-wide association analyses to elucidate 
causal relationships between systemic and airway key 
drivers of asthma.
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